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Abstract

With the recent development of deep learning techniques, 3D hand pose estimation has

experienced great improvements. Recent methods require the collection of large experimen-

tal datasets which is tedious and difficult especially in the annotation of ground-truth 3D

joint positions. Various methods have been devised which has resulted in many available

datasets with most of the comprehensive datasets only catering to systems that operates on

depth information. In this paper we propose a system that takes advantage of these avail-

able datasets to create a similar dataset for systems that operates on RGB information. Our

method employs generated adversarial networks (GAN) which learns a mapping from existing

depth-based images to RGB-based images. Specifically, we attempt to convert the benchmark

BigHand dataset which is currently the most comprehensive dataset for 3D hand pose esti-

mation with depth images. We experiment with various GAN image translation systems and

analyse the quality of images. We also compare our generated dataset with existing datasets

on a baseline hand pose estimator and demonstrate that our generated dataset can produce

comparable and even superior results.
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1 Introduction

Articulated hand pose estimation is a challenging problem in computer vision with many

applications in the areas of human computer interaction, robotics, health care, and sign language

recognition. Inferring the pose of a human hand is difficult due to articulated objects having

many degrees of freedom, self-occlusion and self-similar parts.

Recently, an increasing amount of research has been carried out in the field of articulated hand

pose estimation which has led to significant progress and the proposals of numerous systems

[1, 2, 3, 4]. While there are various methodologies available, the current state-of-the-art systems

employ deep learning and convolutional neural networks (CNN) [5]. A majority of these systems

allow for marker-free hand pose estimation with real-time hand tracking. Most of these systems

are completely reliant on depth information for detecting hand features and learning joint

positions. As a result, these systems require a depth camera to be implemented which limits its

practical appeal. Depth cameras are sensitive to environment and are susceptible to interference.

They are also not as widely available as RGB cameras which can be found in most smart phones

and laptops.

In this project we focus on the problem of inferring 3D hand pose from single RGB images. To

further increase the practicality of our solution, we also restrict ourselves to monocular views

using single RGB images. Multiview setups [6, 7] have been shown to handle the problem of

self-occlusion well but monocular setups are preferable as they reduce setup overheads and are

more readily applicable.

Most recent methods which rely on deep learning techniques benefit from training on larger

datasets. A significant bottleneck in hand pose estimation research comes from obtaining high

quality, comprehensive datasets consisting of a variety of poses, viewpoints, shapes and sizes.

Obtaining large sets of input (depth hand image) and ground truth (3D joint annotation) pairs is

not a trivial task. The main difficulty stems from the annotation of 3D hand joint positions.

Annotating the joint positions manually is very time consuming and could lead to inaccurate

data [8]. Data-capturing gloves, on the other hand, can increase the accuracy of ground truth

data significantly but input depth information becomes noisy and corrupted [9]. Other methods
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which combine semi-automatic inferencing of the joint locations with some manual refinement

were shown to be successful but still proved to be time consuming and resulted in limited

datasets [3, 1]. The BigHand [10] dataset uses compact external magnetic sensors and is

currently the largest and most comprehensive set. Most of these existing datasets are developed

specifically for systems which take depth images as input [3, 1, 10, 11].

The task of obtaining datasets which take RGB images as input comes with additional

difficulties. Obtaining accurate 3D hand joint annotation for RGB images is difficult as any

external sensor would corrupt the RGB images even more so than when used for obtaining depth

images. RGB hand image datasets do exist but collection methods have been restricted to

manually annotating ground truth joint positions [12, 13] or synthetically creating models

[14, 15]. Synthetic data may have accurate ground truths but often do not generalise well to real

world images. The NYU [16] dataset contains RGB-3D joint annotation pairs but is limited in

size and pose variation. The images also only provide colour for pixels with valid depth data.

The GANerated [17] dataset generates realistic hand images from synthetic hand images using

generative adversarial networks (GAN) [18]. So far, these datasets are still limited in size and

pose variation compared to depth-based alternatives.

The aim of this project is to leverage the large-scale BigHand [10] benchmark dataset which is a

million-scale depth image dataset that contains a wide variety of poses to create a hand pose

estimation dataset for RGB images. The original RGB images from the BigHand dataset are not

sufficient as they are corrupted with noise (as the external magnetic sensors are present in the

images).

We experiment with various methods to generate RGB images from depth images provided by

the BigHand dataset using GANs as inspired by Mueller et al. [17]. Our goal is to train a GAN

system that would allow high resolution mapping of RGB images from depth images. We

demonstrate our networks ability to generate RGB hand images of reasonable quality. Using the

generated dataset, we evaluate quantitatively by training a baseline hand pose estimator [3]. We

show that our generated dataset can achieve state-of-the-art performance compared to existing

benchmarks such as the BigHand [10] and SynthHands [19] datasets. Our intention is to create a

comprehensive dataset and pave the way for further exploration in hand pose estimation with
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RGB images. Code for the project is available at https://github.com/aaronlws95/gan-depth-to-rgb.

2 Background

2.1 Related Works

Hand Pose Estimation In the past few years, numerous methodologies have been proposed to

tackle the challenge of estimating the pose of an articulated object. As the main focus of recent

techniques, we consider markerless camera based methods on monocular images. Oikonomidis et

al. [2] proposes a technique based on Particle Swarm Optimisation (PSO). Tang et al. [1] uses a

latent regression forest and recursively divides the input into two cohesive sub-regions until each

sub-region contains only one skeletal joint. Tompson et al. [3] uses a CNN for detection of key

hand points in 2D on a multi-resolution image pyramid followed by post refinement into hand

pose with inverse kinematics optimisation. Zhou et al [20] showed that a forward kinematics

process, that is, mapping from the joint angles to joint locations of an articulated hand pose

could be used in training the CNN. This removes the need of post-processing and directly

regresses the 3D joint coordinates with a CNN. Oberweger et al. [21] does similarly, but instead

enforces a prior on the 3D pose and predict the parameters of the pose in a lower dimensional

space. Hybrid methods that use a discriminative (learning based) method to obtain the initial

stage of a generative (model based) method [3, 4, 22] have been known to show the best

performance on benchmark datasets. The current paradigm in hand pose estimation are methods

which are entirely reliant on using depth information. However, efforts have been made to further

research in hand pose estimation from RGB images [14, 17, 6, 7]. Of these, Zimmermann et al.

[14] and Mueller et al. [17] propose systems that estimate 3D hand pose in a monocular setting.

Convolutional Neural Networks Convolutional Neural Networks (CNN) are a class of

feed-forward artificial neural networks inspired by biological processes present in the visual

cortex. CNNs have shown to be useful in solving problems associated with computer vision such

as object classification, face detection, image recognition [5, 23, 24] and now in hand pose

estimation [4, 3]. Compared to standard artificial neural networks, CNNs have a 3-dimensional
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neuron arrangement, local connectivity and shared weights which allows it to have better

generalisation on vision problems. To date, numerous modifications have been applied to the

original CNN implementation. Krizhevsky et al. [25] uses deep convolutional networks for image

classification. He et al. [26] proposes ResNet, which applies residual learning to ease the training

of deep convolutional networks. Ronneberger et al. [27] proposes U-net, a system that uses data

augmentation and reduces the need for large training datasets. In terms of hand pose estimation,

Tompson et al. [3] uses a multi-resolution image pyramid with three parallel convolutional

network layers to obtain heat-maps of key hand joints. Ye et al. [4] integrates cascaded and

hierarchical regression into a CNN framework and enforces kinematic constraints on hand pose

estimation.

