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Abstract

Estimating the 6D pose of known objects is a task of great interest due to the many potential

applications in fields such as robotics and augmented reality. While deep neural networks have

become the state-of-the-art in related tasks such as 2D object detection, 6D pose estimation

has shown to be challenging because of the increased complexity associated with inference in

3D space and pose ambiguity due to factors such as symmetry and occlusion. It has been es-

tablished that utilizing the depth channel of an image, if available, can increase pose estimation

accuracy in challenging scenarios. However, the majority of existing approaches have relied on

using depth to refine pose estimates using analytic optimization-based techniques, rather than

integrating depth and color channels within a single network. This work’s primary contribution

is adapting the deep learning state-of-the-art 2D detection system known as Faster R-CNN for

the task of 6D object pose estimation using RGBD data, resulting in a novel, end-to-end deep

learning architecture. Secondarily, we demonstrate successful transfer of domain knowledge by

adapting an RGB feature extractor for the depth channel. The resulting system achieves higher

performance compared to an RGB-only baseline on several standard pose accuracy metrics, and

in some cases, approaches the state-of-the-art despite being trained for a fraction of the time.



Acknowledgements

First and foremost, I would like to thank my supervisor, Dr. Tae-Kyun Kim, for providing his

invaluable guidance throughout the project. I would also like to extend my gratitude to Sock

Ju-il of the Imperial Computer Vision & Learning Lab for his advice and recommendations

that helped define my work along the way.



Contents

Abstract 2

Acknowledgements 3

1 Introduction and Projection Specification 1

1.0.1 Neural Networks and Deep Learning . . . . . . . . . . . . . . . . . . . . 1

1.0.2 6D Object Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.0.3 Project Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background Research 6

2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Faster R-CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 First Stage: Feature Extractor . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Second Stage: Regional Proposal Network . . . . . . . . . . . . . . . . . 10

2.2.3 Third Stage: RoI Pooling and Regression . . . . . . . . . . . . . . . . . . 11

2.3 Faster R-CNN for 6D Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4



2.4.2 Occlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.3 Background Clutter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.4 Texture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Pose Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Pose Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6.1 Translation and Rotation Error . . . . . . . . . . . . . . . . . . . . . . . 18

2.6.2 Visible Surface Discrepancy . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6.3 Average Distance of Model Points . . . . . . . . . . . . . . . . . . . . . . 20

2.6.4 2D Intersection Over Union . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Implementation 21

3.1 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 RGB Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 RGBD Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Computational Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.1 Starting Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5



4 Training 34

4.1 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Pose Estimation Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.2 Region Proposal Network . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.3 Joint Approximate Training . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Data Split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Optimization Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.1 Stochastic Gradient Descent (SGD) . . . . . . . . . . . . . . . . . . . . . 37

4.4.2 SGD with Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.3 Hyperparameter Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.4 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.5 Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Evaluation 42

5.1 Test Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.1 2D Object Detection mAP . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.2 ADD metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.3 Translation and Rotation Error . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.4 2D Pose Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.5 Visible Surface Discrepancy . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Network Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6



6 Further Work and Conclusion 54

6.1 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Ethical, Legal, and Safety Concerns . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Bibliography 57

7



List of Tables

1.1 6D pose estimation network implementation milestones. . . . . . . . . . . . . . 5

3.1 AWS EC2 instance comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Image counts in the training and testing sequences of the Tejani et al. dataset. 37

5.1 2D object detection test accuracy on the Tejani et al. dataset: AP. . . . . . . . 43

5.2 6D pose estimation test accuracy on the Tejani et al. dataset: ADD. . . . . . . 44

5.3 6D pose estimation test accuracy on the Tejani et al. dataset: 5cm5◦. . . . . . . 46

5.4 6D pose estimation test accuracy on the Tejani et al. dataset for varying angle

thresholds. The translation error threshold is fixed at 5cm. . . . . . . . . . . . 47

5.5 6D pose estimation test accuracy on the Tejani et al. dataset: 2D pose metric. 48

5.6 6D pose estimation test accuracy on the Tejani et al. dataset: VSD. . . . . . . 50

5.7 Training and inference speed on the NVIDIA Tesla M60. . . . . . . . . . . . . . 50

5.8 Inference speed comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8



List of Figures

1.1 A small fully-connected artificial neural network. It is apparent that a deep

network of this type with a high-dimensional input space would need an enormous

amount of parameters to represent all of the neural weights. To overcome this

issue, practical deep neural networks use many convolutional layers with much

fewer parameters, and only a few of the topmost layers tend to be fully-connected. 2

1.2 A Convolutional Neural Network with 2 layers stacked on top of each other. The

layers are depicted as having depth to emphasize that many different filters are

convolved with the previous layer. . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Faster R-CNN. Source: [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Axes of symmetry of a cube. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Example of occlusion as a source of pose ambiguity: in the right image, it is not

clear whether the pen is oriented the same as on the left or whether the ends are

flipped. Source: [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 A highly cluttered scene containing 15 objects instances with ground truth pose

projections. Source: [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Textureless objects (left) with their ground truth pose projections (right). Source:

[4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

9



3.1 Architecture of Deep-6DPose. Note the semantic segmentation head that has

been omitted in this work, as it serves no explicit purpose in the 6D pose es-

timation task. Additionally, the size of the last fully-connected hidden layer of

the pose head has been increased from 384 to 2048 in this work, as this choice

lead to better convergence in initial experiments. Source: [5]. . . . . . . . . . . 22

3.2 Architecture of the RGB-based 6D pose estimation deep neural network. . . . . 22

3.3 Architecture of the RGBD-based 6D pose estimation deep neural network. . . . 24

3.4 Object renders from Tejani et al. The corresponding object classes (starting

from top left) are Camera, Coffee, Joystick, Juice, Milk and Shampoo. . . . . . . 27

3.5 Example RGB and corresponding depth images from the Tejani et al. dataset.

The testing images typically contain 2 or 3 instances of the same class. Note

that the depth images usually exhibit relatively high levels of noise. . . . . . . . 28

3.6 System architecture diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 RGBD network pose loss and ADD test accuracy as a function of training iterations. 41

4.2 RGB network pose loss and ADD test accuracy as a function of training iterations. 41

5.1 Example testing image from Tejani et al. with ground truth (left) and predicted

bounding boxes (right). The confidence scores are shown above corresponding

bounding boxes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Example success cases of the RGBD Network pose predictions under the ADD

metric. The ground truth poses (left) and the predictions (right) are projected

using the object poses and overlaid on top of the corresponding test images. . . 44

5.3 Example failure cases of the RGBD Network pose predictions under the ADD

metric. The failure cases of the predicted poses (right) are projected in red.

Again, the ground truth poses (left) are shown for reference. . . . . . . . . . . . 45

10



5.4 Failure cases on the 5cm5◦ metric. Although the silhouettes of the estimated

poses (right) align very well with the ground truth (left), the magnitude of the

angle error (shown in the annotation) is too large in most of the pose estimates,

causing them to be rejected. In some cases, it is challenging to distinguish the

incorrect poses by the naked eye. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.5 Example test cases evaluated on the 2D pose metric. In the lower right example,

a highly inaccurate predicted pose of the coffee cup is accepted by a narrow

margin. The failure case in the upper image is rejected due to the fact that the

shampoo is highly elongated along the yaw rotation axis and the predicted pose

exhibits high rotation error around the roll axis. . . . . . . . . . . . . . . . . . . 49

11



Chapter 1

Introduction and Projection

Specification

Computer Vision has become a highly active area of research in recent years. In general terms,

the field is concerned with extracting useful abstract information from visual inputs such as

images and video. The problem is not a straightforward one - in digital computers, images

are represented as large arrays of intensity values, and the challenge is to extract high-level

information such as object classes and positions, scene segments, etc. given this raw visual

data. The field dates back to 1966, when MIT researchers expected to solve these tasks over

the course of a summer project [6]. It soon became apparent that computer vision is much

more challenging than previously assumed, and it took decades of research until systems with

performance comparable to humans were created. In 2012, deep neural networks demonstrated

a breakthrough in object classification accuracy [7], and the fields of deep learning and computer

vision have been getting increasingly interconnected since then.

1.0.1 Neural Networks and Deep Learning

Artificial Neural Networks (ANNs) are machine learning models consisting of interconnected

units which make individual decisions by weighing several inputs, analogically to biological
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Figure 1.1: A small fully-connected artificial neural network. It is apparent that a deep network
of this type with a high-dimensional input space would need an enormous amount of parameters
to represent all of the neural weights. To overcome this issue, practical deep neural networks
use many convolutional layers with much fewer parameters, and only a few of the topmost
layers tend to be fully-connected.

neurons. Unlike the Perceptron [8], which maps directly from input space to a binary output,

ANNs contain hidden layers which allow them to create useful intermediate representations.

The activation of each artificial neuron in a given layer is a weighted sum of activations from

the previous layer that is subsequently transformed by a non-linear function. In practice, a very

simple non-linearity f(x) = max(0, x) has been shown to perform very well [7] compared to

more complicated non-linear functions. Neural networks are usually trained by gradient descent

methods, which requires defining a loss function that is subsequently minimized by adjusting

the network’s weights iteratively.

Deep neural networks are a subset of ANNs that have many layers stacked on top of each

2



other. There is no clear boundary in terms of the number of layers that separates deep neural

networks from the rest, but modern networks can be very deep - Resnet [9] achieved state-

of-the-art performance on image classification by utilizing 152 layers in total. Deep neural

networks learn hierarchical representations, building up complicated concepts on top of simpler

ones [10]. One class of a particularly successful model in the field of Computer Vision is the

Convolutional Neural Network (CNN) [11].

In fully connected neural networks, each output in layer n takes as input all of the outputs in

layer n − 1, and each connection has an associated weight. In CNNs, a certain output is only

connected to a small region of the previous layer - inspired loosely by the human visual system,

the limited spatial extent of the artificial neuron is often referred to as its receptive field. The

set of parameters that map from the input region to an activation is called a filter, and one such

filter contains much fewer parameters than a fully-connected layer. The output activation map

is obtained by sliding a filter across the input layer. Mathematically, this operation corresponds

to the convolution of the input layer with the filter’s parameters. Typically, many such filters are

convolved with a single layer, each producing its own activation map. In practice, convolutional

layers are often followed by pooling layers, which reduce feature map dimensions by taking the

maximum or average over small regions, e.g. 2× 2.

