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Abstract

In this work, the effectiveness of grouping classes of actions to improve group and individual recog-
nition accuracy is evaluated. Using the Imperial College Computer Vision Laboratory (ICVL)
hand-object pose sequence dataset, 45 separate actions are manually grouped into super-classes
each containing a few actions. At first, a Recurrent Neural Network (RNN) ’groupnet’ is trained
to identify the super-classes while RNN ’subnets’ are trained to differentiate the individual actions
inside each super-class. Subnets achieve high recognition accuracy (85%) while the groupnet re-
mains the limitation (70%). Hence, a Variational autoencoder (VAE) is then used to embed the
temporal sequences into a single ’thought vector’ on which Kmeans clustering is applied. This
attempts to automatically discover more discriminative cluster of super-classes built on insightful
latent information.
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Chapter 1

Introduction

A human action can be seen as an ensemble of spatio-temporal trajectories that describe human
motion [7]. Recently introduced cost-effective depth sensors and reliable real-time body pose
estimation have added two new channels to the usual color (RGB) stream for action recognition.
This has allowed skeleton-based action recognition to exist and be appreciated for its accuracy and
efficiency [18]. In addition, with the recent introduction of wearable cameras, a new chapter in
computer vision called egocentric vision has emerged where the user is the center of the action.
A distinctive characteristic of this new paradigm relative to the classic third-person vision is that
hands are very present in the scene [37]. On an economic perspective, the Virtual and Advanced
Reality industry, where action recognition is largely used, is predicted to multiply by 4 its revenues
between 2018 and 2020 [10]. All this makes action recognition an emerging field with some of the
latest breakthrough research dating from 2017.

1.1 Objectives

The aim of this project is threefold. The goals are to (1) improve instance action recognition
accuracy (2) by improving group recognition accuracy, (3) thereby gaining insight on the structure
of hand action pose visualization sequences.

1.2 Ethical, Legal and Safety Plan

The Ethical, Legal and Safety Plan must detail what are the issues that are relevant to the project.
This requires to check the project for issues in these areas, even though most projects have no such
issues. First, safety-wise, the project is purely software based and, as a result, there can be no
issues that can endanger one’s physical integrity. Then, concerning ethics, there is no personal data
or user testing involved in this research project up to now. Lastly, for legal issues, the deliverable
is not expected to be commercialized, is not hardware related, and to the best of my knowledge,
does not infringe any patents.
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Chapter 2

Background

This part includes material that will help towards understanding the rest of the report. Experts
may skip its reading.

2.1 Concepts

Most concepts are bookwork and are very well explained in the links provided.

2.1.1 Recurrent Neural Networks

Recurrent Neural networks are neural networks adapted to time series inputs. This blog post
explains extensively their architecture involving LSTM cells [1] and this website [20] details their
usefulness.

2.1.2 Variational Autoencoder

The original VAE paper is in the bibliography [21] but it is advised to read this blog post [15]
to get an intuition of it. This paper [9] is also useful for an in-depth mathematical analysis and
understanding of what is the ’reparametrization trick’ that allows the VAE to use back-propagation.

2.1.3 Kmeans

The classic steps of k-means are:
1. Randomly initialise cluster centers (called ’centroids’).
2. Assign data points to the closest centroid using Nearest Neighbour matching and the Squared
Euclidean distance metric.
3. Recompute the centroid of each cluster as the mean of the points belonging to that cluster.
4. Repeat assigning data points and computing centroids until no data point changes clusters.
5. Return the coordinates of the set of centroids.

Other distance metrics are not considered as we are not guaranteed to find optimum centroids
or partitions with them . Indeed, k-means is implicitly based on pairwise Euclidean distances
between data points, because the sum of squared deviations from centroid is equal to the sum of
pairwise squared Euclidean distances divided by the number of points. It is a multivariate mean
in euclidean space. and non-euclidean distances will generally not span euclidean space. This is
why k-means is for euclidean distances only.
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2.2. DATASET DESCRIPTION CHAPTER 2. BACKGROUND

Overall, k-means is simple and guaranteed to converge. However, it imposes on the user to
pick K, is sensitive to initialisation and outliers, and is only limited to finding spherical clusters.
It also scales badly in computation time when quantity of data increases (O(n2̂)) as it uses nearest
neighbour matching. In high dimensions, the latter has difficulties to converge as concentration of
measure tends to ensure that there are many centers with similar distances to any given point.

2.2 Dataset description

The dataset is fully described in the research paper introducing it [17]. Briefly, the hand pose
data is taken with 21 magnetic sensors measuring movement in 3 directions (x,y,z) on the subject’s
hand. No sequence is longer than 170 frames and every sequence is taken at 30 frames per seconds.
There is a total of 45 different action classes. Lastly, the data is preprocessed to compensate
for anthropomorphic and viewpoint differences by normalizing poses to have the same distance
between pairs of joints and defining the wrist as the center of coordinates

2.3 Interim report literature review

2.3.1 On the action recognition research at Imperial College

The project’s title was initially named "Learning discriminative temporal transitions for action
recognition and detection". It was the title of a recent research paper [18] published by the project
supervisor and one of his PhD students in 2016. Getting allocated this project meant the field
(action recognition) had been chosen but the exact project was yet to be defined. Hence, the
first step was to read this paper and the latest action recognition research papers that had been
published by the Imperial Computer Vision and Learning Laboratory (ICVL) [18, 38, 29, 7, 16].

First, decision forests-based methods have been very successful and popular in many computer
vision tasks because of their efficiency both in training and testing, their inherently multi-class
handling ability and their capacity to handle overfitting. Hence, [16, 7] proposes a new discrim-
inative framework based on Hough forest that enables recognition of sequential data in the form
of spatio-temporal trajectories. They also introduce the concept of ’transition’ that enforces the
temporal coherence of estimations and enhances the discrimination between action classes. Simi-
larly, [18] proposes a new forest based classifier that learns both static poses and transitions in a
discriminative way, with a training procedure that helps to capture temporal dynamics in a state-
of-the-art way. It introduces temporal relationships while growing the trees and also uses them in
inference to obtain more robust frame-wise predictions.