Hand Pose Datasets Dataset collection has proven to be an important aspect of hand pose

estimation. It has been observed that for current state-of-the-art methodologies that employ

CNNs, their performance scale well with the size of datasets used and the variation of poses

present in the dataset. Besides that, good benchmark datasets are also necessary for effective

comparison between hand pose estimation algorithms. Most of these datasets consist of depth

hand images together with their corresponding ground truth joint annotations. However, 3D

joint annotations are difficult to obtain with manual methods such as obtained by the MSRA14

[8] dataset. This is mainly because it is too tedious to annotate and also prone to human error.

On the other hand, using an external sensor such as data-gloves would provide accurate joint

annotations but as a result it would also slightly corrupt the depth information [9]. Some

methods use a combination of semi-automatic inferencing of joint locations with some manual

refinement such as the MSRA15 [11], NYU [3], and ICVL [1] datasets. The MSRC [22] dataset is

a synthetic benchmark. Although more refined and lacking in noise, synthetic methods

sometimes produces kinematically implausible and unnatural hand poses which do not generalise

well with real world images. More recently, the Handnet [28] dataset uses less intrusive external

magnetic sensors to obtain accurate fingertip locations. These magnetic sensors are small and

compact and do not affect depth information to a large extent. The BigHand [10] dataset follows

a similar approach but provides 3D joint annotation for the full hand pose and currently proves

to be the most extensive dataset. In terms of hand pose systems that attempt to obtain 3D joint

annotations using RGB images, there is relatively fewer benchmark datasets that provide

RGB-ground truth pairs. Available RGB image datasets include the Stereo Hand Pose Tracking
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Benchmark [12], Dexter [13] and EgoDexter [19] which have manually annotated 3D joint

positions. There are also synthetic datasets such as SynthHands [19] and Z&B [14]. Recently, the

”GANerated” [17] dataset uses GANs to generate a realistic hand dataset from synthetic images.

Generative Adversarial Networks Generative Adversarial Networks (GAN) [18] are deep

learning systems that can train a model that is capable of generating complex data. Two neural

network systems are used: a discriminator and a generator. The generator is trained to generate

fake data and the discriminator is trained to classify input as either fake or real. This allows

GANs to learn a loss function in addition to learning a function mapping the given input and

output. GANs have been shown to be successful in a variety of applications such as synthetic

data generation [29], image super-resolution [30] and human pose estimation [31]. Ever since its

conception, various modifications and improvements have been made to the GAN architecture.

Radford et al. [32] proposes Deep Convolutional GAN (DCGAN) as a stable architecture for

training GANs. Arjovsky et al. [33] introduces the current state-of-the-art Wasserstein GAN

(WGAN) which further improves training stability of learning. Mirza et al. [34] condition GANs

on labels and open the doorway to generate specified inputs which resulted in Conditional GANs

(CGANS). This has been extended to images [35] and text [36].

GAN Image-to-Image Translation A known successful application of GANs is

image-to-image translation. Isola et al. [35] successfully uses CGans training on paired images.

This method was shown to be generalisable to several tasks such as semantic labels to photo,

map to aerial photo, sketch to photo, black-and-white to colour photo and vice versa. Zhu et al.

[37] (CycleGAN) and Kim et al. [38] (DiscoGAN) build on this but consider an implementation

with unpaired images. CycleGANs [37] use a single loss consistency whereas DiscoGANs [38] use

two reconstruction losses. Mueller et al. [17] implements a modified CycleGAN (GeoConGAN)

to generate real hand images from synthetic hand images which uses a geometric consistency loss

to ensure that images produced maintain hand pose during image translation.
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3 Depth-RGB Dataset Generation

3.1 Image acquisition

An important resource for this project would be a dataset that we could use to train and validate

our GAN system. Existing datasets such as the NYU [3] dataset do not include egocentric hand

poses which is prevalent in the BigHand [10] dataset. Besides that, the EgoDexter [19] dataset

contain hand images occluded by objects. Thus, it was preferable to collect our own dataset.

In order to do this we developed our own system that allowed us to easily construct the dataset.

This was implemented with the use of an Intel RealSense F200 camera which is capable of

capturing both RGB and depth images. An example of a depth-RGB image pair is shown in Fig.

1. Observe that parts of the arm that should not be included in the final image has also been

captured.

0 200 400 600

0

100

200

300

400

Depth

0 200 400 600

0

100

200

300

400

RGB

Figure 1: Example of depth and RGB image obtained from the Intel RealSense F200.

3.2 Preprocessing

As our acquired images are not suitable, we require the images to be preprocessed before we can

use them effectively for our GAN. As only images of the hand is required, we remove any outliers

from the final image. In order to do this, we employ a hand classifier which allows us to create a
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mask of the hand using the depth image as input. The hand classifier we use is developed based

on a U-net [27] architecture and detects hand images from depth input. From analysis of the

system, the segmented hand masks created were not satisfactory (see Appendix A). To rectify

this issue, instead of using the mask to extract the segment the hand from the image, we use the

mask as a reference point to crop the image. We then remove the outliers by thresholding, that

is, we remove parts of the image that exceed a certain depth or colour range.

For the depth image, we carry out further preprocessing by normalising the image using the

following equation:

ˆDepth =
(Depth−Depth)

hand span
(1)

where Depth is the mean depth value from the image and hand span is set to be the upper

threshold of the span of the average human hand in millimetres which is about 200mm [39].

Normalisation is carried out to induce depth invariance in the depth images.

The preprocessing pipeline is shown in Fig. 2.

create mask
original
depth
image

segment normalise resize 

output
depth
image

segmentoriginal
RGB

image

resize thresholding 

output
colour
image

thresholding 

Figure 2: Preprocessing pipeline for Dataset Generation

Examples of preprocessing images are shown in Fig. 3.
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Figure 3: Example of preprocessing images. Top: Depth image. Bottom: RGB image.

3.3 Depth-RGB Dataset

3.3.1 Analysis Dataset

Initially, we acquire a smaller, less extensive dataset to analyse the effectiveness of the GAN

image translation systems on converting the depth hand images to RGB hand images. To reduce

training time and complexity, we generate a dataset relatively smaller than the intended dataset

to be used in converting the BigHand 2.2M [10] dataset and we do not use as many viewpoints

(no egocentric poses), articulations and poses. We also restrict hand shape and skin colour, by

acquiring data from 1 subject (male). We ensure our testing set contains both poses contained in

the training set and new unseen poses. Examples of RGB-depth pairs in the initial dataset used

for analysis are shown in Fig. 4.
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Figure 4: Top: Example testing set RGB-depth hand pairs. Bottom: Example training set RGB-

depth hand pairs.

3.3.2 Comprehensive Dataset

Our final trained GAN should be able to map a variety of viewpoint, articulation and poses

which are present in the BigHand dataset. This means that our final dataset for training and

testing the GAN should have similar variety.

The BigHand dataset consists of three main sections: (1) Schemed poses: covers all the

articulations that a human hand can adopt. (2) Random poses: the subject freely explores the

pose space. (3) Egocentric poses: The hand is viewed from a first person perspective while

covering the 32 extremal poses with each finger either maximally bent or straight similar to that

studied by Wu et al. [40] with random movements. We attempt to match this variety in our

GAN dataset. To reduce training times, we do not attempt to match the size of the BigHand

dataset. We also see in later sections that our GAN system does not require as many samples in

the dataset to learn a mapping. In fact, in certain cases we found that training on larger datasets

results in lesser performance and lower quality generated images.