Figure 1.2: A Convolutional Neural Network with 2 layers stacked on top of each other. The
layers are depicted as having depth to emphasize that many different filters are convolved with
the previous layer.
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1.0.2 6D Object Pose Estimation

This work is concerned with applying deep learning to the problem of estimating the 6D pose

of objects. The pose of a rigid object is denoted as 6D because it has 6 degrees of freedom - 3 in

translation and 3 in rotation. The goal is to infer these quantities from RGBD images, where

the individual channels correspond to red, green, blue and depth. With the rise of affordable

depth sensors, RGBD cameras such as Microsoft Kinect have enabled collection of rich datasets

of such images. Given such images as input, the task of a 6D Pose Estimation system is to

infer 3D position and orientation of objects in an image. Formally, the 4× 4 matrix of interest

is:

P = [R, t, 0, 1] (1.1)

As defined in [2]. This matrix transforms an arbitrary point p = (x, y, z, 1)T in homogeneous

coordinates from the model’s coordinate system to a particular position within the camera’s

coordinate system. The matrix R is a 3 × 3 rotation matrix that can be parametrized by an

axis l and an angle of rotation θ, while t is a 3× 1 translation vector relative to the observing

camera’s origin. There are two distinct variants of the 6D pose estimation problem:

1. 6D Pose Localization: Prior information about the number of objects and their respective

classes in the image is available.

2. 6D Pose Detection: No prior information about the number of objects or class occurrences

is available.

The problem of interest in this project is a special case of the latter task, where 2 or 3 instances

of a given object are present in an image. From a practical point of view, 6D object pose

estimation is of significant interest due to the vast number of applications in fields such as

robotics (picking objects requires knowing their pose) and augmented reality (object poses are

needed for seamless integration of virtual and real elements).
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1.0.3 Project Specification

Other than the general final year project deliverables, this work has 2 other major deliverables:

1. A trained and evaluated 6D Object Pose Estimation system based on an existing deep

learning system called Faster R-CNN. The system must take as input RGB images and

output the predicted 6D pose of the detected objects of interest.

2. An extension of the above network that uses depth data in addition to the color channels.

The system must take as input RGBD images and output the predicted 6D pose of the

detected objects of interest.

The purpose of the RGB-only network is to serve as a baseline for comparison with the depth-

capable one. As part of project planning defined in the interim report, projected completion

dates were chosen for the major project milestones. These projections as well as actual com-

pletion dates of the milestones are outlined in table 1.1 below.

Milestone Projected Completion Date Actual Completion Date
Faster R-CNN Implementation January 2018 February 2018
6D Pose Estimation Network (RGB only) February 2018 March 2018
6D Pose Estimation Network (RGBD) April 2018 May 2018

Table 1.1: 6D pose estimation network implementation milestones.

Although the completion dates lag the projected dates by a month on all 3 milestones, this is

not a concern as the project plan was defined conservatively in order to provide a safety margin.

Hence, sufficient time was reserved for evaluation even in case of delays. Following the successful

implementations of both pose estimation network variants, the primary objective of this work

is to investigate whether the addition of the depth channel results in a performance increase

in the fully learned, end-to-end approach to the problem. This report first introduces the

relevant background research, implementation details, experimental results and their analysis

with respect to the objective.
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Chapter 2

Background Research

2.1 Related Work

A wide variety of approaches have been researched in the context of object pose estimation.

In general terms, most of the traditional successful methods rely on extracting image features,

either densely (pixel-wise) or sparsely (patch-wise), and matching them to a known database

[12]. In the template-based approach, a particular object pose is simply represented by a

template image of the object in that specific pose. If a location inside a test image matches the

template, it counts as a successful object detection in the given pose. One of the most successful

methods within this paradigm utilized so-called LINE-MOD [3] features based on edge color

gradients and surface normals estimated from depth maps to obtain object pose estimates robust

to varying lighting conditions and background clutter. During testing, extracted features are

matched against the templates to get a coarse estimate of the pose, which is subsequently

refined using the iterative closes point (ICP) algorithm [13]. This technique was also successful

on textureless objects due to the incorporation of depth data, since the color channel fails to

provide discriminative features for this type of objects in regions other than the edges.

Another contribution of this work was the utilization of synthetic data for training. Sufficient

coverage of the pose space is a great challenge for real image data, and the collection and

annotation of an exhaustive enough dataset is highly time-consuming. The alternative approach

6



employing synthetic data involves rendering the object from many views to obtain rich pose-

space coverage. This method provides the benefit of precise control and easy automatic ground-

truth annotation: the authors of [3] sampled the views from vertices of the upper hemisphere

of an icosahedron of varying scales.

The disadvantage of template methods stems from the fact that a very high amount of templates

must be generated in order to achieve sufficient pose space coverage and scale invariance.

This approach is considered to be holistic, meaning that its accuracy is directly tied to the

correspondence of entire objects. As a consequence, the accuracy of this paradigm suffers in the

presence of occlusion and substantial noise [14], exhibiting an approximately linear relationship

between object surface visibility and pose estimation accuracy [3]. On the upside, the methods

exhibit quick runtime, making them sufficient for real-time applications.

To address the weaknesses of the methods above, several researchers have turned to approaches

based on local correspondences. In general, these approaches extract local image patches which

are treated independently to construct object pose hypotheses. While these methods do not take

global context into account, they aggregate many local correspondences to achieve robustness

to occlusion and noise. Some works within this paradigm have taken the route of sparse feature

correspondences [15], while others have chosen the dense approach in which all pixels in the

image cast predictions about the output. In [16], the RGBD pixels perform joint prediction

of 3D object coordinates and class labels for a subsequent RANSAC-based [17] optimization

step to obtain the final object pose. Like many other works employing this approach, they

utilize a variant of a Random Forest for casting the pixel-wise prediction due to the model’s

robustness and scalability to large dimensions and data quantities. A more recent variant

dubbed Latent-Class Hough Forest [18] integrated the LINE-MOD feature into a Random

Forest with a novel node split function to achieve state-of-the-art performance in occluded and

cluttered environments.

More recently, there has been an increase in interest to deploy learning-based methods within

various stages of a pose estimation pipeline. By employing supervised learning, [19] successfully

train a CNN to learn discriminative feature descriptors which are matched using a k-NN algo-
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rithm during inference time. In [14], the authors combined the local correspondence approach

with deep learning by utilizing unsupervised deep auto-encoders for learning RGBD patch de-

scriptors. The intuition is that under a suitable training procedure, the models will be able to

learn even better features than hand-crafted ones such as LINE-MOD. The authors of [20] use

a modular three-stage approach, in which they first perform instance segmentation to localize

objects within the image, then regress surface coordinates with an encoder-decoder network

and finally obtain the 6D pose using a geometric optimization algorithm. By combining feature

learning with a geometric model-fitting algorithm, they achieve state-of-the-art performance on

RGB as well as RGBD data.

Due to the challenges described in section 2.4, learning the 6D pose directly is an open research

problem. In [21] a CNN is trained using a symmetry-aware pose loss to enforce distances in the

feature space to be correlated with distances in the pose space, improving upon the work in

[19]. The authors show that when a regression term is added, the learned features become more

discriminative, but they achieve best pose inference by matching descriptors with a k-Nearest

Neighbor algorithm rather than direct pose regression. Learning to estimate 6D object pose in

a supervised manner can be tackled by classifying into a discretized pose space [12] or regressing

key-points such as 3D bounding box corners [22]. More recently, researchers [5] have managed

to regress object poses from RGB successfully by using the Lie algebra so(3) of the group of

all rotation matrices SO(3) as the regression target. The deep neural network learns to regress

the three so(3) parameters together with the depth component of the translation vector, while

the other 2 components are estimated from the object’s 2D bounding box.

In summary, a trend of learning-based methods gaining ground in the pose estimation area

can certainly be identified. This work’s primary contribution within this paradigm is adapting

a state-of-the-art 2D object detection system, known as Faster R-CNN [1], for the 6D pose

estimation task.
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2.2 Faster R-CNN

Faster R-CNN is the state of the art 2D object detection system based on convolutional neural

networks. The architecture is an evolution of the original R-CNN [23], which achieved best

in-class performance at the time. The system employed a selective search [24] algorithm to

create many object detection proposals in a given input image. Each detection proposal was

re-shaped for the input size of a large CNN, and a forward pass through the network was

computed. Instead of using a softmax classifier, the method employed a One-Versus-Rest SVM

[25] classifier to obtain class scores. At the end of the pipeline, all regions with lower confidence

than another region where the Intersection over Union (IoU) is higher than a learned threshold

are rejected. The procedure is performed for all classes independently in order to prevent

generation of multiple hypotheses per object instance. This technique is commonly referred to

as non-maximum suppression.

The R-CNN architecture was subsequently improved upon in [26], resulting in higher object

detection accuracy and an increase in speed by approximately 1 and 2 orders of magnitude

for training and inference respectively. This improvement was achieved by sharing convo-

lutional features for all detection proposals, which reduced the number of required forward

passes through the CNN to just 1 per input image. Additionally, the multi-class SVM classifier

was replaced by softmax, further simplifying the training procedure as well as increasing overall

speed.

Finally, the Fast R-CNN system was improved upon further in [1] resulting in Faster R-CNN,

which serves as the basis of this work. The authors achieved state-of-the-art object detection

accuracy with an inference frame rate of 5fps, which represented a ten-fold improvement over

Fast R-CNN. Faster R-CNN replaces the selective search algorithm by a Region Proposal Net-

work (RPN) which exhibits significantly quicker runtime, thereby eliminating regional proposals

as the computational bottleneck of the system. This architecture, as illustrated in Figure 2.2,

consists of three main stages.
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Figure 2.1: Faster R-CNN. Source: [1].