Then, other papers are about guiding the learning process with additional knowledge in order
to have better performance at the testing stage. [38] provides an end-to-end solution to action
recognition from raw depth sequence. It proposes a privileged information-based recurrent neural
network that exploits additional knowledge to obtain a better estimate of network parameters.
RNN is indeed naturally suited for modeling temporal dynamics of human actions as it can be used
to model joint probability distribution over sequence, especially in case of a long short-term memory
(LSTM) which is capable of modeling long-term contextual information of complex sequential data.
In a similar fashion, [29] introduces the concept of Kinematic-layout-aware random forest. They
integrate kinematic-layout information (relations between scene layouts and body kinematics) in
the split criteria of random forests to guide the learning process. This is done by measuring the
usefulness of this type of information and closing the gap between two distributions obtained by
the kinematic-layout and the appearance, if the kinematic-layout is useful. It essentially exploits
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the scene layout and skeleton information in the learning process, thereby capturing more geometry
that provides greater discriminant power in action classification.

This reading gave a first peak into action recognition and an understanding of the research at
Imperial in this field.

2.3.2 On related fields

I then read papers on related fields that Dr. Kim’s PhDs, such as Guillermo Garcia-Hernando
and Daphne Antotsiou, advised me to look into. Indeed, using ideas from other fields in one’s own
work can help finding research ideas never tried before that then have a potential for innovation.

Hand pose estimation

Discussing with Guillermo, he especially outlined how hand pose estimation was a limit to how
much action recognition techniques could improve, as estimated hand pose are often the input to
an action recognition algorithm. Indeed, the hand pose can be difficult to estimate when there is
an object in the user’s hand as it obstructs the view of the camera. Hence, he invited me to read
[30] that proposes to utilize information about human actions to improve pose estimation in videos.
He also brought forward the idea of an action recognition algorithm that would be trained directly
on hands holding the objects, instead of difficulty extracting the hand pose in such a scenario and
then feeding the recognition algorithm with uncertain hand pose estimations. On this matter, [37]
presents a novel framework for simultaneous detection of click action and estimation of occluded
fingertip positions from egocentric viewed single-depth image sequences.

Lastly, [17] focuses on studying the use of 3D hand poses to recognize first-person hand actions
interacting with 3D objects.Towards this goal, it collected RGB-D video sequences and is the first
benchmark for RGB-D hand action sequences with 3D hand poses. This paper especially caught
my attention as it directly shows that having hand-object images in the training set is crucial to
train state-of-the-art hand pose estimators, likely due to the fact that occlusions and object shapes
need to be seen by the estimator beforehand. Discussing with Dr. Kim, it came to my attention
it would be interesting if I were to produce some work using this new dataset.

Transfer learning

While Guillermo shared his interest on hand pose estimation, Daphne did the same about her
research interest in transfer learning. She is looking forward to use it to train robots to grab
objects. She mentioned the original paper [12] about one-shot learning (from December 2017) that
really amazed and intrigued me. One-shot learning is the name of a simple model that maps a single
successful demonstration of a task to an effective policy that solves said task in a new situation.
It uses soft attention to generalize to tasks unseen in the training data. The first demonstration
of the effectiveness of this approach was on a family of block stacking tasks. However one-shot
learning was initially designed for action reproduction [22, 25] rather than recognition. Hence I am
still searching for an occasion to apply it in my project. One paper [14] gives an example of this
by developing a one-shot real-time learning and recognition system for 3D actions. The proposed
method relies on descriptors based on 3D Histogram of Flow and on Global Histogram of Oriented
Gradient. This could be an eventual future direction to the project.
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2.3.3 On grouping

After the above reading, I then came back to my supervisor who gave me a line to guide my research.
Hence, he proposed to start by benchmarking with a few baselines the new dataset presented in
[17] by grouping the actions by categories. This had not been tried before on this dataset and was
building on previous work from PhDs. The goal was to see if grouping actions could improve the
performance. Indeed, actions similar to each other are still likely to be mixed up during action
recognition, resulting in a decrease in action recognition performance. Looking into previous work
in grouping actions, I came across a paper [19] in the field of activity recognition. It proposes a
lightweight method to improve the recognition performance by reevaluating recognized activities
and grouping similar activities to a new activity. It evaluates the method on an activity-set with
seven activities, containing three step-down activities that were similar to each other and, therefore,
likely to be mixed up during recognition. The remaining four activity were walking activities. It
shows an improvement of the recognition performance of up to 6.6%. Hence this paper shows this
is a possible direction of research as grouping can improve performance by helping to distinguish
between actions that are usually mixed up and bring performance down.

Similarly, trajectory group selection has been tried [27]. Indeed, for most actions, only a few
local motion features (e.g., critical movement of hand, arm,leg etc.) are responsible for the action
label. Therefore, highlighting the local features which are associated with important motion parts
will lead to a more discriminative action representation. It introduces a motion part regularization
framework to mine for discriminative groups of dense trajectories which form important motion
parts. The proposed framework achieves the state-of-the-art performances on several action recog-
nition benchmarks.

Lastly, another recent (2017) paper interestingly creates a bridge between multi-task learning
and grouping [24]. It proposes a hierarchical clustering multi-task learning method for joint hu-
man action grouping and recognition. The results show that their technique can overcome the
difficulty in heuristic action grouping simply based on human knowledge. It also avoids the pos-
sible inconsistency between the subjective action grouping depending on human knowledge and
objective action grouping based on the feature subspace distributions of multiple actions. To be
clear, multi-task learning co-learns all tasks simultaneously and optimizes the learning across all
of the tasks through some shared knowledge, while transfer learning aims to learn well on a new
task by transferring some shared knowledge from previously learned tasks [3].

2.4 Final report literature review

Following the interim report, those are the main research papers that influenced my thoughts on my
work and the action recognition field. Firstly, [28, 6] gave an example of how to use neural networks
in a tree configuration while highlighting many of the challenges involved. Then, [36] showed how
multi-label representations (using multiple-verbs to describe an action) is under-explored in action
classification and should be a natural evolution of the field. Indeed, a more explored research field
such as object recognition now constantly uses multi-label representations. Lastly, [35] delivers
an example on how to use covariance between skeleton joints motions to extract features and use
them to train a RNN ("Co-occurrence Feature Learning for Skeleton based Action Recognition
using Regularized Deep LSTM Networks"). Furthermore, [8] gave an overview on the effectiveness
of learning both hierarchical and temporal representation with RNNs.
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Chapter 3

Manual grouping

3.1 Introduction

Manual grouping consists in subjectively creating groups of actions by associating classes following
a similar pattern in their hand pose sequences. In this chapter, different ways of grouping are
experimented. This allows to discover the challenges involved in manual grouping and brings
insight about the use of patterns in 3D hand pose sequences.