We do ensure our dataset covers all 25 = 32 extremal hand poses for both the palm side and

back side of the hand with a constant hand pose angle. Furthermore, we cover the same extremal

poses for both sides from an egocentric perspective.
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3.4 Implementation

To obtain the depth and RGB hand image pairs we use an Intel RealSense F200 camera which is

composed of an RGB camera, an infrared detector and an infrared sensor. It’s functionality is

programmed using the Intel RealSense SDK [41] in C++. The developed program allows us to

capture multiple images in quick succession.

As the RGB camera and infrared detector are located in different positions on the camera, the

depth and RGB images acquired are misaligned. Alignment is necessary for the images to be

used effectively as training data for our GAN system. To ensure alignment, we use the function

CreateColorImageMappedToDepth which provides us with registered colour images that only provide

colour information for pixels with valid depth data. This introduces some corruption to the

images. However, we find that overall the quality of hand images is suitable in practice.

The program for preprocessing the images is developed in Python. When normalising the depth

image, we set hand span = 300. We also resize the images to 256 x 256 pixels.

4 Generated Adversarial Network

4.1 Baseline GAN (pix2pix)

We investigate current state-of-the-art in image-to-image translation using generative adversarial

networks(GANs) as a baseline. We use the image-to-image translation GAN architecture as

proposed by Isola et al. [35] which is implemented in the pix2pix [42] software provided at

https://github.com/phillipi/pix2pix which have been shown to successfully carry out domain

transfer for a wide range of general applications.

Using this architecture as a baseline, we attempt to improve its performance by experimenting

with two approaches: (1) Applying Wasserstein GAN [33] loss which has shown to be the

state-of-the-art in terms of stable GAN training. (2) Applying Laplacian Pyramid decomposition

and reconstruction as inspired by LAPGAN proposed by Denton et al. [43].
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4.1.1 Objective function

The objective function is given as:

Lp2p(G,D) = LcGAN(G,D) + λL1(G). (2)

LcGAN(G,D) represents the objective function for a conditional GAN [34] given as:

LcGAN(G,D) = E
x,y

[logD(x|y)] + E
x,z

[log(1−D(x|G(x, z))]. (3)

L1(G) represents the L1 loss function given as:

L1(G) = E
x,y,z

[||y − G(x, z)||1], (4)

where λ is a constant that we define.

In GAN systems, the generator attempts to minimize the objective function whereas the

discriminator attempts to maximize the objective function. This is expressed as:

min
G

max
D

Lp2p(G,D) = LcGAN(G,D) + λL1(G) (5)

The L1 term is introduced as it has been found that introducing a conventional norm loss

function would help the network learn particular structures in the image [44]. In this case, the L1

term is known to produce a blurred result [45]. This allows it to capture low frequency

information from the input and enforce it onto the output.

4.1.2 Network architecture

As the L1 term in the objective function enforces low frequency structure in the output, the

discriminator is designed to learn the high frequency structure in the output. Isola et al. [35]
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introduce a PatchGAN that penalises structure at the scale of patches. That is, the

discriminator checks each N x N patch, classifies it as real or fake and averages all responses.

The architecture of the discriminator network is shown in Fig. 5. Patch size corresponds to the

receptive field [46] of the network. The input image is processed by passing through multiple

convolutional layers. After each convolutional layer (except the first), normalization is carried

out via a batch norm [47] layer. Batch normalisation is introduced to optimise network training

by increasing convergence rates, reducing parameter sensitivity and providing some

regularisation. Additionally, the output of each layer is processed by a Leaky Rectified Linear

Unit (Leaky ReLU) [48] layer. ReLU layers are included to introduce nonlinearity and result in

sparse outputs. This has been shown to improve training convergence and performance when

carrying out discrimination tasks [25]. Leaky ReLUs act similarly but in contrast to ReLUs,

leaky ReLUs prevent the gradient from reaching 0. The ReLU function is given as:

ReLU(x) = max(x, 0) (6)

and the Leaky ReLU function is given as:

Leaky ReLU(x) = max(x, αx) (7)

where α is set as a small positive constant with |α| < 1.

The result is then mapped to a 1 dimensional output followed by a Sigmoid function.

conv2d conv2d conv2d conv2dinput output

Figure 5: Discriminator network architecture for pix2pix GAN.

The generator is modeled as an encoder-decoder network [49] with skip connections similar to a

”U-Net” [27]. The skip connections ensure additional information to carry to the decoder section

of the network. This prevents loss of information through the encoder-decoder bottleneck. This
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is especially important for image translation problems as the input and output share many low

level details. The skip connections connect the i-th layer with the n − 1-th layer.

The architecture for the generator is displayed in Fig. 6. The encoder section of the architecture

(displayed in blue) consists of convolutional layers which downsamples by a factor of two. The

decoder section, on the other hand, consists of deconvolutional layers which upsamples by a

factor of two. Similar to the discriminator, after each layer besides the first, a batch norm layer is

introduced. After each layer the output is processed by a Leaky ReLU function. Finally, the

output is processed by a tanh function.

To ensure non-deterministic results we are required to add a noise term, z to the input alongside

x. Isola et al. [35] found that adding Gaussian noise to the input was not effective. Instead, in

the architecture, noise is administered through a dropout layer which is included in the decoder

segment after every deconvolutional layer. Note that even with this only minor stochasticity was

observed.

tanhinput output

Figure 6: Generator network architecture for pix2pix GAN.

4.2 Wasserstein Loss

In this section we investigate running the Baseline GAN architecture using an objective function

inspired by the Wasserstein GAN (WGAN) [33]. While it has shown success and promise, GANs
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are still a relatively new design of deep learning network. Currently, there are no reliable methods

for ensuring the stability of training GANs. There are also no reliable conditions or methods that

have been shown to guarantee convergence in training GANs. WGANs have been designed to

approach this issue and have been shown to improve the stability of the original GAN algorithm.

The initial GAN [18] algorithm can be interpreted as minimising Jensen-Shannon divergence:

DJS(p‖q) =
1

2
DKL(p‖p+ q

2
) +

1

2
DKL(q‖p+ q

2
) (8)

where DKL is the Kullback–Leibler divergence:

DKL(p‖q) =

∫
x

p(x) log
p(x)

q(x)
dx (9)

These divergences are essentially measuring the similarities between two probability

distributions. The idea of WGANs is to attempt to improve this metric. WGANs update the loss

function to include the Wasserstein distance or Earth Mover’s distance:

W (pr, pg) = inf
γ∼Π(pr,pg)

E(x,y)∼γ[‖x− y‖] (10)

The improved version of WGANs [50] have been shown to improve convergence speed and is

more robust to hyperparameter tuning than the original. Our approach is to implement the

Wasserstein loss algorithm as proposed by the improved WGAN with the baseline GAN

architecture and attempt to stabilize the training in hopes of improving generated image quality.

4.3 Laplacian Pyramid

We also investigate a Laplacian Pyramid approach to generating output images inspired by

LAPGANs [43]. This method involves decomposing the original image into smaller, simpler

images. The process can be reversed to reconstruct the original image.