2.2.1 First Stage: Feature Extractor

The first part of the system is a convolutional network. In the original paper, the authors use a

version of ZF net [27] which has 5 convolutional layers and 3 fully-connected ones, as well as a

publicly available model of VGG16 [28], which has 13 convolutional layers and 3 fully-connected

ones. The network parameters have been pre-trained on massive image classification datasets

and subsequently fine-tuned to improve performance on the new task.

The purpose of this convolutional neural network is to serve as a feature extractor. The fully-

connected layers that typically comprise the last stage of a network are removed due to their

specialization for the original task, and the layer of interest is the last shared convolutional

layer since it preserves the spatial structure of the image which is necessary for localization,

and its features are generic enough for different tasks.

2.2.2 Second Stage: Regional Proposal Network

The Region Proposal Network is a smaller network that generates object detection region

proposals. The network slides an n × n window on top of the convolutional feature map and
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extracts a lower-dimensional feature vector at each location, which is subsequently used to

evaluate region proposals at that location.

The regions are parametrized with respect to anchors that are centered at the given position

within the feature map. Anchors have varying sizes and aspect ratios - this provides an efficient

way to enable multi-scale object detection without the necessity to scale the input image or the

dimensions of the proposal network. Each proposal has:

1. An associated objectness score, corresponding to the probability of the presence of an

object within the given proposal. This way, the network learns to distinguish between

background and foreground, allowing it to focus further computation where it is needed.

2. Regressed bounding box coordinates in terms of offsets with respect to the region’s anchor.

This allows the network to further refine the location of the proposed regions.

2.2.3 Third Stage: RoI Pooling and Regression

The purpose of the RoI (Region of Interest) pooling layer is to extract a fixed-size feature map

for a given region proposal within the larger convolutional feature map. The layer performs

max-pooling over a window defined by 2 corners in the convolutional layer, and the pooling

size is approximately W/w×H/h, where (W,H) and (w, h) are the dimensions of the extracted

feature map and the output window, respectively. The main advantage of RoI pooling is that

dimensions of the window of interest don’t have to be divisible by the output dimensions - in

case of a mismatch, the pooling size will simply be non-uniform.

Pooling is performed independently over all channels in the convolutional feature map, and the

pooled features are fed into the final fully connected layers of the network. These are used to

predict class scores by the softmax classification layer of the network, as well as final bounding

box coordinates.
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2.3 Faster R-CNN for 6D Pose Estimation

The motivation for employing Faster R-CNN for the task of 6D Pose Estimation stems partially

from its high success in the related task of object detection. Detecting an object is a necessary

prerequisite for estimating its pose, and the modular architecture of Faster R-CNN makes it

possible to keep the detection part of the pipeline untouched. Conceptually, modifying the

system to meet the first project milestone is not complicated, as the input data is also an RGB

image, the type for which the original system was designed. The bounding box regression head

of the original Faster R-CNN must be augmented with a pose estimation head, which will either

regress or classify into a quantized pose space.

Another motivating factor for modifying Faster R-CNN are other successful efforts in adapting

the system for different tasks and domains. By utilizing the idea of building a new head on

top of the (albeit slightly modified) RoI layer as outlined above, [29] have successfully adapted

Faster R-CNN for pixel-accurate instance segmentation, labeling the new system Mask R-

CNN. In another relevant example, an R-CNN-based network for human pose estimation (by

means of keypoint regression) and subsequent action detection [30] has been trained successfully,

achieving state-of-the-art performance within the domain.

The intended contribution of this work is based on adapting Faster R-CNN for 6D Object Pose

Estimation, and showing that its accuracy can be improved by utilizing the depth channel.

The motivation to combine RGB and depth comes from the insight that these channels provide

fundamentally different types of information - as stated in [3], in the LINE-MOD binary feature,

color gradients provide useful edge information while normals extracted from the depth data

provide a volumetric representation of objects, yet they are unreliable around edges. Due to

their complementary nature, one can expect to increase the final accuracy by combining these

channels over using any single one of them.

There are many possible ways in which depth data can be utilized to increase the accuracy of

the pose estimation network. Conceptually, the most straightforward way would be integrating

the depth channel into the same optimization procedure as color by simply treating it as
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an equivalent fourth channel. However, this would necessitate retraining the entire network

rather than just fine-tuning it. One alternative is to treat depth separately, utilizing it for

pose refinement by applying a geometry-based optimization algorithm, similar to many of the

related works [3, 16, 20]. Although this is a proven method for depth-based, pose refinement,

it lacks a novelty factor as it has been implemented in many previous works. The approach

taken in this work is re-purposing an RGB-pretrained feature extractor for the depth channel,

keeping the pose estimation procedure an end-to-end process.

2.4 Challenges

2.4.1 Symmetry

Practical objects in 3D tend to exhibit varying levels of symmetry, which means that there

exist several different views of the object that share the same visual appearance. The most

extreme example of this phenomenon in 3D is an untextured sphere, which looks identical from

all angles. The symmetrical nature of an object can be described by the set of its axes of

symmetry. Formally, an object exhibits an n-fold axis of symmetry if its appearance is always

identical under any rotation of 2π
n

around the axis. For example, a 3D cube has the following

set of axes of symmetry [31], as visualized in figure 2.2:

1. Three 4-fold axes that pass through the centers of opposing faces (red)

2. Four 3-fold axes that pass through the furthermost vertex pairs (green)

3. Six 2-fold axes that pass through the midpoints of opposing edges (blue)

Unlike this simple case, real-life objects that exhibit texture and complex shapes can be sym-

metric in non-trivial ways. The property of symmetry is a major source of pose ambiguity, and

therefore a major conceptual challenge for pose estimation. It is desirable for indistinguishable

poses to be treated as equivalent when designing, training and testing pose estimation systems.
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Figure 2.2: Axes of symmetry of a cube.

In practice, researchers have used various techniques to address the symmetry issue in training

and testing. The authors of [21] decided to weigh the pose loss of a pose pair (p
(i)
1 ,p

(i)
2 ) by

the term φ(p
(i)
1 ,p

(i)
2 ) = ||s(p(i)

1 ) − s(p
(i)
2 )||22. Here, s(p

(i)
j ) is a rendered depth image of the

object i at pose pj. This enforces that indistinguishable poses will be treated equally. In [12],

different object views are treated as discrete classes. In order to take care of symmetry issues,

the authors remove all training views that introduce pose ambiguity. In [22], a CNN is trained

regress the 2D projections of 3D bounding boxes. To eliminate pose ambiguity, training is

performed only on a limited view range, and another neural network is trained to classify into

the correct pose range. In terms of evaluation, symmetry-aware formulations for pose error are

commonly utilized, as described in section 2.6.

2.4.2 Occlusion

Occlusion occurs when an object of interest is not entirely visible due to the presence of other

objects that are closer to the camera, as illustrated in figure 2.3.

This phenomenon presents a major challenge for pose estimation, especially when a significant

portion of the object of interest is occluded. As mentioned in section 2.1, holistic approaches

such as template matching are especially susceptible to occlusion, and therefore many works

have relied on utilizing only local hypotheses to achieve robustness. However, recent findings
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Figure 2.3: Example of occlusion as a source of pose ambiguity: in the right image, it is not
clear whether the pen is oriented the same as on the left or whether the ends are flipped.
Source: [2].

which are relevant for this work show that global reasoning based on a geometric check leads to

highly accurate results [20, 32, 33]. These methods rely on checking geometric consistency in

point clouds, either by utilizing available depth data or regressing surface coordinates. Overall,

the depth channel offers great promise in terms of resolving occlusion due to its superior ability

to discriminate between foreground and background.

2.4.3 Background Clutter

A high amount of background clutter makes it difficult to discern objects of interest, which

presents a challenge for estimating their poses. Several of the works mentioned in section 2.1

[16, 18] address this issue explicitly.

Figure 2.4: A highly cluttered scene containing 15 objects instances with ground truth pose
projections. Source: [3].
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Learning-based approaches to pose estimation [19, 21] propose achieving invariance to back-

ground influence by learning it. When synthetic training images are employed, it is trivial to

create images with varying background but identical object poses, thereby forcing a model to

learn representations which are invariant to background.

2.4.4 Texture

Texture provides rich discriminative features that are invariant to illumination, often disam-

biguating poses which would otherwise look identical. Therefore, textureless objects present

a significant challenge when only RGB data is available, as patch-based methods fail and the

object’s overall shape must be considered. Textureless objects are of great interest since they

are very common in industry, and lately have been subjected to increased focus [4]. When no

discernible texture is present, the depth channel is especially useful, since the volumetric infor-

mation that it contains is present regardless of the texture, and researchers have successfully

tackled the challenge of textureless objects by utilizing RGBD data [34, 16, 3].

Figure 2.5: Textureless objects (left) with their ground truth pose projections (right). Source:
[4].

2.5 Pose Regression

Formulating pose estimation as a regression problem must be done with great care, as picking

unsuitable representations for the regression targets may render the training process difficult.
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Due to its properties, the rotation component of the pose presents a greater difficulty than the

object’s translation. Regressing the 3× 3 rotation matrix R directly is problematic, since the

ground truth rotation matrices are limited to the 3D rotation group SO(3) such that:

RTR = RRT = I

det(R) = 1 (2.1)

This form is highly parametrized and constrained, both of which are unfavorable properties in

the context of learning. One could parametrize the matrix R by 3 Euler angles of rotation, but

the challenge of regressing these directly is that they wrap around 2π, which makes a mapping

difficult to learn for a neural network [5]. Ideally, the space of the regression targets would be

unconstrained. One way to address this is to employ the associated Lie algebra so(3) of the

rotation group SO(3) as the regression target, as done by the authors of Deep-6DPose [5]. This

algebra consists of antisymmetric matrices with diagonal elements equal to 0, and therefore, it

can be parametrized by a 3D vector as shown below:

ω =


ω1

ω2

ω3

→ ω̂ =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2.2)

There exists a logarithmic map [35] that performs the transformation SO(3) −→ so(3):

ω̂ =
φ

2 sin(φ)
(R−RT ) (2.3)

Where the angle φ can be computed as:

φ = arccos
tr(R)− 1

2
(2.4)
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This follows from properties of rotation matrices [36]. The corresponding inverse mapping so(3)

−→ SO(3), also referred to as the exponential map, is used to obtain the rotation matrix R

from the Lie algebra given by ω:

R = I +
sin ||ω||
||ω||

ω̂ +
1− cos ||ω||
||ω||2

ω̂2 (2.5)

2.6 Pose Error

Measuring the error of estimated 6D object poses is a non-trivial issue, and several approaches

for defining this quantity have been proposed in the literature. Let us examine some of the

common methods of quantifying pose error and discuss their merits:

2.6.1 Translation and Rotation Error

Given two poses P̂, P̄ with associated rotation matrices R̂, R̄ and translation vectors t̂, t̄, a

simple way one can obtain a measure of the pose error is by calculating the translation and

rotation error individually. Computing the error of the translation component is trivial:

etrans = ||t̂− t̄||2 (2.6)

To quantify the error of the rotation, we utilize the following properties:

R−1(l, θ) = R(l,−θ) (2.7)

Tr(R(l, θ)) = 1 + 2 cos θ (2.8)

Note again that (2.8) holds irrespective of the basis, following from the properties of SO(3)

rotation matrices [36]. Hence, we arrive at:
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erot = arccos

(
tr(R̂ · R̄−1

)− 1

2

)
(2.9)

The advantage of employing this error metric is that it provides an independent measure of accu-

racy for translation and rotation, as this decoupling can offer useful insight. On the other hand,

this error metric does not take into account the object’s model, and hence it isn’t ambiguity-

invariant.