3.2 Creating a baseline

The first step was to establish a baseline to use for comparison. The LSTM − 1 [17] Recurrent
Neural Network (RNN) architecture used in the ICVL research paper was chosen for its simplicity,
yet strong performance and suitability for temporal sequences.

3.2.1 Parameters

The training parameters are summarized in table 3.1 and were optimized to get maximal accuracy
using this architecture and dataset. Adding layers could have improved accuracy further but it
was agreed to keep the model simple and trainable in a short time by stopping at one hidden layer.

Table 3.1: Baseline network training parameters
Parameters Learning Epochs Batch Dropout Hidden units Layers Optimizer

rate number size probability number number type
Value 0.003 200 20 0.5 100 1 Adam

No mean pooling is performed to infer the output. The prediction output of each input sequence
is simply retrieved from the last dynamically computed output, which is the output of the RNN
cell that received the last bit of the input sequence. Figure 3.1 illustrates this for clarity.
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3.2. CREATING A BASELINE CHAPTER 3. MANUAL GROUPING

Figure 3.1: Diagram of the baseline RNN used, with an unrolled version of the network (right).

The dataset parameters are in table 3.2. The input to the RNN are the (x, y, z) coordinates of
the 21 hand joints, meaning there is 63 input neurons. The length of the sequence was set high
enough to include fully every sequence and pad them with zeros until they reached the sequence

padding size (see 3.2). Then, the number of output classes, set to the number of actions in the
dataset, corresponds to the number of output neurons. For later experiments with RNN trained
on groups, the number of output classes will be the number of groups.
Concerning the split between train and validation sets, it is done within the training set. The data
is always randomly shuffled before each split while making sure to keep the same proportion of
classes in the two resulting sets. Furthermore, during training, each batch is made of a randomized
data sample from the train set.

Table 3.2: Baseline dataset parameters
Parameters Input Sequence Number Training:Testing Train:Validation

feature size padding size output classes split split
Value 21 ∗ 3 300 45 1 : 1 4 : 1

For each of the other experiments, those parameters are kept constant in order to reduce the
time involved in spanning the parameter space searching for optimal values. In addition, some
trials were made to see if it was key to tune those parameters when the number of class changes.
Results showed they did not influence the accuracy by more or less than 2%. This is likely due
to the fact the dataset stays the same throughout the experiments and the number of classes does
not change critically, as of an order of magnitude for example. Lastly, every experiment is run five
times and its accuracy result is the mean of all those runs. The confusion matrix is taken from the
experiment that had the closest value to the mean.

3.2.2 Results

The baseline prediction output on the 45 action classes is available in figure 3.2. It achieves a
71.00% recognition accuracy.
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3.2. CREATING A BASELINE CHAPTER 3. MANUAL GROUPING

Figure 3.2: Visualization of a 45 action classification on the RNN baseline using a confusion matrix

The results are quite scattered as many input samples from one class are mistakenly identified
as belonging to another class. However,by looking at input samples from successful and failed
classification cases, some insight is already gained.
Figure 3.6 shows hand pose frames taken from the middle of sequences from three successful classes.
During testing, the first two classes achieve a 100% classification success on all their input samples
while the third one is at 81% but has double the number of samples to classify. Observing each of
those sequences shows a clear pattern between them: the hand grasp does not move throughout
the motions. For example, during the high five, the hand structure stays the same and only the
elbow extending pushes the hand forward. During the write action, the hand stays firmly fixed
around the pen and only the forearm and wrist produce the motion. Similarly, during the charge

cell phone action, the hand holds the charger plug firmly like the pen and the elbow pushes the
hand forward into the phone plug. This situation also applies to many other actions that perform
well on this baseline. They often incorporate very little movement, simple one way motions or
recurring short motions, and involve no rotation.

11
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Figure 3.3: charge cell phone

Figure 3.4: high five

Figure 3.5: write with pen

Figure 3.6: 3 successful cases of action classification

On another hand, figure 3.10 shows three classes with low classification performance (respec-
tively 38%, 27%, 44%). Their common point is that the hand grasp varies greatly throughout their
sequences. For example, during the receive coin action, the hand unfolds and stretches out to
receive the coin. During the squeeze sponge action, the hand successively tightens and expands
around the sponge which modifies its joint structure considerably. Similarly with action read

letter, the hand extends to reach the paper, tightens to grasp it, and rotates to put the paper in
a vertical position.

Figure 3.7: read letter
Figure 3.8: receive coin

Figure 3.9: squeeze sponge

Figure 3.10: 3 failed cases of action classification

Hence, the RNN seems to perform well on sequences with constant joint structure (or grasp)
where the motion is linear (no rotation). This makes sense as training an RNN on those kind
of sequences is like training a CNN on similar images that have a linear transformation between
each other. Hence, the network associates well the image of this specific hand grasp with its class.
But for classes where this grasp varies, this process can not happen as the network is unable to
generalize by looking exclusively at the hand structure. This is likely to be reinforced by the fact
the last output of the RNN is taken as the global output, meaning its last input frame influences
as much as its past input frames (put simply). Thus, for constant grasp actions, the joint structure
information from the last input frame reflects well the overall sequence. Whereas for failed classes,

12



3.3. CREATING GROUPS CHAPTER 3. MANUAL GROUPING

the last hand grasp input might be very different from the past ones and the RNN ends up with
conflicting information on the hand structure, at the output.

Lastly, without looking at the exact nature of the data itself, two observations can be made.
First, classes with more training data available tend to perform better during testing, which is a
well-known and documented aspect of neural networks. Second, classes with greater variability
among their training input samples perform worse, as the network ends up having less material to
generalize the action since it covers a wider range of possible movements. However this variability
may lead to a better generalization in real life testing as different people can execute the same
action with a degree of diversity in the movement. To sum up, the quantity and quality of the
data plays a role as important as the architecture in the neural network’s performance.