14



With this, instead of learning a mapping from depth to the target RGB image, we train the

network to learn a mapping from depth to Laplacian Pyramid coefficients, [h1, h2, ...hn] and the

final downsampled image In − 1. This is motivated by the idea that the baseline GAN should be

able to, more easily, learn a mapping as the output is a less complex image. The final output

results can then be used to reconstruct the original target image. Laplacian Pyramid

decomposition and reconstruction with a hand example is visualised in Fig. 7.

Thus, we would have to train a GAN for each Laplacian Pyramid coefficient and the final

downsampled image in order to obtain a generated reconstructed image.
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Figure 7: Top: Laplacian Pyramid representation. Bottom: Laplacian Pyramid reconstruction.

D represents blurring followed by downsampling by a factor of 2. U represents upsampling by a

factor of 2 followed by blurring.

4.4 Implementation

The software used is a TensorFlow [51] implementation [52] of pix2pix based on DCGAN-tensorflow

[53] which is modified to suit our specifications.
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Similar to the pix2pix method, we use minibatch stochastic gradient descent with ADAM [54].

During the generation of images, the generator network is tuned under similar conditions. The

specifications of our network architecture and training system is given in Appendix B.

In this implementation, the generator network is updated twice per update of the discriminator

network to avoid the fast convergence of the discriminator network. This differs from the original

pix2pix method which divides the discriminator’s objective function by 2 to slow down the rate

at which the discriminator learns relative to the generator.

Before training, we also randomise the images by resizing the initial input training images to 286

x 286 and then randomly cropping back to 256 x 256. This adds extra noise to each image which

helps our network generalise better.

5 Hand Pose Estimation

The ultimate purpose of our generated images is to create a dataset that can improve training for

hand pose estimation tasks. Thus, the most suitable method to assess our generated dataset

would be to train a hand pose estimation system using the dataset and compare with existing

benchmark datasets.

5.1 Network Architecture

To carry out hand pose estimation, we follow a similar architecture to that proposed by Tompson

et al. [3]. The architecture consists of two network stages: 1) Convolutional. 2) Dense. The

system, when trained, estimates 21 3D hand joint positions from input hand images.

The initial convolutional stage consists of 3 parallel convolutional networks. The purpose of this

stage is to detect features from the input image. Each layer processes the image at a different

resolution. Specifically, we process the original image and the image downscaled by a factor of 2

and the image downscaled twice by a factor of 2. This assists the system in distinguishing
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between global features i.e. contours and local features i.e fingernails. The convolutional layers

include a max-pooling module proposed by Nagi et al. [55] which carries out down-sampling.

This has been shown to effectively reduce the dimensions and complexity of the data at the cost

of spatial precision. A rectified linear unit (ReLU) activation layer is also included after each

layer.

The output of the first stage is concatenated, batch normalised and flattened before being sent to

the second stage. The dense or fully connected layers takes the processed hand features and

learns a mapping to the 21 3D hand joint positions. Unlike the original architecture proposed by

Tompson et al. [3], we include a dropout layer after each dense layer. The dropout layers help to

improve generalisation of the system and prevents overfitting. An overview of the architecture

can be seen in Fig. 8.

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d
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48x48
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conv2d

dense dense 21 Joint
Positions

Figure 8: Network architecture for hand pose estimation.

5.2 Implementation

The hand pose estimator network is implemented in Keras [56] and Tensorflow. To carry out

training, we use minibatch stochastic gradient descent with ADAM. Mean squared error is used

as the error measure during training. Detailed specifications of our network architecture and

training system is given in Appendix D.
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6 GAN Evaluation

Evaluation of synthesised image quality is an open and difficult problem [57]. Per-pixel error is a

traditional metric we can use to measure the similarity of synthesised image with ground-truth

target. Isola et al. [35] do not employ this as per-pixel error is only meaningful when treating the

output space as unstructured when each pixel is considered independent of the other. This

contradicts with conditional GANs which learn structured losses which penalize joint

configuration of the output.

As we have restricted our problem to primarily dealing with image mapping, we would like our

output image to match the ground truth or target image as much as possible. Thus, we apply

per-pixel mean squared error as a metric for quantizing the efficacy of our system. The mean

squared error is given as:

A ∈ Rmxn, B ∈ Rmxn

C = A−B

with entries ci,j where 0 ≤ i ≤ m, 0 ≤ j ≤ n

MSE =
1

(mn)

∑
i,j

(ci,j)
2 (11)

The final mean squared error is the sum of the mean squared error for each colour channel of the

image i.e red, green and blue.

Using this metric alone is not sufficient. It is also necessary to pair this together with human

judgment as the error measure would only provide us with a rough understanding of the quality

of generated image. It does not do well in quantifying the feature detail generated in the output.

Ultimately, we would prefer generated images that would be good enough for humans to classify

as true which are not strictly exact mappings of the original RGB image.

For our experiments, we run our network training on a smaller analysis dataset as given in

Section. 3.3.1. We train our system using 400 training pairs with batch size 1 for 200 epochs and

test on 400 testing pairs. This amounts to a total of 80000 steps.
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6.1 Training Analysis

6.1.1 Baseline GAN

In this section we evaluate using the optimal settings as suggested by Isola et al. [35] as a

guideline (summarised in Appendix. B). From analysing the loss functions given in Fig. 16, we

see that discriminator loss values oscillate around (0.5, 2) whereas generator loss values oscillate

around (1, 4). A known issue with training losses obtained from GANs are that they can be

unintuitive as the discriminator and generator are constantly trying to maximise and minimise

the other. The main result that we can extract from the loss function graphs is that training is

relatively stable.
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Figure 9: Loss graphs from 70x70 Baseline GAN with learning rate of 0.0002. Left: Discriminator

loss against training steps. Right: Generator loss against training steps.

To ensure our system is training well, we also sample images throughout the training. On earlier

samples we observe noticeable improvement in the quality of our samples. The noticeable

improvement gradually decreases as training carries on. A trained model is saved at epoch = 100

and images are generated to compare with generated images from the trained model at

epoch = 200. We observe improved results from training the system to epoch = 200. Results and

samples can be seen in Appendix. B.3.

Finally, we also analyse the probability distributions of the discriminator given ground truth
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outputs and when given generated outputs. Ideally, we would like the distribution to peak at 0.5

which means that the discriminator cannot distinguish between generated and ground truth

outputs and randomly classifies it with a probability of 50%. The probability distributions are

given in Fig. 10.

Notice that at 200 epochs, our distributions have not converged to 0.5. The distribution given

ground truth D(x|y) peaks at around 0.55 whereas the distribution given generated output

D(x|G(x, z)) peaks at around 0.35. This implies that the discriminator finds it more difficult to

label ground truth images as real or fake but it can more easily classify generated output images.

Figure 10: Moving probability distributions from 70x70 Baseline GAN with learning rate of

0.0002. Left: Moving probability distribution of D(x|y). Right: Moving probability distribution

of D(x|G(x, z)).

6.1.2 Wasserstein Loss

We run the training again but change the loss objective to the Wasserstein Loss and follow the

training algorithm as proposed by Guljarani et al. [50] which is explained in Section. 4.2.

Observing the training loss and distribution given in Fig. 11, we can see that the discriminator

loss starts off unstable but eventually converges to oscillate around fixed values. The generator

loss shows unstable oscillations until about epoch 50000 where it begins to show a decreasing

trend. Note that the stabilisation of the generator loss graph occurs around the same epoch as

when the discriminator loss stabilises. From analysing the probability distributions given in Fig.