2.6.2 Visible Surface Discrepancy

Visible Surface Discrepancy (VSD) is a pose estimation error measure that calculates the error

over the visible part of the surface, thereby treating indistinguishable poses as equivalent. Given

a predicted pose P̂, the ground truth pose P̄ of an object modelM in an image I, the VSD is

calculated as:

eV SD(P̂, P̄;M, I, δ, τ) = avg
p∈V̂ ∪V̄

c(p, D̂, D̄, τ) (2.10)

c(p, D̂, D̄, τ) =


0 if p ∈ V̂ ∩ V̄ ∧ |D̂(p)− D̄(p)| < τ

1, otherwise

(2.11)

As defined in [37]. Here, V̂ and V̄ are the 2D masks of the projections ofM into the predicted

and ground-truth poses, respectively. Since the pose is defined by the projection matrix in

equation (1.1), the projection of the model M in pose P is simply equal to PM. The model

M is described by a set of points in 3D space and a indices that define the triangle-based

topology as is conventional in computer graphics. Furthermore, D̂ and D̄ correspond to the

distance images of the projected images, and the average in equation (2.10) is performed over

all pixels p in the union of the masks. The parameter δ is tolerance used for the estimation of

the visibility masks, and τ represents the tolerance for pixel misalignment. Typical values of δ
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and τ are 15mm and 20mm, respectively [37].

2.6.3 Average Distance of Model Points

This error function, originally formulated by Hinterstoisser et al. [3] has two different formula-

tions. For objects that do not have any indistinguishable poses, it is computed as:

eADD(P̂, P̄;M) = avg
x∈M
||P̄x− P̂x||2 (2.12)

Where M is the 3D model defining the object of interest. In case of objects where model M

has some indistinguishable views, the formula is modified as follows:

eADI(P̂, P̄;M) = avg
x1∈M

min
x2∈M

||P̄x1 − P̂x2||2 (2.13)

However, even this formulation is not invariant under pose ambiguity since it considers points

outside of the visible surface. Therefore, the VSD formulation of pose error is more desirable

when symmetry is a major concern.

2.6.4 2D Intersection Over Union

Let Bbox(O) be the 2D bounding box of object O. Then, the intersection over union of the

projections of model M under poses P̂, P̄ can be computed as:

IoU(P̂, P̄;M) =
area(Bbox(P̂M) ∩Bbox(P̄M))

area(Bbox(P̂M) ∪Bbox(P̄M))
(2.14)

The usual convention is to accept a pose if the IoU of the ground truth and predicted bounding

boxes is higher than 0.5. While this provides a coarse measure of pose similarity, it is obviously

not sensitive to fine differences in poses which are not captured by the 2D bounding box - for

this purpose, different error metrics must be applied.
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Chapter 3

Implementation

A successful execution of the project can be broken down into several major milestones that

must be met in a certain order. At each step, there are several potential design choices that

must be made regarding the tools and resources used, as well as approaches taken. This section

describes the conceptual and practical choices made throughout the course of the project, as

well as justification for the decisions taken.

3.1 Network Architecture

3.1.1 RGB Network

The architecture of the baseline RGB-only network is largely inspired by the Deep-6DPose

network [5]. For reference, the Deep-6DPose architecture is provided in figure 3.1.
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Figure 3.1: Architecture of Deep-6DPose. Note the semantic segmentation head that has
been omitted in this work, as it serves no explicit purpose in the 6D pose estimation task.
Additionally, the size of the last fully-connected hidden layer of the pose head has been increased
from 384 to 2048 in this work, as this choice lead to better convergence in initial experiments.
Source: [5].

It has all the components of Faster R-CNN: a feature extractor (the 13 convolutional layers of

VGG16), the region proposal network (RPN) followed by an RoI pooling layer that feeds into

the fully-connected regression heads. In parallel with the original classification and bounding

box regression head, there is another one that regresses 4 parameters necessary to recover the

6D pose. The RoI-pooled features serve as input to the head consisting of 3 additional hidden

layers as depicted in figure 3.2.

RGB Feature Extractor
(VGG16)

ROI
pooling

FC 4096 FC 4096

FC 2048
4D Pose

FC 4096 FC 4096
Class

2D BBox

RPN
Conv5_3

Figure 3.2: Architecture of the RGB-based 6D pose estimation deep neural network.

The 4-layer pose head regresses the 4-dimensional pose vector defined as:

p = (ω1, ω2, ω3, tz)
T (3.1)
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Where ωi is the i-th element of the Lie algebra vector ω as defined in equation (2.2). The

additional hidden layer of the pose head is motivated by the higher complexity of its associated

task. Given the regressed Lie algebra ω, the rotation matrix R is recovered using the exponential

map in so(3), in accordance with equation (2.5). Using the equations below, the full translation

vector is recovered under the assumption that the center of the 2D bounding box corresponds

to the projection of the object’s 3D center onto the image:

tx = tz
ux − cx
fx

(3.2)

ty = tz
uy − cy
fy

(3.3)

Where (ux, uy) are the center coordinates of the 2D bounding box and cx, cy, fx, fy are param-

eters of the intrinsic camera calibration matrix, which has the form:

ω̂ =


fx 0 cx

0 fy cy

0 0 1

 (3.4)

Specifically, (fx, fy) are the focal lengths and (cx, cy) are the coordinates of the principal point

of the camera.

3.1.2 RGBD Network

The network that utilizes both RGB and depth inputs has an architecture that largely resembles

that of the RGB one, with a couple of differences to allow employing both input modalities.

In addition to the RGB feature extractor, there is a parallel network for extracting features

from depth images. The features extracted from these two networks are concatenated, and

subsequently used as input into the convolutional Conv merge layer, which produces a feature

layer that is equal in shape of its two input layers. The resulting layer is then fed to the rest

of the network which is identical to the RGB-only architecture.
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ROI
pooling

FC 4096 FC 4096

FC 2048

4D Pose

FC 4096 FC 4096
Class

2D BBox

RPN

Conv5_3RGB Feature Extractor
(VGG16)

Conv5_3

Conv_merge

Depth Feature Extractor
(VGG16)

Figure 3.3: Architecture of the RGBD-based 6D pose estimation deep neural network.

In principle, the two feature-extracting networks could employ considerably different architec-

tures, but for the purposes of this work, both are initialized to a pre-trained VGG16, as training

such a deep network from scratch would require considerable time and compute resources. We

hypothesize that although the filters of the VGG16 network have been optimized for color rather

than depth channels, they are general enough for the extracted features to provide information

that is not found in the RGB-derived features. If such features can be extracted, the higher

network layers will adapt to utilize them during the training process, and moreover, the feature

extractor itself will be fine-tuned further for the new data modality. Conceptually, this is an

example of transfer learning [38], which is the general concept of knowledge transfer from one

domain to another.

3.2 Framework

With the rising popularity of deep learning, several frameworks that enable fast creation and

training of deep learning models have emerged. In general, these frameworks contain libraries of

classes and methods that correspond to the various building blocks and functions employed in

typical deep learning architectures. The raw computational aspects are typically implemented

with support for GPU acceleration, exploiting the massively parallel nature of typical deep
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learning workloads and providing a major speed-up over sequential CPU implementations. The

major productivity boost of these frameworks stems from the fact that they provide high-level

APIs to the optimized low-level routines, thereby enabling fast prototyping as well as excellent

performance.

Some of the most popular deep learning frameworks as of June 2018 include Tensorflow [39],

Caffe [40], Pytorch [41], Keras [42] and many others. The frameworks differ from each other in

terms of their underlying computational models and supported API’s for different programming

languages, but they can all be utilized to reach the same goal, and the choice of a particular

one is largely down to user preference. As such, Pytorch was chosen as the framework for this

project.

Pytorch is a deep learning framework that was designed specifically for Python. In addition to

GPU-accelerated tensor computation, support for various layers, dataset processing and sev-

eral optimization procedures, it features a novel library for automatic differentiation of variables

with respect to differentiable Tensor operations. Since contemporary methods of optimizing

deep learning models rely on gradient computation, this is extremely useful in practice. Fur-

thermore, as described in the next section, there are several open-source implementations of

Faster R-CNN in Pytorch which can be utilized as the starting point for implementing the 6D

pose estimation extension of the system.