3.3 Creating groups

Using insights gained from the 45 actions baseline RNN, the next step was to create groups by
aggregating classes in a sensible way. A group implies a common pattern between the classes inside
this group. Hence, watching over each action sequence, two patterns seemed to come to light. The
first is a static pattern concerning similar objects. Indeed, for different actions using the same
object, the hand grasp on the object is most of the time fixed although the hand is moving around.
The second pattern is a dynamic pattern. For similar actions on different objects, the motion of
the hand in space is similar although its grasp on the object is different. Hence, it made sense to
group the 45 actions in two ways, one through objects and one through motions. This allowed to
separate and evaluate group recognition performance on hand structure (how each of the 21 joints
is positioned relative to the others) and hand motion (how the whole 21 joints move together into
space). This grouping also links well with observations made on the baseline where both constant
grasp and/or constant motion sequences achieved high recognition accuracies.

Figure 3.11: Original 45 action classes from the ICVL dataset. Image borrowed from [17].
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3.3.1 Static hand object grasp

The grouping is done according to common object grasp and is available in figure 3.12. Groups,
or ’super-classes’, include from 1 to 4 actions. The grouping is imperfect as it is done subjectively
and is unbalanced with many 1 action groups. This makes comparing group recognition results
less fair, but is inevitable due to the way the actions were decided to be grouped. Indeed, most of
the 1 action groups have specific hand grasps that can be difficultly linked to another class.

Figure 3.12: 26 Object group organization of the 45 action classes

3.3.2 Dynamic hand motion

The grouping is done according to similar motions and is available in figure 3.13. Super-classes
include from 1 to 7 actions. This grouping was less straightforward to build than the previous as
each action’s motion is quite different and observing similarities between them is harder. Hence
the super-classes are more coarse. For example, the class meet was built from motions where two
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3.4. TESTING GROUPS CHAPTER 3. MANUAL GROUPING

hands meet and stretch out (to varying degrees) during the movement, as it happens during a
handshake or when receiving a coin. The class use is made of actions where the index always plays
an advanced role in space and moves roughly in linear motions, as when pressing the buttons of a
calculator or pushing a spray’s control stick. The class takeout refers to actions where both the
index and thumb are holding a piece of the object and moving it in space while the other fingers
rest in the hand (unfolding glasses, taking out a letter, reading a letter). Similarly, the class prick
includes actions where a piece of cutlery (fork or spoon) is held and inserted into a recipient to
grab a quantity inside it. The rest of the actions are self-explanatory through their super-class
names or are 1 action groups.

Figure 3.13: 16 Motion group organization of the 45 action classes

3.4 Testing groups

In this section, the object and motion group recognition performances are tested and compared.
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3.4.1 On the baseline

First of all, the performance on the baseline is investigated. The Baseline RNN is trained to have
a 45 action classes output and the group recognition accuracy is calculated after recognition of the
45 classes as detailed in figure 3.14.

Figure 3.14: Pipeline of the group recognition accuracy experiment using the baseline RNN

One can see the motion accuracy is slightly higher but those results only make sense when
compared to the later ones, as this is a simple reorganization of the 45 actions prediction results
that will serve as a comparison baseline.

Figure 3.15: Group recognition accuracy using the baseline RNN

3.4.2 On trained recurrent neural networks

To evaluate group recognition performance, an RNN with the same network parameters as the
baseline is trained on the classes of each group. Its accuracy is directly computed from its output
as shown in figure 3.16. This experiment allows to see how much the RNN can improve its group
recognition performance through leveraging its training on similar hand grasp or motion patterns.

Figure 3.16: Pipeline of the group recognition accuracy experiment using the trained RNN. The
26 Object grouping is used as an example here.

Looking at the accuracy results in figure 3.17 shows the object grouping performs better than
the motion grouping. This tends to indicate similar hand grasps are more easily identified than
similar motions by the RNN during training.
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Figure 3.17: Group recognition accuracy using RNN trained on the groups

Looking into the object confusion matrix in figure 3.18 brings more insight to those observations.
First of all, 3 and 4 actions group perform quite well relative to the average (sponge 80%, spoon
74%, dish soap 88%, milk 73%), while most 1 action groups perform below average (wine 60%, fork
53%, salt 62%, teabag 45%). This is likely due to the lack of training data as those 1 action groups
train on 6 samples in average while other 1 action groups with double the number of training
samples perform much better (wineglass 92%, calculator 92%, flash 88%, spray 88%).

Figure 3.18: Visualization of the 26 Object group classification on the trained RNN using a con-
fusion matrix
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The paper group is the only large group performing poorly (57%). It also appears to be
attracting a lot of misclassification (see the paper column).Looking at its samples in figure 3.19,
it seems they span a large array of hand grasps due to varying ways in which the paper is held
throughout the actions. Thus, this can confuse the classifier and steal some predictions from other
classes. Furthermore, the situation makes sense as the shape of a paper is very thin and does not
ideally fit in the palm of a hand, unlike other objects do (glass, bottle, jar).

Figure 3.19: Variety of hand grasps from the paper group

Lastly, a part of the 2 action groups have a low performance (below 60%: glasses , card, coin)
while another part (above 75%: letter, hand) performs better. Looking at the data, it is confirmed
the latter have a better match between the hand grasp patterns.

Next, the motion confusion matrix in figure 3.20 shows large groups (4 to 7 actions) perform
very well (open 73%, meet 67%, use 83%, close 83%, clean 85%, pour 76%). Their high performance
can be explained through the clean group example where its two member actions have a similar
rotation motion and hand grasp on the object, as shown in figure 3.23.
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Figure 3.20: Visualization of the 16 Motion group classification on the trained RNN using a
confusion matrix

The use group 83% performance is particularly impressive as the grouping was a daring one
with actions that visually seemed to have little in common. The main aspect they shared was
a recurring loop of small forward and/or rotating motions, where the index was responsible for
orienting the action in a direction, by being ahead of the other fingers in the 3D space. This is
shown in figure 3.27 and indicates the finger placements such as the index indeed plays a central
role in helping the network recognize the action. This is further supported by the results in the
ICVL paper [17] that report 65% of actions can be identified solely from the index finger’s joint
coordinates.

