Datasets and source codes, which are available for academic purposes only, are uploaded here and/or at the individual webpages of our team members. |
Datasets | |||||
Action Recognition | |||||
APE Dataset | |||||
Related publication | |||||
T.H. Yu, T-K. Kim, and R. Cipolla, Unconstrained Monocular 3D Human Pose Estimation by Action Detection and Cross-modality Regression Forest, Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Portland, Oregon, USA, 2013 | |||||
Hand Gesture Recognition | |||||
ICVL Big Hand Dataset | |||||
You can access the datasets with the following forms: BigHand2.2M, HANDS 2017, HANDS 2019. | |||||
Related publication | |||||
S. Yuan, Q. Ye, B. Stenger, S. Jain, T-K. Kim, Big Hand 2.2M Benchmark: Hand Pose Data Set and State of the Art Analysis, Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, USA, 2017. | |||||
ICVL Hand Posture Dataset | |||||
Related publications | |||||
D. Tang, H.J. Chang, A. Tejani, T-K. Kim, Latent Regression Forest: Structural Estimation of 3D Articulated Hand Posture, Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio, USA, 2014 (oral, accept rate=5.75%) | |||||
D. Tang, T.H. Yu and T-K. Kim, Real-time Articulated Hand Pose Estimation using Semi-supervised Transductive Regression Forests, Proc. of IEEE Int. Conf. on Computer Vision (ICCV), Sydney, Australia, 2013 (oral, accept rate=41/1629) |
|||||
Cambridge Hand Gesture Database | |||||
Related publication | |||||
T-K. Kim and R. Cipolla, Gesture Recognition Under Small Sample Size, In Proc. 8th Asian Conf. on Computer Vision (ACCV) (Lecture Notes in Computer Science), Tokyo, Japan, November 2007. (Oral, 8.4% acceptance ratio) | |||||
3D Object Detection | |||||
ICVL 6 DoF Object Pose and Next-Best-View Prediction Dataset (original version) | |||||
Related publication | |||||
A. Doumanoglou, R. Kouskouridas, S. Malassiotis, T-K. Kim, Recovering 6D Object Pose and Predicting Next-Best-View in the Crowd, Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016. | |||||
Reduced version of the ICVL 6 DoF Object Pose and Next-Best-View Prediction Dataset can be found in HERE. | |||||
ICVL 6 DoF Object Pose Estimation Dataset (original version) | |||||
Related publication | |||||
A. Tejani, D. Tang, R. Kouskouridas, T-K. Kim, Latent-Class Hough Forests for 3D Object Detection and Pose Estimation, Proc. of European Conference on Computer Vision (ECCV), Zurich, Switzerland, 2014 | |||||
Reduced version of the ICVL 6 DoF Object Pose Estimation Dataset can be found in HERE. | |||||
Face Recognition | |||||
ICVL Celebrity Face Dataset | |||||
Related publication | |||||
C. Xiong, G. Gao, S. Yan, Z. Zha, H. Ma, T-K. Kim, Adaptive Learning for Celebrity Identification with Video Context, IEEE Trans. on Multimedia, Vol.16, No.5, Aug 2014 | |||||
Cambridge Face Dataset | |||||
Related publication | |||||
T-K. Kim, S-F. Wong, B. Stenger, J. Kittler and R. Cipolla, Incremental Linear Discriminant Analysis Using Sufficient Spanning Set Approximations, In Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Minneapolis, MN, 2007. | |||||
Source codes | |||
Anisotropic Diffusion in Image Processing | |||
Source code | |||
Related publication | |||
C. Tsiotsios and M. Petrou, On the Choice of the Parameters for Anisotropic Diffusion in Image Processing,Pattern Recognition, Volume 46, Issue 5, May 2013 | |||
Discriminative Canonical Correlations | |||
Source code | |||
Related publication | |||
T-K. Kim, J. Kittler and R. Cipolla, Discriminative Learning and Recognition of Image Set Classes Using Canonical Correlations, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), Vol.29, No.6, 2007 (Regular paper). | |||
Incremental Linear Discriminant Analysis | |||
Source code | |||
Related publication | |||
T-K. Kim, S-F. Wong, B. Stenger, J. Kittler and R. Cipolla, Incremental Linear Discriminant Analysis Using Sufficient Spanning Set Approximations, In Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Minneapolis, MN, 2007. |