3.3 Computational Resources

Inference and training of large-scale deep learning models is generally a computationally in-

tensive task. The specific requirements are largely determined by the choice of the feature

extractor, which contains the majority the network’s parameters. The amount of required

GPU memory starts at 3GB [43] for a 16-layer configuration of VGG (known as VGG16),

which is the extractor utilized in this work. Given such requirements, the computationally

demanding experimental aspects of the project have been run on high-performance remote

machines provided by Amazon Web Services (AWS).
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GPUs GPU Memory GPU Model vCPUs Price/hr

p2.xlarge 1 12 GB
Tesla K80 (2014)

4 $0.900
p2.8xlarge 8 96 GB 32 $7.200
p2.16xlarge 16 192 GB 64 $14.400
g3.4xlarge 1 8 GB

Tesla M60 (2015)
8 $1.14

g3.8xlarge 2 16 GB 16 $2.28
g3.16xlarge 4 32 GB 32 $4.56
p3.2xlarge 1 16 GB

Tesla V100 (2017)
16 $3.06

p3.8xlarge 4 64 GB 32 $12.24
p3.16xlarge 8 128 GB 64 $24.48

Table 3.1: AWS EC2 instance comparison.

AWS encompasses a set of cloud computing solutions, including the Elastic Compute (EC2)

service which is of particular interest for this project. This service provides virtual computing

environments, known as instances, which can be accessed remotely through the SSH proto-

col. The instances are highly configurable in terms of CPU, GPU, storage as well as software.

Table 3.3 outlines different configurations of instances that are recommended for deep learn-

ing, together with their respective pricing. For the purposes of this project, the single-GPU

instances provide sufficient computational resources at an affordable price point. During ini-

tial experiments, the g3.4xlarge instance has shown to be sufficient for running the Pytorch

Faster R-CNN implementation of [43]. Under the (now tested) assumption that computational

requirements would not rise dramatically due to addition of RGBD pose estimation into the

system, this instance choice has been kept for the duration of the project.

3.4 Dataset

The primary purpose of the dataset for this project is to demonstrate the feasibility of adapting

Faster R-CNN for object pose estimation and facilitate the RGB vs RGBD comparison, rather

than addressing a specific challenge in-depth. As such, the dataset from Tejani et al. [18] was

chosen due to moderate amount of occlusion and clutter, as well as the small amount of object

classes which are either textured or textureless and exhibit varying degrees of symmetry.

This RGBD dataset contains 6 image sequences (one for each of the objects depicted in figure

3.4) with a total of 2067 images, as well as rendered training images. It is publicly available on
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Figure 3.4: Object renders from Tejani et al. The corresponding object classes (starting from
top left) are Camera, Coffee, Joystick, Juice, Milk and Shampoo.

the 6D Pose Estimation challenge website1, and it comes with CAD objects models, intrinsic

camera parameters as well as Python rendering scripts. Figure 3.5 shows example color and

depth images from the image sequences.

3.5 Code

3.5.1 Starting Point

The original implementation [1] of Faster R-CNN is publicly available in MATLAB. However,

since its release, the system has been reimplemented in many other frameworks under permissive

licenses. For the purposes of this project, open source Pytorch implementations of Faster R-

CNN are of interest as the basis for the 6D pose estimation extension.

One such implementation, called Simple Faster R-CNN [43] has been released recently under the

MIT License. It is a well-documented, minimal implementation that can be run purely Python,

and its object detection accuracy is slightly higher than the original version, achieving 0.712

mAP versus 0.699 mAP of [1] (mAP, short for mean average precision, is a common measure

of 2D object detection accuracy). The code is composed of the three main components listed

1http://cmp.felk.cvut.cz/sixd/challenge_2017
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Figure 3.5: Example RGB and corresponding depth images from the Tejani et al. dataset. The
testing images typically contain 2 or 3 instances of the same class. Note that the depth images
usually exhibit relatively high levels of noise.

below, reflecting Faster R-CNN’s modular architecture:

1. Feature extractor: The deep neural network that extracts a convolutional feature map

from the input image. By default, this is VGG16.

2. Region Proposal Network: The neural network that scores object detection proposals, as

described in section 2.2.2.

3. Classification and regression head: The layer which takes RoI features as input and

outputs a probability distribution over all classes as well as the regressed bounding box

coordinates, as described in section 2.2.3.

As a consequence of this modular design, making required architectural changes in the code is

greatly simplified. For example, when the Faster R-CNN is extended for 6D pose estimation
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using RGB data, the required addition of the pose regression head does not influence the rest

of the network’s code.

3.5.2 System Architecture

The system design of the finished pose estimation network follows that of Simple Faster R-

CNN, with numerous additions and adaptations. Figure 3.6 depicts a high-level diagram of

the complete software architecture, including the main modules and the relationships between

them.

Tejani Dataset Wrapper 
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Figure 3.6: System architecture diagram.

The next several sections examine the individual system components in closer detail. For the

sake of completeness, the complete code is publicly available on github 2.

Dataset Wrapper

The Tejani et al. dataset wrapper serves as the front-end for the rest of the system, replacing

the VOC dataset wrapper in the original implementation. At instance creation time, the con-

structor requires the dataset path and split (either trainval or test). Subsequently, it performs

2https://github.com/pufik1337/fyp/tree/rgbd
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the random data split and pre-computes the mean and standard deviation statistics over the

training data, which are later used to normalize pose vectors.

The main function of interest is the get example method, which fetches the i -th RGB and

(optionally) depth image, converts them into array format and packs them with the associated

class label, bounding box and pose annotations. Since the pose regression targets have the 4D

format given by equation (3.1), for a each example, the wrapper must perform the SO(3) −→

so(3) transformation. Before being returned, the elements of the pose vector are normalized

using pre-computed statistics. The second relevant function of the dataset wrapper is the

shuffle method, which permutes the id’s of training examples. Care is taken so that the data

split is unaffected by this step.

The Model

The overall network architecture is defined in the deep 6d rcnn.py file as the

Deep6DRCNNVGG16 class, extending the FasterRCNN class. At construction time, an

instance of the VGG16 network is initialized to be used as the feature extractor, with the option

to use the parameters of a pre-trained model. The RPN network and ROI pooling stages are

unchanged with respect to the description in sections 2.2.2 and 2.2.3.

In terms of RPN anchor parameters, this work uses 5 different scales of (16, 32, 64, 128, 256)

pixels and 3 aspect ratios of (1 : 2, 1 : 1, 2 : 1). Since all scale and aspect ratio combinations

are considered, this means that the RPN evaluates 15 region proposals at each position in the

convolutional feature map, enabling object detection at many different scales.

The pose regression head is wrapped in a distinct class VGG16PoseHead, instantiating the

final layers depicted in the architecture diagram in figure 3.3. Each of the major network

modules implements its own forward method, which defines how data is propagated through

the network in a forward pass.

For purposes of testing, the Deep6DRCNNVGG16 class implements the predict method

which returns predictions of object classes, poses and 2D bounding box locations in image
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coordinates. The majority of predictions is filtered out based on a confidence score threshold

of 0.7 and non-maximum suppression with an IoU threshold of 0.3.

The Training Wrapper

The file pose trainer.py contains the Deep6DRCNNPoseTrainer class, which wraps around

the model that is being trained and contains functions that aid the training process. Its mem-

bers include the hyperparameters of the learning process, an instance of the model’s optimizer

(SGD with momentum, as detailed in the next section) from the torch.optim package, as well

as instances of ProposalTargetCreator and AnchorTargetCreator, which are needed to

associate individual region proposals with ground truth quantities.

Training and Testing Script

The script pose train.py is the top-level file during the training procedure, instantiating the

dataset wrapper, the trainer as well as the network itself. When the script is launched, a

configuration is loaded from the configuration file config.py, where several parameters of the

training procedures (number of epochs, file paths, hyperparameters, etc.) are specified. Instead

of initializing the entire network with random weights, it offers the option to pre-load network

parameters from a previously saved model file (a checkpoint).

The script loops over the training data for the specified number of epochs. For every mini-batch

of 1 training example, it performs a forward pass to calculate the loss function and a backward

pass to obtain its gradient and perform an update. In a pre-specified interval of mini-batches,

the loss function is plotted and predictions are visualized.

After each epoch, the network accuracy is evaluated by the evaluation function eval, which

implements several of the pose error metrics described in section 2.6, as well as mAP (mean

Average Precision) for evaluating 2D object detection accuracy. All evaluated poses are trans-

formed using the exponential map so(3) −→ SO(3) and equations (3.2), (3.3) to obtain the full

rotation matrix R and translation vector t. The testing script pose test.py only implements the
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evaluation functionality, leaving out the training epochs. Once training is finished, the latest

checkpoint is saved to storage so that it can be re-used for further training or inference.

Visualization

The visualization tool uses Visdom [44] as a backbone to enable live visualization of training

and evaluation. Since all experiments run on remote machines, producing live visualizations

can be problematic. Visdom overcomes this by sending the visualizations to a server such

that they can be accessed using a web browser. The tool sends data to a port of the remote

machine, which is accessed from a local machine using ssh port forwarding, which employs the

ssh protocol to forward data from the remote port to a local port (both the remote and local

machines use port 8097 in our case, although the choice is arbitrary).

The visualizations include graphs of the loss function against time, as well as bounding box

and pose predictions. To create pose visualization, the poses are projected using the rendering

scripts from the SIXD Toolkit [45] and subsequently overlaid on top of corresponding images.

The rendering scripts make use of the glumpy library [46], which provides an abstraction layer

around OpenGL. All additional 2D overlay (such as labels and boxes) is drawn using Matplotlib

[47]. Several examples of these visualizations are provided in Chapter 5.

3.6 Initialization

Other than the feature extractor networks, which are initialized with weights from a pre-trained

VGG163 network, the rest of the network is initialized randomly. Weights are drawn from a zero-

mean Gaussian distribution with standard deviation 0.01 or 0.001, depending on the layer size.

Since the sum of Gaussian variables has variance equal to the sum of the individual variances,

wider layers are initialized with narrower Gaussian distributions to keep the output activation

variance under control. In related work, an optimal analytic solution to the initialization

3https://s3-us-west-2.amazonaws.com/jcjohns-models/vgg16-00b39a1b.pth
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problem has been derived [48], although this is mostly of interest for very deep networks (with

30 or more layers).
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Chapter 4

Training

4.1 Loss Function

Within the context of optimization in deep learning, the purpose of the loss function is to map

the predictions of a model to a scalar quantity that can be subsequently minimized during

training in order to achieve higher prediction accuracy. Like Faster R-CNN and other similar

systems, our network consists of (i) an object detection and pose estimation network and (ii) a

region proposal network. Both of the individual nets must be trained in order for the system

to function properly, hence a loss function must be defined for each network.