12, we see that the discriminator tends to classify the image as real regardless of it being the
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ground-truth or the generated image.
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Figure 11: Loss graphs from 70x70 GAN with Wasserstein Loss and learning rate of 0.0002. Left:

Discriminator loss against training steps. Right: Generator loss against training steps.

Figure 12: Moving probability distributions from 70x70 GAN with Wasserstein Loss and learn-

ing rate of 0.0002. Left: Moving probability distribution of D(x|y). Right: Moving probability

distribution of D(x|G(x, z)).

6.1.3 Laplacian Pyramid

For the Laplacian Pyramid GAN, we train 3 different networks to generate the Laplacian

coefficient images (h1,h0) and the target image downsampled twice by a factor of two (i2) as

explained in Section. 4.3.
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We observe stable and similar training trends for all 3 networks. From the training loss of the i2

network given in Fig. 13, the generator and discriminator loss distribution both converge and

become stable with minimal oscillation at an early stage during the training. We believe this to

be attributed to the fact that the target images are simpler with less resolution so the network

has information to learn.
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Figure 13: Loss graphs from 70x70 Baseline GAN with learning rate of 0.0002 and Laplacian

Pyramid downsampled target image i2. Left: Discriminator loss against training steps. Right:

Generator loss against training steps.

The probability distribution for the i2 network as shown in Fig. 14 shows good convergence with

the final distribution peaking at around 0.5. The discriminator cannot distinguish between

ground-truth and generated images and so the generator cannot improve any further.
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Figure 14: Moving probability distributions from 70x70 Baseline GAN with learning rate of 0.0002

and Laplacian Pyramid downsampled target image i2. Left: Moving probability distribution of

D(x|y). Right: Moving probability distribution of D(x|G(x, z)).

Training results on the Laplacian coefficients, h1 and h2 show similar trends and can be viewed

in Appendix. C.2.
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6.2 Evaluation of Generated Images

6.2.1 Baseline Generated Images

Figure 15: Examples of generated RGB output from baseline GAN patch size 70x70 with learning

rate of 0.0002 for 200 epochs
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Examples of generated images are displayed in Fig. 15. From Examples (a) and (h), we see that

the network can distinguish between individual fingers well. When the fingers are placed together

there is ambiguity in the generation which can be seen in Examples (b) and (i). This is also

shown in Example (a) where the thumb overlaps with the palm. From Example (g), we see that

generated images with overlapping features can be distinguished visually with reasonable quality.

From the testing set, in Example (m), we see that the generator performs well on unseen images

with poses present in the training set. Based on Examples (o) and (n), we also observe that the

generator deals well with images of similar poses with a slight angular rotation. Example (j)

displays an example of a generated unseen hand pose. Qualitatively, the hand pose can be

distinguished easily but the generator is not able to generate the hand features very well.

Generating images from the BigHand [10] dataset (Example (k),(l),(p)), we see that the network

generally does not perform well on poses not present in the training dataset (as we’ve observed in

Example (j)). More prominent artifacts and distortion is present on the generated image from

different viewpoints such as in Example (l). On poses present in the training dataset, we observe

qualitatively better results such as in Example (p).
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Figure 16: Examples of generated RGB output from baseline GAN patch size 70x70 with learning

rate of 0.0002 for 200 epochs. Left: Examples generated from training data. Right: Examples

generated from testing data. ”mse” represents mean-squared error.

Overall, we observe that the default values do a good job in mapping the overall colour structure

onto the depth image. The hand is easily recognisable and key joint positions are immediately

noticeable. However, lower frequency information and finer hand detail such as palm creases and

fingernails are not always generated with excellent resolution. Examples with input and target

information are shown in Fig. 16.
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6.2.2 Learning Rate

We train multiple baseline GAN systems with similar training settings (patch size 70 x 70) while

varying the learning rate. No anomalies were observed during training. Training details and

analysis is provided in Appendix. B.4.

We observed that images produced from a learning rate of 0.00002 generally do not distinguish

individual fingers well especially in images with the fingers in close proximity of each other.

Details in palm and hand creases are also not as extensive.

In comparison, images produced using a learning rate of 0.0002 have finer detail and resolution.

Intricate hand detail such as creases, knuckles and fingers are more immediately obvious.

Finally, images produced with a learning rate of 0.002 has similar visual quality compared to the

0.0002 results in terms of hand detail. Training and testing error have also been further

improved. However, testing error has improved by a lesser extent relative to the training error

improvement. Examples of generated images given different learning rates can be seen in Fig. 17.

From the mean squared errors displayed in Table. 1, we see that the training and testing error

improves as learning rate decreases.

Learning rate MSE (Train) MSE (Test)

0.00002 206.9301 260.4526

0.0002 162.7022 209.1948

0.002 136.0324 200.5820

Table 1: Mean squared error of image datasets generated from training and testing images while

varying learning rate.
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Figure 17: Examples of RGB output from baseline GAN patch size 70x70 with varying learning

rates.

6.2.3 Discriminator Patch Size

We analyse the effects of varying discriminator patch sizes on the quality of generated output

images. Similar to experiments on learning rate, we train multiple baseline GAN systems with

similar training settings (learning rate = 0.0002) while varying the discriminator patch size.

Training analysis is provided in Appendix. B.5.

Overall, we see similar to the results obtained by Isola et al. [35] when experimenting with

different patch sizes. Examples of generated images are given in Fig. 18. We observed that

images generated using the 32x32 discriminator is able to colourise the image successfully but
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fails to capture detail in the hand. Instead we observe artifacts where the network attempts to

recreate the detail. Results improve when increasing the patch size to 70x70 and 286x286. We

observe that generated images from the 286x286 patch do not appear to have any significant

visual improvement. Our observations correspond with the mean squared error values tabulated

in Table. 2. The 70 x 70 patch architecture displays the best results with 286 x 286 error values

being only slightly worse and 32 x 32 error values being significantly worse.

Patch Size MSE (Train) MSE (Test)

32x32 268.5717 303.4199

70x70 162.7022 209.1948

286x286 178.7796 226.2236

Table 2: Mean squared error of image datasets generated from training and testing images while

varying patch sizes.

Figure 18: Examples of RGB output from baseline GAN with learning rate 0.0002 with varying

patch sizes.
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6.2.4 GAN System

Visually, the Wasserstein Loss GAN results show good colour mapping and detail representation.

The overall mean square error is similar to the baseline GAN with patch size 70x70 and learning

rate equal to 0.0002. The most notable difference between the generated images from the

Wasserstein Loss GAN and the baseline GAN is the prominent square patch artifact

discoloration present in a majority of the generated images.

The Laplacian Pyramid GAN system shows the worst quantitative result by far. The generated

reconstructed images have managed to map the colour correctly onto the images but there is

clear lack of detail in hand creases and finger definition. We believe this to be due to the blurring

of images when upsampling and downsampling images. This combined with the further loss of

information in generating images has resulted in the smooth features in the reconstructed

images. We see the best visual quality with the baseline system with patch size 70x70 and

learning rate equal to 0.002. Generated image examples can be observed in Fig. 19.

A comparison of the overall mean square error values are displayed in Table. 3. The Laplacian

Pyramid errors are significantly worse while the Wasserstein Loss implementation shows

comparable results to the baseline system with patch size 70 x 70 and a learning rate of 0.0002.

Corresponding to our visual analysis, the best error results are given by the baseline system with

patch size 70 x 70 and a learning rate of 0.002.