Less successful motion cases (prick 48%, scratch 42%, squeeze 39%) are also investigated. 25%
of scratch misclassification are in the open group. This could be explained by the fact this action
is mostly a hand holding a sponge and rotating it, which can be assimilated to holding a bottle cap
and rotating it to open it. The prick action has interesting insight: both actions (prick with work
and scoop with spoon) have the same grasp on the object and visually look like they have a similar
motion. But when looking at the pose visualization, it appears the hand is going up and down
with the fork whereas it is rotating 90 degrees with the spoon. Hence for similar grasps, rotating
and forward motions are difficult to associate together for the network. Lastly, the squeeze group
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Figure 3.21: action clean glass

Figure 3.22: action wash with sponge

Figure 3.23: Variety of hand grasps from the clean group

Figure 3.24: action light candle
Figure 3.25: action use calcula-
tor

Figure 3.26: action use spray

Figure 3.27: Variety of hand grasps from the use group

results are surprising as both actions (squeeze paper and squeeze sponge) execute the same motion.
The only difference in the sequence is that the squeeze paper action manipulates the object before
crushing it whereas the crush motion happens right away with the sponge. Generally, those 3
actions have very little motion in their sequences, meaning it becomes hard for the network to
extract a motion pattern from them. Hence, the RNN can only extract a similarity in the hand
grasp, which is not what the actions have in common inside similar motion groups. This explains
why the testing samples are misclassified in almost all other groups, as if the classification had
became random because the network is unable to generalize on different motion samples having
the same label.

Finally, compared to the object group, the results are more clear cut. A third of groups per-
form very highly (above 75%) while another third that are less ideal motion matches, perform very
poorly (below 55%). This could mean motion is a more effective form of grouping than grasp when
patterns are matched properly, and worse otherwise.
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3.4.3 On the number of actions

Due to the previous results, investigating results per number of actions in a group became worthy
of interest. Figure 3.28 serves this purpose and demonstrates clearly how 1 action groups bring the
performance down compared to multi-action groups for each grouping. This is likely due to the
fact 1 action groups have less training data to provide to the network than multi-action groups.
Hence the RNN is more poorly trained on those patterns and is unable to generalize as strongly as
it does with the larger groups. This can lead to those 1 action group samples being misclassified
into more powerfully trained large groups. Having balanced groups would indeed have been better
to prevent those occurrences. However, the quantity of data available and the motivation behind
the grouping methods prevent this. Figure 3.28 also shows grouping by patterns might be working
better than expected since the performance of multi-action groups is above the overall accuracy
that is hindered by 1 action groups. One critic could be that this is due to the smaller number of
multi-action groups (less options leads to less potential misclassification) but this is unlikely as for
the motion grouping, 80% of groups are multi-action and the multi-action group accuracy is still
above the overall group accuracy.

Figure 3.28: Group recognition accuracy of the trained RNN decomposed by number of actions
inside a group. The 1 action groups accuracy is computed only over 1 action groups classification
results (same for 2 or more action groups).

Table 3.3: Number of groups per action(s)
Decompostion 1 action 2 or more

actions
26 Object 11 15

16 Motion 12 4

3.4.4 Comparison

Combined with the previous baseline experiment, the last goal is to identify whether training
the RNN on differentiated actions achieves better group recognition accuracy than training it on
grouped actions. The results are shown in figure 3.29 and indicate the RNN is indeed able to
generalize well on hand grasps patterns (Object grouping) as it beats the baseline, but achieves
this with more difficulty on hand motions (Motion grouping). The main reason for this is that
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some action classes lack a discriminative motion the RNN could use to differentiate them from
other actions, whereas most action classes contain a discriminative hand grasp to take advantage
of.

Figure 3.29: Comparison of the group recognition accuracy between the baseline and trained RNN

3.5 Trying new groups

As shown and explained previously in figure 3.28, 1 action groups reduce performance considerably
compared to multi-action groups. One attempted solution was to regroup all the heterogeneous
single actions in one group so the RNN would perhaps identify this group as the one to choose
when no clear (or mixed) group patterns are identified. Hence, the two new group configurations
available in figure 3.30 and 3.31 were formed.
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Figure 3.30: 12 Object group organization with all 1 action groups gathered in the item group

The results are available in figure 3.32. They show the new Motion grouping indeed benefits
from the merging of 1 action groups as it performs better than the old Motion grouping, while the
baseline stays identical (which is not an experiment error). However, the performance of the new
Object grouping is worse as it decreases compared to the old grouping, while the baseline increases.
Knowing 60% of the old Object groups were 1 action groups (versus 20% for the old Motion groups),
this might mean the new ’mixed’ actions group deteriorates the network’s performance because
it is too large and unbalanced compared to the other groups. Indeed, more than half of the
network’s training is now spent on learning to classify unrelated sequences into a ’miscellaneous’
group. It ends up being like injecting random noise in the network’s training. This is confirmed
by the 12 Object grouping confusion matrix (appendix figure A.1) which shows the new large
item group attracts misclassification from all other groups (vertical reading) and is misclassified in
all other groups (horizontal reading), thereby underlying the random nature. Hence, keeping the
miscellaneous group size at the same order of magnitude as the other groups is necessary to make
it a minimum effective and not counter-productive.
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Figure 3.31: 13 Motion group organization with all 1 action groups gathered in the do group

Figure 3.32: Comparison of the group recognition accuracy between old and new groupings
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3.6 Instance recognition

One of the final aim of this project is to improve individual action recognition through using group
action recognition. Thus, after classifying each test sequences inside a group with the trained RNN
used in the previous section, the following experiment further classifies the sequence into one of
the action classes belonging to this group. This second step is done using a RNN trained only
on the group’s actions. The whole process is detailed in figure 3.33. Note that subnets only act
on multi-action groups so for the 26 Object and 16 Motion grouping, the sequences classified in 1
action groups are directly sent to the "aggregate prediction results" algorithmic box.

Figure 3.33: Pipeline of action recognition accuracy experiment using a treenet. The 26 Object
grouping is used as an example here.