4.1.1 Pose Estimation Network

The loss of the pose estimation network is defined on randomly sampled regions of interest.

A region is considered to be positive if its IoU with a ground truth bounding box exceeds 0.5

while anything below this threshold is considered negative. In this work, the the total loss of

the pose network consists of a weighted sum of three individual loss terms:

L = α1Lcls + α2Lloc + α3LPose (4.1)
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Here, Lcls and Lloc are defined as in the original Faster R-CNN paper [1] - a cross-entropy

loss for the predicted class distribution, and a smooth L1 loss for the regressed bounding box

coordinates. For each training example, 2000 RoI’s are sampled such that the fraction of

foreground (positive) to background (negative) regions is 0.25. Note that the localization and

pose loss is defined only for positive regions, and equals 0 for negative regions. The per-example

classification cross-entropy loss is calculated as:

Lcls(f, y) =
1

Np +Nn

Np+Nn∑
i=1

− log

(
efyi∑M
j=1 e

fj,i

)
(4.2)

Here, Np and Nn is the number of positive and negative RoI’s respectively, fj,i is the j-th

element of the output vector and yi is the index of the true class label in the i-th region of

interest. The localization loss term Lloc is defined as:

Lloc(t, v, y) =
1

Np

Np∑
i=1

smoothL1(t
yi
i , vi) (4.3)

smoothL1(x, y) =


0.5(x− y)2 if |x− y| < 1

|x− y| − 0.5, otherwise

(4.4)

where tyii is the regressed bounding box (parametrized by corner coordinates) corresponding to

the ground truth class yi and vi is the ground truth bounding box of the i-th positive region of

interest. Finally, the pose loss is defined as follows:

LPose =
1

Np

Np∑
i=1

|ω̂i − ω̄i|+ β|t̂z,i − t̄z,i| (4.5)

where ω̂i and ω̄i is the Lie algebra so(3) of the ground truth and predicted rotation matrix

respectively, while t̂z,i and t̄z,i are the corresponding depth components of the translation vectors

in the i-th positive region of interest. The parameter β controls the relative weights of the

rotation and depth components.
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4.1.2 Region Proposal Network

Similarly to [1], the RPN is trained using the sum of two loss terms. The first is the RPN

classification loss in accordance with equation (4.2) that classifies regions into foreground and

background. The second term is the smooth L1 localization loss (4.4) of the RPN bounding

box proposals. In this case, the loss is calculated over 256 sampled regions with a positive-to-

negative ratio of 0.5. Positive regions correspond to an IoU of 0.7 with a ground truth bounding

box while negative regions must have IoU lower than 0.3. Only the positive regions factor into

the localization loss, and regions which are neither positive or negative do not contribute into

RPN training.

4.1.3 Joint Approximate Training

An important issue in training the entire system is choosing an approach that trains both of

the subnetworks in a way that favors minimizing computation and maximizing accuracy. In

principle, the pose estimation network and the RPN could be trained independently, but this

would defeat the purpose of the computation-saving feature sharing between the networks. In

this work, we adopt joint approximate training. Compared to alternating training, which only

trains one network while completely the other one, it has been empirically shown to be the

faster by 25% to 50% without carrying an accuracy penalty [49].

In this method, region proposals from the RPN are treated as fixed inputs to the regression

heads during a single forward pass, and the total loss of the network consists of a sum of the

RPN and pose estimation network losses. The gradient signals from the networks combine at

the last convolutional layer of the feature extractor, where their sum propagates to the very

back of the network. This approach is considered approximate because the gradient of the

bounding box coordinates with respect to the RPN proposals is ignored even though it is a

function of the network’s parameters [1].
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4.2 Initialization

4.3 Data Split

Following the training procedure of [5], the test sequences of the Tejani et al. dataset are

split such that 30% of the data is used for training and 70% is reserved for testing. Finding

a suitable ratio is a matter of balancing two competing goals: achieving good convergence on

training data and low variance on the test data, and the above ratio is a common heuristic

choice in this dilemma. Since the 6 sequences have different lengths, the training examples are

sampled from each sequence individually using this ratio. Table 4.1 show the image counts in

the individual sequences for the resulting training and testing sets.

Camera Coffee Joystick Juice Milk Shampoo Total

Training Images 80 124 163 123 28 102 620
Testing Images 185 290 380 287 67 238 1447

Table 4.1: Image counts in the training and testing sequences of the Tejani et al. dataset.

4.4 Optimization Procedure

The overwhelming majority of successful methods are methods based on gradient descent, which

relies on computing the analytic gradient of the loss function with respect to the network’s

parameters and performing an update step in the direction of the anti-gradient.

4.4.1 Stochastic Gradient Descent (SGD)

One of the simplest methods of updating the network weights Wt in iteration t is to perform a

fixed-sized step along the anti-gradient of the loss function:

Wt+1 = Wt − η∇WtL(Wt, Xt, yt) (4.6)
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where η, usually referred to as the learning rate, is a parameter controlling the step size along

the anti-gradient. When the gradient is computed over a mini-batch of data, as opposed to

the entire training dataset, the gradient descent method is considered stochastic. In practice,

SGD achieves good convergence properties while being much more computationally tractable

compared to standard gradient descent [50].

4.4.2 SGD with Momentum

In practice, it is often found that performing a step given by the weighted average of the

gradient and the previous step yields better convergence [51]. This is analogous to attaining

momentum while moving through the landscape of the loss function, hence this update method

is referred to as SGD with momentum. Mathematically, this can expressed as:

Wt+1 = Wt − ηVt (4.7)

Vt = βVt−1 + (1− β) · ∇WtL(Wt, Xt, yt) (4.8)

Where β is the momentum hyperparameter (note that for β = 0, this reduces to standard SGD).

Given the success of SGD with momentum in training Faster R-CNN [1] and its derivative

architectures [5, 29], this optimization method was chosen for training the pose estimation

networks in this work.

4.4.3 Hyperparameter Choices

The values of hyperparameters α1 - α3 and β have a direct effect on the speed and outcome of the

optimization procedure. Intuitively, the values of these parameters set the relative importance

of the individual terms of the loss function - by controlling their magnitudes, they control each

term’s contribution to the gradient.
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The baseline inspiration [5] mentions no details about their methodology of the selection of

these parameters. Since their work utilizes an additional loss term for semantic segmentation,

re-using the same values for the other terms without justification would unlikely result in an

optimal choice. A common approach that was considered is to reserve a part of the data for

a validation set, separate from the training and test sets, and choose parameters based on the

calculated error on this set. In initial experiments, it was found that using this approach:

• The pose loss converges with much more difficulty compared to the other loss terms

• The training and validation pose error are highly correlated

Therefore, final hyperparameters were chosen based on training accuracy, as the network was

discovered to be much likelier to underfit rather than overfit data, likely due to the inherent

difficulty of the pose estimation problem. The empirically determined parameter values are

α1 = α2 = 1.0, α3 = 4.0, β = 1.5.

4.4.4 Input Data

As outlined in section 3.5, all of the 4D training regression targets are normalized to have 0

mean and unit variance. The transformation is handled by the Python dataset wrapper, which

pre-computes both statistics µtrain and σtrain on the entire training dataset.

During testing time, the regressed Lie algebra and depth component of the translation are

transformed using p → p · σtrain + µtrain before the full 6D Pose is recovered using equations

(3.2) (3.3) and (2.5).

The size of all input images is 640×480. Since the VGG feature extractor expects inputs in the

range 0-255, the depth images are mapped to this range by the Tejani at al. dataset wrapper.

Each depth image is stacked vertically 3 times to fit the input dimensions of the convolutional

filters in the VGG feature extractor. All data (images, class labels, bounding boxes and poses)

returned by the wrapper is in numpy array [52] format.
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4.4.5 Training Procedure

The training procedure diverges from that of [5] with the intention to reduce training time

significantly while still attaining good accuracy. The network has been trained for 55 epochs

of 620 iterations each, resulting in 34.1k iterations in total. Before each training epoch, the

training sequences are shuffled to randomize the image ordering in the epoch. For sake of

comparison, note that Deep6D-Pose was trained for 350k iterations, which would be prohibitive

given this project’s time and compute constraints.

In each iteration, a mini-batch of 1 training example is propagated through the network, and

the parameters are updated in accordance with the optimization procedure described in section

4.4. In each iteration, 2000 RoI’s are sampled with a 1:3 ratio of foreground to background

regions, and the multi-task loss (4.1) is obtained from this sample. Analogously, the RPN loss

is obtained as described in section 4.1.2. The learning rate η was initialized to 1e−3, and further

decreased to 1e−4 after the 9th epoch. Subsequently, the learning rate was halved on epochs 24

and 39. In the final 15 epochs, the learning rate was multiplied by 0.9 after each epoch as initial

experiments showed the loss saturating more quickly without further reduction of the learning

rate. To ensure a fair comparison between the RGB and RGBD networks, both networks were

trained using the same procedure and data split (the dataset wrapper was initialized with the

same random seed). Figures 4.1 and 4.2 show how the pose loss and test accuracy evolve during

the training procedure for the RGBD and RGB networks respectively.

It can be seen in both figures that as soon as the training loss starts saturating, so does test

accuracy. Interestingly, the most profound surge in accuracy occurs around epoch 10 - shortly

after the first decrease in the learning rate - while the following decreases yield increasingly

diminishing returns. Overall, the RGBD network converges faster despite the initial instability

in the training loss, and achieves higher accuracy in the plotted ADD metric. The accuracy

exhibits low variance in the final stages of the training process - over the last 10 epochs, the

mean of the difference in test accuracy is approximately 0.04 while its standard deviation is

approximately 0.008. Therefore, it is very unlikely (5σ, a chance of 1 in 1744278) that the

performance difference can be attributed to noise in the training procedure. At the end of the
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training procedure, checkpoints of both models were saved and further evaluated on accuracy

metrics, as detailed in the next chapter.

Figure 4.1: RGBD network pose loss and ADD test accuracy as a function of training iterations.