GAN system MSE (Train) MSE (Test)

Baseline (best) 136.0324 200.5820

Wasserstein Loss 164.9672 214.1693

Laplacian Pyramid 1160.3557 1175.2614

Table 3: Mean squared error of image datasets generated from training and testing images from

GAN network trained on default settings.
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Figure 19: Examples of RGB outputs from different GAN systems.

6.3 Evaluation on Comprehensive Dataset

From our analysis in Section. 6.2.4 we use the baseline GAN with patch size 70x70 and a learning

rate of 0.002 to generate images trained on our comprehensive dataset as given in Section. 3.3.2.
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6.3.1 Training Analysis

Figure 20: Training graphs from 70x70 Baseline GAN with learning rate of 0.002 trained on

comprehensive dataset with 3918 training pairs. Top: Discriminator and generator loss graph.

Bottom: Moving probability distribution of D(x|y) and D(x|G(x, z)).
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Figure 21: Training graphs from 70x70 Baseline GAN with learning rate of 0.002 trained on

comprehensive dataset with 785 training pairs. Top: Discriminator and generator loss graph.

Bottom: Moving probability distribution of D(x|y) and D(x|G(x, z)).

Fig. 20 and 21 shows the loss graphs and moving probability distributions from training the

comprehensive dataset on different sized datasets. Loss graph and moving probability

distribution for training the dataset with size 1025 is given in Appendix. B.6.1.

During training, we observe instabilities when dealing with larger sized datasets. When trained

on 3918 input images, the discriminator loss as training carries out increasingly becomes unstable

and the loss decreases by a large amount. At the same time, the generator loss gradually

increases. This implies the network finds it too easy to distinguish between ground-truth and

generated images. This can clearly be seen in the moving probability distribution. Early

stopping did not yield great results as the quality of the generated images were not improved.

Training on 1025 and 785 input images, training carries out relatively stabler with less
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oscillations. We do notice higher levels of oscillations and an increasing generator loss curve at

later stages of the training but to a lesser extent than with the 3918 dataset.

Difficulty in training large datasets could be attributed to the design of the network architecture.

Besides that, we notice that the generator struggles with mapping colour due to the

non-consistent illumination of the target images. Normalisation of target image luminosity

should be carried out when processing future datasets.

6.3.2 Evaluation of Generated Images

Analysing the generated images quantitatively, as expected, the 785 dataset has the best results

among the datasets. This corresponds with the qualitative analysis of the generated images. The

mean squared errors are displayed in Table. 4. Prior to testing, the testing set was divided into

one consisting of known poses and one consisting of unknown poses.

Examples of generated images are given in Fig. 22. From the 3918 dataset we observe

inconsistent colour and illumination. We believe this to be due to the variety of illuminations

present in the larger dataset. We also see minimal hand detail and more smooth blur with patch

artifacts in the images.

The 1025 dataset has less issue with colour and illumination as compared to the 3918 dataset.

Hand features are also slightly more noticeable but smoothness and blur artifacts are still

prominent.

The 785 dataset shows greatly improved results. Patch sized artifacts can still be seen but

generated hand features are displayed more clearly. We attribute blurriness in some images due

to the illumination and resolution of the target image.
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Dataset Size MSE (Train) MSE (Test-Seen) MSE (Test-Unseen)

785 179.5398 181.2764 361.5778

1025 251.0001 305.4645 521.02234

3918 530.8364 534.7366 700.7367

Table 4: Mean squared error of image datasets generated from training and testing images for

known poses and unknown poses from GAN network trained on patch size 70x70 and a learning

rate of 0.002 with the comprehensive dataset.

Figure 22: Examples of RGB outputs from for different sized datasets trained on the comprehensive

dataset.
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7 Hand Pose Estimation Evaluation

We train a hand pose estimation system as given in Section. 5. The network is trained using

existing datasets and also generated datasets using our GAN system for depth to RGB

translation for comparison. Based on our results in Section. 6, we choose to use the baseline

GAN with learning rate = 0.002. We also train our GAN using the comprehensive dataset as

given in Section. 3.3.2. Training for 1000 epochs and is carried out until the loss converges and

does not decrease any further. Loss graphs are given in Appendix. D.4.

We calculate the accuracy of our predicted 21 3D hand joints as the mean Euclidean distance

between the predicted, Ŷ, and ground-truth, Y, 3D hand joints given as:

3D Joint Error =
1

N

N−1∑
i=0

√
(Yi − Ŷi)2 (12)

Y ∈ R21x3

Ŷ ∈ R21x3

N is the total number of samples

The total error is given as the mean of the 3D joint error.

We experiment on the following datasets:

BigHand: Vassileios A subset of the BigHand [10] dataset consisting of one male human

subject. We use 13557 samples in training and testing.

Generated RGB Bighand: Vassileios A subset of the BigHand [10] dataset consisting of one

male human subject translated to RGB images using our GAN system. We use 13557 samples in

training and testing matching that of the original BigHand dataset.

SynthHands RGB: Male, No Object A subset of the SynthHands [15] dataset consisting of

one male human subject with RGB images. We use 23315 samples in training and 22105 in

testing.
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We also train using a dataset consisting of a combination of the generated RGB BigHand set and

the original depth BigHand set. The testing set consists of a combination of known poses

(present in training set) and unknown poses. Only subsets of each dataset are used to reduce the

time taken to train a model using the hand pose estimation network.

7.1 Results

Figure 23: Top: Proportion of image frames with mean joint error within a given error threshold

against error threshold. Bottom: Proportion of joints with error within a given error threshold

against error threshold.

To analyse our results, we calculate the mean 3D joint error from the estimation of all images in

the dataset. We calculate the mean total error as well as mean fingertip error and mean palm

error. Furthermore, we plot the proportion of image frames and hand joints within a given error

threshold against error threshold given in Fig. 23. The hand is labelled with indices as given in

Appendix. D.3. Fingertip positions are given by joint indices [4,8,12,16,20]. Palm positions are

given by joint indices [0,3,5,9,13,17]. Our results are tabulated in Table. 5.
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BH:Depth BH:GenRGB BH:GenRGB+Depth SynthHands

Mean Error/mm Train Test Train Test Train Test Train Test

Total 4.0323 7.3114 3.9311 8.0246 4.4747 7.5470 7.4483 15.0619

Fingertip 4.9748 10.3070 4.9121 11.4669 5.5848 10.6034 11.1144 21.1511

Palm 3.0703 4.8155 2.9484 5.1607 3.3495 4.9886 4.5772 9.4238

Table 5: Mean joint hand pose estimation errors for varying datasets. ”BH” represents the BigHand

dataset.

We see comparable mean errors when evaluating on the BigHand dataset. Even without depth

information, our BigHand generated RGB hand images can provide similar error results to the

BigHand depth images. We also see that training on both the generated RGB images and depth

images do not result in improved results. Comparing results from RGB only datasets, our

BigHand generated RGB achieves significantly better results than the SynthHands dataset. This

can also clearly be seen in Fig. 23. We suspect this could be due to the synthetic nature of the

SynthHands RGB images which lack any detailed hand features such as creases.

BH:Depth BH:GenRGB BH:GenRGB+Depth SynthHands

Mean Error/mm Train Test Train Test Train Test Train Test

Thumb 4.2097 6.8657 4.0753 7.4067 4.6132 7.0997 6.5033 12.2718

Index 4.1524 7.4186 4.1509 8.392 4.8046 7.8374 8.2019 15.6545

Middle 4.0781 7.6406 3.9813 8.3532 4.4722 7.8533 8.0857 15.9951

Ring 3.9098 7.6242 3.7682 8.2897 4.2526 7.7609 8.1840 17.1325

Pinky 4.0234 7.5916 3.8767 8.3482 4.4865 7.7790 6.9166 15.6995

Table 6: Mean joint hand pose estimation errors for varying datasets for specific fingers. ”BH”

represents the BigHand dataset.