For the sake of clarity, keywords are used: the group recognition RNN is called a ’groupnet’ and
distributes the sequences to different ’subnets’. Subnets are RNN trained only on differentiating
the actions inside a specific group. Hence, the groupnet classifies each sample inside its group
or ’super-class’ while the subnets classify each sample into their action class or ’fine-class’. The
’treenet’ refers to the whole process and can be thought of as "treenet = groupnet + subnet". The
three terms are defined visually in figure 3.34.
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Figure 3.34: Diagram of the treenet. Image borrowed from [28].

3.6.1 Parameters

Tests were made to optimize the subnets parameters and showed they should be kept identical
to the groupnet parameters (see tables 3.1 and 3.2). Tests on the number of hidden LSTM cells
necessary are available in table 3.4. No trials were made over 100 units as, intuitively, the subnets
should not be bigger than the groupnet since they classify a smaller number of classes (between 2
to 7 for subnets and 12 to 26 for the groupnet). The last column of the table was an attempt to
tune the number of cells used to the number of classes in the subnet’s group. The test accuracy was
calculated by feeding each subnets with only the sequences belonging to their respective groups
and aggregating the prediction results from all the subnets to compute the test accuracy. The 13
Motion grouping was used for this test.

Table 3.4: Effect of LSTM cells number on test accuracy
Number 20 50 100 3 * number of
of cells action classes

Test accuracy 79.96% 80.49% 83.30% 81.20%

3.6.2 Results

Results in figure 3.35 show, for each grouping, the groupnet’s group recognition accuracy, the
subnets 45 actions recognition accuracy and the treenet 45 actions recognition accuracy. This
allows to visualize multiple information at the same time. First, the subnets perform highly
and quite similarly. Second, the action recognition accuracy of the treenet (the final accuracy
of the "groupnet+subnet" pipeline) is generally well below the 71% 45 actions baseline seen at
the beginning of this chapter 3.2. Indeed, the error accumulates along the pipeline as it usually
happens in divide-and-conquer classification strategies. The groupnet is the element bringing the
performance down and its improvement would bring to a better final performance. For example,
the 26 Object groupnet performs better than the others (72%) and thus leads the treenet to achieve
a better accuracy (65%).
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Figure 3.35: Comparison of the subnet action recognition accuracy on the 4 different groupings

3.7 Conclusion

In this chapter, groups of actions were manually created and trained to be recognized by a RNN.
Results showed this method involves various challenges:

• It exhibits a loss of performance as soon as the training data from different groups of actions
is unbalanced.

• For the RNN to perform well, there needs to be a recurrent discriminative pattern across all
training samples of a group.

• Grouping based on a single grasp or motion pattern only works for some action classes as
some of the more complex actions include evolving grasps and varying motions throughout
their sequences.

However the experiments have allowed to gain insight on hand action recognition, notably that:

• Motion is a more discriminative form of grouping than grasp when the patterns between
action classes of the same group are a suitable match. But, in the presence of noise between
those patterns, grouping by grasps performs better in average.

• Some joints have more discriminative power than others (eg: index).

• Rotating and forward motions noise is difficult for the network to associate inside the same
group.

Lastly, neural networks perform well on classifying action instances when the number of possible
outcomes is reduced and even if the training set is small. Hence, it seems the true bottleneck to
achieving better action recognition is the group recognition accuracy. Furthermore, this grouping
method is not scalable since it is done manually. This is why next chapter will focus on grouping
actions using a more systematic approach that can automatically find underlying patterns between
actions and group them effectively.
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Chapter 4

Automatic grouping

4.1 Introduction

In this chapter, a method to automatically group actions is attempted. The action sequences
are first embedded into a single dimension vector that compresses and captures the temporal
information. A clustering algorithm is then applied to the embedded sequences to create groups.
Lastly, the embedding and clustering parameters are chosen in a way that optimizes the group
recognition accuracy. Insight is extracted from the resulting groups and experiments.

Figure 4.1: Pipeline of the automatic grouping experiment using a Variational autoencoder to
embed the sequences and Kmeans to cluster them.

4.2 VAE Embedding

This first part relies on the assumption that embedding techniques can recognize complex un-
derlying patterns invisible to the human eye and allow to perform a better grouping than what
could be done by recognizing patterns manually. The embedding algorithm used is the Variational
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autoencoder (VAE). Its recent popularity to embed latent information well made it an interesting
choice to experiment embedding temporal information with. As [11] states, the VAE has emerged
as one of the most popular approaches to unsupervised learning of complicated distributions. It is
appealing as it is built on top of standard function approximators (neural networks), and can be
trained with stochastic gradient descent. It has already shown promise in generating many kinds
of complicated data, including handwritten digits. In general with VAE, there is no need to worry
about ensuring that the latent structure exists. If such latent structure helps the model accu-
rately reproduce (i.e. maximize the likelihood of) the training set, then the network will learn that
structure at some layer. Lastly, the company ’Deepmind’ has recently used VAEs to embed rep-
resentations of demonstration trajectories [33]. Furthermore, applying the VAE to skeleton poses
has been done previously in [32] where the VAE is used to model the possible future movements
of humans in the pose space.

4.2.1 Setup and parameters

With help from [26], the VAE is first trained on the handwritten digit MNIST dataset [23]. The
results in figure 4.2 show the VAE works properly from an early training stage and improves at
each epochs. Indeed, the numbers get less blurry and start having a more discriminative shape
while the t-SNE clusters get further away from each other. As [26] mentions, what happens is that
the network is constrained to produce latent vectors having entries that follow the unit normal
distribution. Then, when trying to generate data, some values are sampled from this distribution,
fed to the decoder, and the decoder returns a completely new object that appear just like the
objects the network has been trained with.

Figure 4.2: Results of using the VAE on the MNIST dataset. (Left) t-SNE 2D clusters on the 10
digit classes. (Right) VAE Decoder generating numbers from random classes.