Figure 4.2: RGB network pose loss and ADD test accuracy as a function of training iterations.
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Chapter 5

Evaluation

5.1 Test Accuracy

In this section, the accuracy of both the RGB and RGBD networks is evaluated on several

standard accuracy metrics, as done in works such as [22] and [53] and subsequently compared

to Deep6DPose [5], which represents the state-of-the-art in 6D object pose estimation on the

Tejani et al. dataset without use of synthetic data for training. The test results are subsequently

analyzed and discussed.

5.1.1 2D Object Detection mAP

The accuracy on the 2D object detection is of interest in this work, as the predicted bounding

boxes are used (in conjunction with the predicted depth) to compute the translation component

of the 6D pose. To evaluate the networks on this task, we use the standard AP (Average

Precision) metric as defined in the PASCAL Visual Object Classes (VOC) Challenge [54]. This

quantity is calculated for a list of bounding box location predictions with associated confidence

values and ground truth coordinates. In order to define AP, two terms need to be introduced:

• Precision : The percentage of correct predictions, which is penalized by false positives.

42



• Recall : The percentage of all ground truth positives that have an associated positive

prediction, which is penalized by false negatives.

For a given prediction to be positive, its associated confidence must exceed a threshold tpos. A

given positive prediction is considered a true positive if its IoU with a ground truth bounding

box exceeds a different threshold tIoU . Both precision and recall are a function of the confidence

threshold tpos, and the precision-recall curve is defined by the relationship of the two quantities

as tpos varies. In this work, the Average Precision is computed in accordance to the VOC

Challenge definition by averaging the 11 precision values obtained when varying recall in discrete

steps of 0.1 from 0.0 to 1.0. The quantity is computed for each class separately, and the mean

Average Precision (mAP) is defined as the average AP over all classes.

Camera Coffee Joystick Juice Milk Shampoo mAP

RGB Network 100.0 100.0 100.0 100.0 100.0 90.9 98.5
RGBD Network 100.0 100.0 100.0 100.0 100.0 90.9 98.5
Deep-6DPose [5] 99.8 100.0 99.8 99.2 99.7 99.5 99.6

Table 5.1: 2D object detection test accuracy on the Tejani et al. dataset: AP.

As can be seen in table 5.1, both networks achieve almost perfect mAP, and the only sequence

with failure cases is the Shampoo. In comparison, Deep-6DPose achieves 100% on the Coffee

sequence and over 99% on the other ones.

Figure 5.1: Example testing image from Tejani et al. with ground truth (left) and predicted
bounding boxes (right). The confidence scores are shown above corresponding bounding boxes.
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5.1.2 ADD metric

The 6D pose estimation accuracy of both networks has also been compared using the ADD

metric. The average distance of model points is computed in accordance with equation (2.12),

and only predicted poses which result in the average distance being less than 10% of the object’s

diameter are accepted. Table 5.2 lists the accuracy on each of the 6 test sequences as well as

the average accuracy over all sequences.

Camera Coffee Joystick Juice Milk Shampoo Average

RGB Network 27.9 22.0 15.9 66.7 55.3 60.1 41.3
RGBD Network 36.8 24.5 13.3 77.0 52.5 67.9 45.3
Deep-6DPose [5] 80.4 35.4 27.5 81.2 71.6 75.8 62.0

Table 5.2: 6D pose estimation test accuracy on the Tejani et al. dataset: ADD.

Figure 5.2: Example success cases of the RGBD Network pose predictions under the ADD
metric. The ground truth poses (left) and the predictions (right) are projected using the object
poses and overlaid on top of the corresponding test images.
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It can be seen that the RGBD network significantly outperforms the RGB counterpart on the

Camera, Juice and Shampoo sequences, while performing slightly better on the Coffee sequence

and slightly worse on the Joystick and Milk sequences. On average, there is a notable but not

dramatic improvement of 4%. The RGBD network lags 16.7% behind the state-of-the-art,

which seems reasonable given that it has been trained for less than 10% of the time. Examples

of success cases on the Shampoo and Juice sequences, which were the most successful ones for

the RGBD network, are visualized in figure 5.2.

In some cases, as shown in figure 5.3 the network makes errors of varying severity. In case of

the mis-predicted joystick pose, the culprit is a small misalignment, while in case of the milk

object failure, the predicted pose differs significantly by simple visual inspection.

Figure 5.3: Example failure cases of the RGBD Network pose predictions under the ADD
metric. The failure cases of the predicted poses (right) are projected in red. Again, the ground
truth poses (left) are shown for reference.
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5.1.3 Translation and Rotation Error

5cm5◦ Metric

Under this pose metric, the translation error and rotational error are evaluated in accordance

with equations (2.6) and (2.9) respectively, and only poses with less than 5cm translation error

and 5◦ of rotation error are accepted. The results are listed in table 5.3.

Camera Coffee Joystick Juice Milk Shampoo Average

RGB Network 13.1 3.2 23.3 20.7 23.2 20.0 17.3
RGBD Network 20.0 5.2 20.0 23.2 17.5 18.3 17.4
Deep-6DPose [5] 76.5 18.7 60.2 85.6 73.5 72.4 64.5

Table 5.3: 6D pose estimation test accuracy on the Tejani et al. dataset: 5cm5◦.

Figure 5.4: Failure cases on the 5cm5◦ metric. Although the silhouettes of the estimated poses
(right) align very well with the ground truth (left), the magnitude of the angle error (shown
in the annotation) is too large in most of the pose estimates, causing them to be rejected. In
some cases, it is challenging to distinguish the incorrect poses by the naked eye.
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While the difference between the RGB and RGBD networks is insignificant under this metric,

the performance compared to the state-of-the-art is significantly worse. Relaxing the angle

threshold offers insight into both findings, revealing absolute rotational error as the major

culprit.

Relaxed Angle Threshold

To gain additional insight into the performance of the networks, the 5cm5◦ metric was modified

by relaxing the 5◦ angle threshold in steps of 5◦, up to a maximum of 25◦, and one additional

measurement was performed without any angle threshold. The results are recorded in table 5.4

below.

RGBD Network

Angle Threshold Camera Coffee Joystick Juice Milk Shampoo Average

5◦ 20.0 5.2 20.0 23.2 17.5 18.3 17.4
10◦ 48.5 19.4 58.9 63.0 44.0 57.4 48.5
15◦ 55.0 35.4 80.3 80.5 56.5 73.1 63.5
20◦ 57.7 47.0 90.9 84.8 65.0 80.9 71.0
25◦ 58.6 57.0 93.4 86.5 69.0 85.3 75.0
None 65.8 76.6 96.8 92.4 82.0 93.3 84.5

RGB Network

5◦ 13.1 3.2 23.3 20.7 23.2 20.0 17.3
10◦ 35.7 18.2 62.8 57.4 49.0 52.3 45.9
15◦ 43.8 33.2 84.3 72.8 59.6 64.7 59.7
20◦ 45.2 45.1 91.7 76.3 64.1 72.7 65.9
25◦ 46.1 55.4 94.2 77.9 66.7 76.2 69.4
None 55.0 76.0 97.2 84.7 81.3 86.3 80.1

Table 5.4: 6D pose estimation test accuracy on the Tejani et al. dataset for varying angle
thresholds. The translation error threshold is fixed at 5cm.

As the angle threshold gets relaxed, the margin between the depth-enabled and RGB-only net-

work grows wider. These results suggest that although both networks perform similarly well on

estimating highly precise poses, the RGBD network is more successful at pose estimates that

meet less strict angle criteria, which is a plausible explanation for why the RGBD network has

higher accuracy on the ADD metric. Note the case when the angle criterion is dropped com-

pletely, effectively turning the problem into 3D object detection - without an angle threshold,
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all remaining error is due to a violation of the translation threshold, which turns out to be

relatively insignificant compared to the rotational error. Interestingly, for both networks, the

smallest object (camera) is also the most difficult to localize accurately.

5.1.4 2D Pose Metric

To evaluate the 2D pose metric, a 2D projection of a given object is performed using the

predicted and ground truth pose. The IoU of the two resulting bounding boxes is computed,

and the pose is accepted if the IoU is larger or equal to 0.5.

Camera Coffee Joystick Juice Milk Shampoo Average

RGB Network 96.4 97.6 91.7 94.7 96.5 92.0 94.8
RGBD Network 97.5 97.7 93.2 95.6 95.5 94.3 95.6
Deep-6DPose [5] 99.2 100 99.6 98.4 99.5 99.1 99.3

Table 5.5: 6D pose estimation test accuracy on the Tejani et al. dataset: 2D pose metric.

As can be seen in table 5.5, both the RGB and RGBD networks achieve a relatively high

accuracy of 94.8% and 95.6% respectively, although still lagging behind the state-of-the-art,

which achieves virtually perfect accuracy on this metric. It is not surprising that both networks

perform well on under the 2D pose criterion, as it is mostly sensitive to the translational

component of the pose rather than the rotation - as evidenced by the results in the previous

section, the majority of the pose error is due to rotation inaccuracy.

Due to this effect, the most dramatic discrepancy between any of the metrics can be observed

in the Coffee sequence, where the RGBD network achieves the lowest accuracy under the 5cm5◦

metric yet the highest accuracy under the 2D pose criterion, further confirming that the network

can accurately localize objects, yet it is much harder for it to infer accurate rotation angles.

This can be likely attributed to the fact that the coffee cup exhibits the highest amount of

symmetry out of all objects in the Tejani et al. dataset.
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Figure 5.5: Example test cases evaluated on the 2D pose metric. In the lower right example, a
highly inaccurate predicted pose of the coffee cup is accepted by a narrow margin. The failure
case in the upper image is rejected due to the fact that the shampoo is highly elongated along
the yaw rotation axis and the predicted pose exhibits high rotation error around the roll axis.

As demonstrated in figure 5.5, the 2D Pose metric can be highly forgiving to inaccurate poses

as long as the 2D object outlines align well enough. Therefore, it is important to understand

the meaning behind the accuracy values, and the metric should be considered in contrast with

other criteria rather than in isolation.