We also see that the network finds it more difficult to estimate fingertips than palms. From

Table. 6, the network finds equal difficulty in inferring the 3D joint position of individual fingers.

Finger indices are given as: Thumb [1,2,3,4], Index [5,6,7,8], Middle [9,10,11,12], Ring

[13,14,15,16] and Pinky [17,18,19,20]. Mean error on each individual joint is given in Appendix.
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D.5. From Table. 7, as expected, we see that generally, the network finds more difficulty in

inferring the depth coordinate compared to the x and y coordinate especially in the testing set.

BH:Depth BH:GenRGB BH:GenRGB+Depth SynthHands

Mean Error/mm Train Test Train Test Train Test Train Test

x 1.9064 3.2283 1.8370 3.3904 2.0200 3.2749 3.9624 7.9921

y 2.0233 3.6686 2.000 3.9062 2.3002 3.851 3.6586 6.2921

depth 2.1200 4.0462 2.0583 4.6735 2.3852 4.1688 3.5486 8.4687

Table 7: Mean joint hand pose estimation errors for varying datasets for each coordinate direction.

”BH” represents the BigHand dataset.

Figure 24: Examples of input images with predicted (red) and ground-truth (blue) hand an-

notations and corresponding 3D hand skeleton representation. Below each example pair is the

corresponding mean joint error.

Individual examples with corresponding error visualisation is given in Fig. 24. Analysing

individual samples from the BigHand dataset, error results on the generated RGB dataset shows
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generally higher error values on hand poses which suffer from self-occlusion which are worse than

the error values obtained from the depth dataset. We believe that the network finds it easier to

infer occluded joint positions given depth information than RGB information. This could also be

due to the low resolution quality of the image where the network could find ambiguity in hand

features and shading. Conversely, we find that the network infers un-occluded joint positions

easier on RGB information than depth information i.e. visible fingers that aren’t bent. We did

not find any strong evidence that training a network with combining both generated RGB images

and depth images resulted in improved joint estimation.

As expected, overall testing joint errors are worse than training joint errors. However, we found

comparing training and testing errors for similar hand pose images that testing errors are

substantially worst. Still, these testing errors are noticeably better than testing errors of images

with unseen hand poses.

Results from the SynthHands dataset follows similar trends and displays generic results: 1)

Images with occlusions showed relatively worse results compared to those without. 2) Testing

errors are higher than training errors. 3) Known poses have better results compared to unknown

poses in the testing set. Overall, individual examples showed strictly worse results when

compared to results from the BigHand dataset.

8 Discussion and Conclusion

Hand pose estimation has seen significant progress recently with the introduction of deep

learning techniques which is heavily reliant on high quality, comprehensive datasets which

include a wide variety of poses and viewpoints. Development on datasets based on depth

information has seen more progress compared to datasets based on RGB information.

We propose a method to leverage the comprehensive BigHand dataset to generate a similarly

comprehensive dataset using generative adversarial networks (GAN). We design this network

based on the current state-of-the-art in image translation with GANs and train it to translate

depth images into RGB images using our own collected dataset. The network is evaluated on
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multiple parameters and architecture designs based on current GAN research by analysing the

generated images quantitatively and qualitatively. From this we show that our network can

reasonably generated realistic RGB hand images using depth image.

Using the best GAN architecture, we generate a dataset for hand pose estimation from the

BigHand dataset. We evaluate our dataset by training a baseline hand pose estimation network.

The results obtained by our generated RGB dataset are compared with the original depth

dataset and also on synthetically generated RGB hand images from the SynthHands dataset. We

show that our generated RGB dataset yields comparable results to the original depth dataset.

We also show that it yields significantly better results than the synthetically generated RGB

dataset. We hope our contribution to generate a comprehensive RGB dataset from the BigHand

dataset will lead to further research in hand pose estimation with machine learning

methodologies based on RGB images.

9 Future Work

Further refinement and fine tuning is still necessary on our GAN architecture and also the

corresponding training dataset. From Section. 6.3 we see that our GAN has issues when training

on large datasets. We also see that image RGB illumination should be accounted for when

acquiring the training dataset. We propose designing a method for normalising image luminosity

during the preprocessing stages.

During our experiments, we also only consider 1 subject with 1 hand size and skin colour with

only a subset of hand pose orientations. In future experiments, to capture all aspects of the

BigHand dataset we require more subjects with a wider variety of hand sizes. To match the

BigHand dataset specfically, we would require 10 subjects (7 male, 3 female). A wide variety of

skin colours are also necessary when training the hand pose estimator as we would like our model

to be as robust as possible. There is concern that a GAN trained on this many variables could

confuse it and cause it to merge the features together when generating new images. One

possibility to rectify this is to create individual specific GANs for each variable i.e. 1 GAN per

hand size or viewpoint.
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In terms of hand pose estimation, further analysis is required on large datasets. To reduce

training time, we only train our hand pose estimator on only a subset of images within the

BigHand and SynthHands dataset. We would like to carry out our evaluation on ideally the

entire dataset. We would also like to train our datasets using more current state-of-the-art hand

pose estimation networks. It is also important that we carry out the evaluation of our hand pose

estimation models on real hand images, ideally in a real time practical situation. After

successfully generating an RGB hand pose estimation dataset from the BigHand dataset, an

interesting direction would be to look at generating datasets for hand pose estimation on hands

suffering from occlusion (holding an object) or two hands in one image.
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Appendices

A Segmented hand mask

Figure 25: Segmented hand during preprocessing stage of dataset generation using hand classifier

B Baseline GAN

B.1 Network architecture

The network architecture is based off that implemented by the pix2pix software which is adapted

from DCGANs [32].

The base convolutional unit is denoted as Ck where k represents the number of filters. This is a

convolutional layer with a batch norm and ReLU layer applied. Similarly, DCk is a

deconvolutional layer with a batch norm, ReLU and dropout layer applied.
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B.1.1 Generator architecture

The encoder is given as:

C64 − C128 − C256 − C512 − C512 − C512 − C512 − C512

The decoder is given as:

DC512 −DC512 −DC512 −DC512 −DC256 −DC128 −DC64

Differing from earlier, the first convolutional layer, C64 does not include a batch norm layer and

the ReLUs in the decoder are not leaky with α = 0.

B.1.2 Discriminator architecture

The 70× 70 discriminator is given as:

C64 − C128 − C256 − C512

The 286× 286 discriminator is given as:

C64 − C128 − C256 − C512 − C512 − C512

Differing from earlier, the first convolutional layer, C64 does not include a batch norm layer and

the final convolutional layer is applied to a 1 dimensional output with stride = 1

B.1.3 Settings

Convolutional/Deconvolutional Layer

Weights are initialised from a Gaussian distribution with µ = 0 and σ2 = 0.02.