The working VAE is then adapted to receive the action sequences as input. Each data point
(or sequences) is fed as a vector of [number of joints × sequence length] dimensions and, during
training, the VAE’s task is to somehow capture the dependencies between those dimensions. The
training parameters are available in table 4.1. The sequence length is chosen as 70 because it is
long enough to capture the essential discriminative steps of every action in the dataset and it limits
the time involved in running the experiment. The number of epochs is limited to 10 as the image
reconstruction loss (the loss function) makes little progress after this number as shown in figure
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4.3. Lastly, the embedding dimension was set to 8 as increasing it further did not bring significant
improvement to the loss function. However larger embedding dimensions are tried in the clustering
section to evaluate its effect on the grouping quality.

Table 4.1: VAE training parameters
Parameters Number Sequence Input Epochs Batch Embedding

of joints length dimension number size dimension
Value 63 70 63 ∗ 70 10 30 8

The image reconstruction loss used in figure 4.3 is calculating by adding together the sum of
squared difference (between the original and the decoded image) and the Kullback-Leibler diver-
gence [2]. The latter is a measure of how one probability distribution diverges from a second
expected probability distribution and ensures the latent values will be sampled from a normal
distribution. This combination is typically used in VAE loss functions.

Figure 4.3: Image reconstruction loss as a function of increasing epochs

4.2.2 Results

Then, after training the VAE, t-SNE [31] is used on the embeddings of the 45 action classes training
samples. T-SNE is a technique for dimensionality reduction that is particularly well suited for
the visualization of high-dimensional datasets. However, figure 4.4 shows t-SNE lays a noisy 2D
representation of the data. This usually means no relevant clustering has been found through the
data provided and the VAE is not functional [34]. However, figure 4.5 shows the VAE succeeds in
reconstructing the action sequences.
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Figure 4.4: Noisy 2D t-SNE clustering on the training set embeddings with one color for each of
the 45 classes

Indeed, figure 4.5 presents the original sequence input (left) and its reconstructed version (right)
using the decoder. Looking at the original version, the 3 columns pattern seen is due to the input
joints data being ordered as [joint 1 direction x, 1-y, 1-z, 2-x, 2-y, ... ]. Hence, when the hand grasp
stays fixed as in most actions, the motion in one direction involves all the joints, hence there is a
high correlation between the directional values (x,y,z) of each joint which gives this copy-pasted
column pattern. Similarly, whenever there is an irregular horizontal shade on groups of columns,
this means the hand grasp is moving as the correlation between joints is stopped.

Looking at the reconstructed version, one can see the VAE improves its data reconstruction as
training evolves and thereby, its understanding of the data it receives. At epoch 1, only a part of
the data is reconstructed. At epoch 4, the VAE already makes the difference between sequence
lengths by generating a shorter sample for the liquid soap action. At epoch 10, the samples are
well reconstructed and the furthest away from each other in the t-SNE plot. Interestingly, the
VAE starts by learning the highest numbered joints (right part of the decoded images) and later
the lowest numbered joints as the left white columns only start appearing on the decoded images
from epoch 4 onwards. This event makes sense with results seen earlier: the highest numbered
joints correspond to the fingertips that are more discriminative about the action occurring than the
joints closest to the wrist (lowest numbered joints). Hence this means the VAE prioritizes learning
the most discriminative aspect about the data and later focuses on the less crucial reconstruction
information.
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Figure 4.5: VAE decoding 2 image samples from classes pour liquid soap and close juice bottle at
epochs 1, 4, 10 (left to right). t-SNE of the images Z embeddings below (yellow for top sample
embedding, blue for bottom, green for all other training samples).

Before moving on to the next section and to be clear, the VAE output (reconstructed/generated
data) was only used in this section to verify the VAE is functional after being trained. In the rest
of this chapter’s experiments, only the ’z embedding’ is retrieved from the VAE in an attempt to
use the latent information it encloses. Figure 4.6 clarifies what the z embedding refers to.

Figure 4.6: Simplified diagram of a VAE. Image borrowed from [4].

4.3 Clustering using Kmeans

Kmeans is a classic clustering algorithm based on Euclidean distance (further details in the Back-
ground section). It fits this application as it is fast, well-understood and brings a first level of
understanding although there is no guarantee it is optimal to cluster VAE embeddings.
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4.3.1 Parameters

Standard kmeans parameters are used in this experiment as shown in table 4.2. One of kmeans
weaknesses is that the initial randomly chosen centroids can determine the final centroids signifi-
cantly and lead to a sub-optimal clustering solution. As [5] states, the approximation found can
sometimes be arbitrarily bad with respect to the objective function compared to the optimal clus-
tering. Hence, the k-means++ initialization addresses this obstacle by specifying a procedure to
initialize the cluster centers before proceeding with the standard k-means optimization iterations.
With the k-means++ initialization, the algorithm is guaranteed to find a solution that is O(log k)
competitive to the optimal k-means solution. In addition, the number of runs specifies the number
of time the k-means algorithm will be run with different centroid seeds. The final results will be the
best output of the consecutive runs in terms of inertia. The inertia is the sum of squared distances
of samples to their closest cluster center. Then, up to 45 clusters are tried as having more clusters
than action classes makes little sense. Similarly, different Z embedding dimensions are attempted.

Figure 4.7 reports the inertia for each embedding dimension as the number of clusters evolves.
Since the inertia changes of an order of magnitude depending on the input dimension, the results
are normalized in order to be compared. Each data series is simply divided by the largest value in
the series, which is always the inertia computed with the smallest number of clusters (K=2). The
results show the curve’s ’elbow’ is always between 5 and 10 clusters whatever the input dimension
is. This means the clustering is optimal at those values as increasing the number of clusters will
always reduce the inertia, until it reaches 0 when there is as much clusters as data points. Indeed,
the aim is to stop increasing the number of clusters once the diminishing returns appear sub-linear
(past the curve’s elbow).

Table 4.2: Kmeans training parameters
Parameters Cluster Number of Number of iterations Number of Input Train:Test

initialization runs per run clusters K dimension split
Value kmeans++ 10 300 2..45 8, 16, 32, 45 1 : 1

Figure 4.7: Inertia loss as a function of the number of clusters for different Z embeddings. Inertia
is expressed as a percentage of the largest inertia in each data series.
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4.3.2 Results

After the clusters are set using sequence embeddings from the train set, group recognition accuracy
is computed with sequence embeddings from the test set, as detailed in the experiment pipeline
in figure 4.1. Results in figure 4.8 show the smallest embedding dimension performs the best
and closely to the other dimensions. Hence, all the following experiment results will come from
clustering 8 dimensions embedding inputs.