5.1.5 Visible Surface Discrepancy

Although VSD is perhaps the most resilient to pitfalls of pose evaluation, it is not often used in

practice, possibly due to the number of parameters as well as implementation difficulty. Due to

the lack of data, a comparison with state-of-the-art systems cannot be performed. Hence, table
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5.6 only shows the VSD performance of the RGBD and RGB baseline networks. The Visible

Surface Discrepancy was calculated in accordance with equations (2.10) and (2.11), and only

poses with V SD < 0.5 were accepted as valid. The parameters δ and τ were set to the typical

values of 15mm and 20mm respectively.

Camera Coffee Joystick Juice Milk Shampoo Average

RGB Network 42.7 57.3 10.3 61.3 37.9 61.8 45.2
RGBD Network 51.9 58.0 9.3 69.9 35.0 68.9 48.9

Table 5.6: 6D pose estimation test accuracy on the Tejani et al. dataset: VSD.

The obtained results are mostly consistent with conclusions drawn from results of the other

accuracy metrics. However, one notable difference is that the usually problematic Coffee se-

quence performs considerably better according to VSD, as this metric is robust to differences

due to pose ambiguity. It can also be seen that the Joystick sequence achieves the lowest

accuracy, consistently with the ADD metric, although the margin under VSD is much larger.

However, it should be noted that VSD does not take relative object scale into account (since

τ is kept constant), which penalizes larger objects. Since the joystick object has the second

largest diameter of all at 235.6mm, this very likely exacerbates the difference.

5.2 Network Speed

Table 5.7 shows the inference and training speed of the RGBD network as well as the RGB

baseline. The depth-capable network has a slight speed disadvantage due to the overhead

associated with the VGG-based depth feature extractor, which by itself is a relatively large

network. Given that experiments were performed on a GPU which is 2 generations behind the

state-of-the-art, it is plausible that newer models would enable the possibility of real-time 6D

object pose estimation using these networks.

Training Inference

RGB Network 1.8 fps 6.0 fps
RGBD Network 1.4 fps 4.2 fps

Table 5.7: Training and inference speed on the NVIDIA Tesla M60.
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Inference Speed GPU Model GPU Architecture CUDA Cores

RGB Network (Ours) 4.2 fps Tesla M60 Maxwell (2014) 2048
RGBD Network (Ours) 6.0 fps Tesla M60 Maxwell (2014) 2048
Deep-6DPose [5] 10.0 fps TITAN X Pascal (2016) 3584
BB8 [22] 3.4 fps TITAN X Pascal (2016) 3584
SSD-6D [12] 10.0 fps GTX 1080 Pascal (2016) 2560

Table 5.8: Inference speed comparison.

In order to provide context, table 5.8 shows the inference speed of several notable 6D pose

estimation systems in comparison to ours. When compared to the Tesla M60 [55], note that

the Titan X [56] features 75% more CUDA cores while the GTX 1080 [57] has 25% more cores as

well as a newer architecture, therefore the individual inference rates cannot be directly compared

across the GPUs. However, it is clear that the performance of our networks is competitive with

respect to leading 6D pose estimation systems.

In terms of the GPU memory requirements, the RGBD network uses 4.5 GB of RAM, whereas

the RGB-only counterpart uses 4.0 GB. Again, the increased memory footprint is due to the

necessity of storing a larger network as well as twice the amount of image data in GPU memory.

However, from a practical point of view, the difference is insignificant thanks to the memory

capacities of modern graphics processors.

5.3 Discussion

Based on the evaluation results on several standard pose error metrics, it can be concluded

that the depth-capable network exhibits higher pose estimation accuracy than the RGB-only

network. Although the difference between the two is not dramatic, it is almost certainly signif-

icant given the low variance in accuracy in the later stages of the training process. As revealed

by analysis of the various pose error metrics, the difference in performance is primarily due

to the RGBD network’s higher rotation estimation accuracy. It should be noted that RGBD

network utilizes 1.) a relatively straightforward way of merging knowledge from the color and

depth channels and 2.) a depth feature extractor that was initialized with weights pre-trained
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on color features. Improvements to either of these aspects would likely lead to further increases

in accuracy.

The performance differences were not constant on all object sequences - in some cases, the

depth-capable network demonstrated considerably higher accuracy; in others, the performance

was comparable, with the RGB network taking a slight lead occasionally. Intuitively, the

depth-capable network is expected to perform better when the depth channel captures pose

information that is not present in the color channels. Whether that is the case can be contingent

on shape and texture differences, lighting conditions as well as particular object poses. In the

particular case of the Tejani et al. dataset, the 2 cases where depth did not help lead to an

improvement was on the joystick and milk objects - both of which have the most irregular

shapes which, despite lacking distinctive textures, carry rich edge information that conveys the

poses accurately through the color channel. On the other hand, the RGBD network generally

performs better on objects with more ambiguous poses, possibly by taking advantage of subtle

cues present in the depth data. Consequently, the suitability of using the depth channel to

increase pose estimation accuracy likely depends on the particular use-case, and prior knowledge

about the nature of the objects of interest should be considered carefully.

Despite demonstrating the viability of using depth to increase object pose estimation accu-

racy, the RGBD network does not reach the performance of current state-of-the-art methods.

Again, the differences are not consistent throughout the object sequences - instead, large per-

formance differences were observed in performance on particular objects. We speculate that

the performance discrepancy could be attributed to either of these two main factors (or their

combination):

1. Shorter training time (about 10% of [5]). Although accuracy of the network seems to be

saturating after the 50-epoch procedure, it cannot be ruled out that over a much longer

time period, the performance on the problematic sequences converges to the accuracy

achieved by [5].

2. The omitted semantic segmentation head that is present in Deep-6DPose [5] is indirectly

responsible for the higher accuracy. Previous works have shown that the semantic seg-
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mentation task aids the accuracy of 2D object detection [29] purely due to the additional

term in the multi-task loss. It is plausible that a similar phenomenon could be observed

in the context of 6D object pose estimation, as the segmentation loss term might aid the

network in focusing its attention with pixel-level precision.

For further work, it would be of interest to investigate the reason behind the performance lag

behind the state-of-the-art. However, given the project’s resources, matching the performance

of state-of-the-art is not one of the objectives of this work, which is primarily concerned with

the comparison of the RGB and RGBD systems.
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Chapter 6

Further Work and Conclusion

6.1 Further Work

Although this work has fulfilled its objective of assessing the objective of investigating the

performance impact of including the depth image channel in an end-to-end 6D pose estimation

network, many design choices taken throughout the project were affected by time and compute

resource constraints. As a consequence, the noted improvements were deemed significant but

not dramatic, and there are several avenues for potential further work that could lead to further

performance improvements:

• More advanced network architectures : although there are numerous ways the RGBD

network architecture could be changed, the most relevant ones relate to the aspects of

depth feature extraction and integration - given enough training time and data, a depth

feature extractor could be trained from scratch, likely resulting in more powerful features

that are fully specialized for their input modality.

Furthermore, different ways of integrating the depth and color channels could be inves-

tigated - currently, they are merged by a convolutional layer that follows directly after

the feature extractors. This choice is quite arbitrary, and the merging process could take

place e.g. after the RoI pooling layers, or just before the regression heads. Exploring the
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effect of this design choice on the network’s accuracy could yield useful insights into the

problem.

• Different training procedure: In the current design, the entire network is trained using

joint approximate training such that the entire network’s weights are updated simulta-

neously for each backward pass by optimizing a single loss function. Although this is a

simple approach that works well for training object detection systems, there is no guaran-

tee that it is the optimal one for the problem at hand. Other, more sophisticated methods

exist, wherein certain parts of the network are optimized while the rest of the network is

frozen. This allows the optimization process to solely focus on one task, and the process

can be repeated analogously with other parts of the network. Moreover, different loss

functions and optimization methods are likely to have an impact on the convergence of

the training process as well as the resulting accuracy.

• Data augmentation: One of the notable constraints in this work is the limited amount of

training data, since the majority of the sequence images are kept aside for testing. One

way to overcome this limitation is to augment the training data with synthetic images.

This would entail rendering the object models in constrained random poses, and subse-

quently blending them with backgrounds. In previous works [58] it has been shown that

this approach can be very successful, although great care must be taken in the generation

and blending process in order to ensure robust knowledge transfer. Augmentation with

synthetic data was considered in the initial project plan, but it was abandoned due to

the significant time overhead of creating the image generation framework and training on

additional data.

These options only outline some of the possibilities that could be explored in future work, and

many other opportunities for improvement could be explored on the conceptual level, such as

exploring different pose representations or novel pose refinement techniques.
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6.2 Ethical, Legal, and Safety Concerns

No significant ethical, legal or safety issues pertaining to the project have been identified.

The project is concerned with estimating poses of commonplace objects such as paper cups,

as opposed to people or any controversial items. Hence, there is little potential for illicit,

unethical or dangerous applications. Although one could argue that the resulting models could

be adapted for more controversial domains, this would require significant effort invested into

dataset creation and labeling, as well as retraining the system. Additionally, there is no unique

aspect to this project that would make it more susceptible for adaptation for controversial uses

compared to other related solutions.

6.3 Conclusion

In this final year project report, substantial background research was carried out on the topic of

6D object pose estimation, both in terms of existing work and associated challenges. Following

on the background research, a deep neural network was implemented for the task of 6D object

pose estimation from RGB images. This baseline architecture inspired by the Faster R-CNN

object detection system was subsequently extended to utilize the depth channel of an image

by direct transfer of knowledge from the domain of color feature extraction to depth feature

extraction.

Both networks were trained and tested on the Tejani et al. dataset, which is one of the

standard benchmarks for pose estimation. The testing accuracy has been evaluated on several

pose metrics to obtain a holistic insight into the model’s performance. Based on analysis of

the results, it has been concluded that adding the depth channel improves network accuracy,

particularly on objects that have more ambiguous poses, although the increase in performance

is not dramatic. The network comes close to state-of-the-art accuracy for a few of the dataset’s

sequences, but lags behind in performance on the others. Several potential reasons are identified

for the performance discrepancies that were observed, both with respect to the state-of-the-art

as well as the RGB-only baseline. In terms of inference and training speed, the system is in line
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with other comparable approaches. Further research directions are identified for closing the

gap between the leading systems, as well as achieving better utilization of the depth channel.
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