• kernel size = 4 x 4
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• stride = 2

• padding = SAME

Batch Norm

• ε = 0.00001

• momentum = 0.9

Leaky ReLU

• α = 0.00001

Dropout

• keep prob = 0.5

B.2 Optimisation

B.2.1 Settings

ADAM

• learning rate = 0.0002

• β1 = 0.5

• β2 = 0.999

52



B.3 Training Analysis

B.3.1 Training Samples

Figure 26: Examples of generated samples taken at different steps during the training

B.3.2 Epoch 100

This section contains results obtained from training a baseline GAN with default settings using

the initial analysis dataset given in Section. 3.3.1 for 100 epochs.

Figure 27: Examples of generated RGB output from baseline GAN patch size 70x70 with learning

rate of 0.0002 for 100 epochs. Left: Examples generated from training data. Right: Examples

generated from testing data.
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Epoch Train Test

100 185.5800 238.1461

200 162.7022 209.1948

Table 8: Mean squared error of image datasets generated from training and testing images while

varying epoch

B.4 Learning Rate
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Figure 28: Loss graphs from 70x70 Baseline GAN with learning rate of 0.00002. Left: Discrimi-

nator loss against training steps. Right: Generator loss against training steps.

Figure 29: Loss graphs from 70x70 Baseline GAN with learning rate of 0.00002. Left: Moving

probability distribution of D(x|y). Right: Moving probability distribution of D(x|G(x, z)).
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B.4.2 0.002
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Figure 30: Loss graphs from 70x70 Baseline GAN with learning rate of 0.002. Left: Discriminator

loss against training steps. Right: Generator loss against training steps.

Figure 31: Moving probability distributions from 70x70 Baseline GAN with learning rate of

0.002. Left: Moving probability distribution of D(x|y). Right: Moving probability distribution of

D(x|G(x, z)).

55



B.5 Patch Size

B.5.1 32x32
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Figure 32: Loss graphs from 32x32 Baseline GAN with learning rate of 0.0002. Left: Discriminator

loss against training steps. Right: Generator loss against training steps.

Figure 33: Moving probability distributions from 32x32 Baseline GAN with learning rate of

0.0002. Left: Moving probability distribution of D(x|y). Right: Moving probability distribution

of D(x|G(x, z)).
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B.5.2 286x286
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Figure 34: Loss graphs from 286x286 Baseline GAN with learning rate of 0.0002. Left: Discrimi-

nator loss against training steps. Right: Generator loss against training steps.

Figure 35: Moving probability distributions from 286x286 Baseline GAN with learning rate of

0.0002. Left: Moving probability distribution of D(x|y). Right: Moving probability distribution

of D(x|G(x, z)).

57



B.6 Comprehensive Dataset

B.6.1 1025

Figure 36: Training graphs from 70x70 Baseline GAN with learning rate of 0.002 trained on

comprehensive dataset with 1025 training pairs. Top: Discriminator and generator loss graphs.

Bottom: Moving probability distribution of D(x|y) and D(x|G(x, z)).
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C Laplacian Pyramid

C.1 Generated Images

Figure 37: Examples of generated output from 70x70 GAN with Laplacian Pyramid and learning

rate of 0.0002 showing each individual generated output. Right: Images generated from training

samples. Left: Images generated from testing samples.
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C.2 Training Analysis

C.2.1 h1
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Figure 38: Loss graphs from 70x70 Baseline GAN with learning rate of 0.0002 and Laplacian

Pyramid coefficient h1. Left: Discriminator loss against training steps. Right: Generator loss

against training steps.

Figure 39: Moving probability distributions from 70x70 Baseline GAN with learning rate of 0.0002

and Laplacian Pyramid coefficient h1. Left: Moving probability distribution of D(x|y). Right:

Moving probability distribution of D(x|G(x, z)).
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C.2.2 h0
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Figure 40: Loss graphs from 70x70 Baseline GAN with learning rate of 0.0002 and Laplacian

Pyramid coefficient h0. Left: Discriminator loss against training steps. Right: Generator loss

against training steps.

Figure 41: Moving probability distributions from 70x70 Baseline GAN with learning rate of 0.0002

and Laplacian Pyramid coefficient h0. Left: Moving probability distribution of D(x|y). Right:

Moving probability distribution of D(x|G(x, z)).
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D Hand Pose Estimation

The base convolutional unit is denoted as Ci,j,k where i represents the number of filters, j

represents the kernel size, jxj and k represents the size of the max-pooling layer, kxk. This is a

convolutional layer with a and ReLU layer applied.

D.1 Network Architecture

96x96 image network: C32,5,4 − C64,3,2 − C96,3,2

48x48 image network: C32,5,2 − C64,3,2 − C96,3,2

24x24 image network: C32,5,2 − C64,5,1 − C96,3,1

D.1.1 Settings

Convolutional Layer

• stride = 1

• padding = V ALID

Batch Norm

• ε = 0.001

• momentum = 0.99

Dropout

• keep prob = 0.7
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D.2 Optimisation

D.2.1 Settings

ADAM

• learning rate = 0.0001

• β1 = 0.9

• β2 = 0.999
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D.3 Joint positions

Figure 42: Labeled joint positions
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D.4 Training Analysis

Figure 43: Training and testing loss against steps during hand pose estimation network training

with varying datasets.
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D.5 Average Joint Error

BH:Depth BH:GenRGB BH:GenRGB+Depth SynthHands

Index Train Test Train Test Train Test Train Test

0 3.1856 4.9766 3.1438 5.3568 3.4522 5.1662 4.8484 9.2859

1 3.4619 5.3759 3.4084 5.7988 3.7712 5.5974 4.3849 8.8728

2 4.7443 7.1321 4.4513 7.4687 5.0842 7.2848 5.5795 10.7419

3 3.6341 6.2056 3.5423 6.8420 4.0098 6.4598 7.1088 13.4071

4 4.9985 8.7492 4.8992 9.5173 5.5876 9.0568 8.9398 16.0656

5 3.3743 5.2369 3.3056 5.6844 3.7552 5.4723 4.8216 9.8161

6 4.8374 7.4779 4.7598 8.1837 5.4418 7.8317 7.1548 13.5100

7 3.6034 7.1942 3.6230 8.3633 4.3137 7.6562 8.8129 17.2357

8 4.7944 9.7654 4.9152 11.3368 5.7077 10.3893 12.0183 22.0563

9 2.6894 4.3744 2.5113 4.6692 2.9858 4.5397 4.2275 9.3342

10 4.8500 7.7479 4.7070 8.2663 5.3931 8.0494 7.0800 13.9817

11 3.7770 7.5923 3.7543 8.4916 4.0945 7.7842 8.8823 18.5493

12 4.9960 10.8480 4.9528 11.9859 5.4155 11.0401 12.1532 22.115

13 2.6145 4.2109 2.4175 4.4618 2.8443 4.3323 4.3282 9.4203

14 4.2654 7.0591 4.1790 7.6044 4.6950 7.2661 7.0298 15.8854

15 3.7435 8.0162 3.6112 8.8127 4.0630 8.1076 8.7524 19.9073

16 5.0156 11.2106 4.8650 12.2798 5.4082 11.3375 12.6254 23.3169

17 3.0958 4.7183 2.9038 4.9929 3.2884 4.8238 4.8528 9.8134

18 4.2043 6.8165 4.1195 7.3927 4.6122 7.0125 5.6272 13.3674

19 3.7241 7.8695 3.5552 8.7928 4.2401 8.0867 7.3514 17.4156

20 5.0695 10.9620 4.9284 12.2145 5.8051 11.1931 9.8352 22.2017

Table 9: Average joint hand pose estimation errors for varying datasets on individual joint indices

as given in Appendix. D.3.
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