Then, the overall performed group recognition accuracy as a function of the number of groups
(clusters) is inferior to the RNN performance from manual groups. Two main reasons contribute to
those results. First, kmeans performs spherical clusters because of its metric (euclidean distance)
but most embeddings of actions classes probably belong to a non-linear clustering shape, hence
some action classes samples end up split between multiple clusters. Second, the VAE reconstruction
loss impacts the quality of results later in the pipeline.

Figure 4.8: Group recognition accuracy as a function of the number of clusters for different Z
embeddings

Next, the groups created are investigated. First, figure 4.9 shows how kmeans clusters each
training data point for a small number of groups (K=3). The red circles highlight which groups
are the most represented in each cluster and thus, which actions define the groups the most. For
example, the write, flip sponge and open peanut butter actions define the first cluster the most.
However, watching sequences from those classes will not be enough to make sense of why those
actions are grouped together. Indeed, the VAE learns a latent structure from the data without
respecting a specific constraint, such as for example, modeling the data using hand grasp as a
discriminative criterion. Hence, the latent structure could even be abstract to the human mind
and it is normal none of the manual groups from last chapter are recognized here. It would rather
be an interesting surprise if such an event happened. However, seeing how the clusters evolve as
the number of groups increases could bring some insight forward.
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Figure 4.9: Visualization of 3 kmeans clusters. The bars represent the proportion of data points
of each action class that fell in the cluster.

In figure 4.10, one can see the clusters of figure 4.9 are preserved but the second cluster now holds
a defining group of actions (put sugar and put teabag) previously belonging to the third cluster
of figure 4.9. First, seeing the same actions are still defining the clusters means their embeddings
have an information in common that the VAE uses to reconstruct the sequences. The fact they are
clustered together is not random or some noise clustering. Second, this highlight some hierarchical
classification where, inside each cluster, there can be some further differentiations between the
actions thanks to the VAE embedding. However, some other actions constantly stay together such
as give coin and handshake, which were in the same manual group as both action involves a hand
with a similar grasp and motion going towards another hand.
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Figure 4.10: Visualization of 4 kmeans clusters.

Increasing the number of clusters further in figure 4.11 shows similar results with still the same
actions leading each group, except a few actions previously split between clusters have now got
a cluster of their own where they are a defining action. For example, flip sponge has stopped
teaming up with write and has now a cluster of its own with take letter from enveloppe which
was previously split between two clusters. Hence, now that an additional cluster can be built, the
algorithm finds it optimal to group those two actions together instead of previously splitting them
between clusters. This might mean the two actions are coded in the VAE with a discriminative
information that is the fifth most used to reconstruct any action.
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Figure 4.11: Visualization of 5 kmeans clusters.

To sum up the observations across the three figures, a few number of actions constantly define
the clusters. This indicates those actions have a certain shared spherical coherency across their
different z embeddings which allows to build a strong cluster around them. Indeed, the VAE has
trained itself in a way that makes those actions have closely coded embeddings, which might imply
those actions share some kind of latent information the VAE uses.

Figure 4.12 shows more clearly which clusters each action belongs to, along with the proportion
of data points from this action present in the cluster. This allows to see in increasing order which
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are the defining actions of the clusters.

Figure 4.12: Visualization of the proportion of presence of each action in the cluster they belong
to for 3,4 and 5 clusters. Each color represents a cluster and an action belongs to the cluster where
a majority of its data points are.

Lastly, increasing the number of clusters to 8 shows many actions stay the cluster lead such as
flip sponge or give coin. However, some less discriminative clusters start being created such as
the one where stir is with an occurrence of its data points below 50%. Thus, those new clusters
that only enclose a small part of the data points of even the leading actions can be considered as
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noisy (useless) clusters since they regroup actions through a latent information that is not present
in every one of their samples. Therefore, this latent information is better left unused as it is not
constantly present when the actions is executed and thus can not be used as a means to recognize
the action. For example, this useless latent information could be the angle in space or the speed
the action is executed at, which only concerns a few data points of every action.

Figure 4.13: Visualization of the proportion of presence of each action in the cluster they belong
to with 8 clusters

4.4 Conclusion

To conclude, one can definitely appreciate the VAE extracts relevant information from the action
sequences as clustering those embeddings shows some groups of actions are constantly clustered
together. However, kmeans is limited in the insight it can bring to understand what information
is inside those embeddings. Concerning the method, it indeed builds groups automatically but the
group recognition accuracy is worse than if those groups were handcrafted.

Further steps could include:

• Incorporating the VAE and Kmeans in a feedback loop where poor group recognition accuracy
is accounted for in the VAE loss function. Hence, the VAE embeds the sequences with latent
information that can be clustered easily and brings to a better group recognition accuracy. In
the end, this method tries to link actions through abstract latent information that a human
might not understand. Hence, it is more important to constrain the system to learn this
latent information than to work on making this information understandable.

• Embedding each hand pose frame instead of each sequence of hand pose. This is similar to
embedding words instead of sentences in natural language processing and could allow the
VAE to reduce its reconstruction loss by coding the hand pose sequences more precisely.
This would also allow to evaluate how much of each action’s hand pose is present in another
action.

• Investigating the discriminative power of each direction(x,y,z) by embedding only one direc-
tion and evaluating how the clustering changes.

• Using a Variational Recurrent Autoencoder [13]. It can be used for large scale unsupervised
learning on time series data, mapping the time series data to a latent vector representation.
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Chapter 5

Conclusion

To conclude, the best individual and group recognition accuracies in this project are achieved
through the handcrafted groups. Those groups also allow to share insight on the hand pose data
static and dynamic discriminative patterns. Finally, using unsupervised learning methods on the
dataset does reveal the existence of more of those features but still makes difficult their extraction
and intuitive understanding.
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Appendix A

Chapter 3 additional figures

Figure A.1: 12 Object grouping confusion matrix on the trained RNN
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Appendix B

Github repository

The code used to build the experiments in this report is available at: https://github.com/

natoucs/FYP
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