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3D Finger CAPE: Clicking Action and Position Estimation
under Self-Occlusions in Egocentric Viewpoint

Youngkyoon Jang, Seung-Tak Noh, Hyung Jin Chang, Tae-Kyun Kim, Member, IEEE and Woontack Woo, Member, IEEE

Fig. 1. Our system, called 3D Finger CAPE, supports both 3D finger clicking action detection and clicked position estimation at the
same time. In egocentric viewpoint, self-occlusion is caused when a user interacts with VR objects. The proposed spatio-temporal
forest estimates 3D clicking positions (purple cube) when the pre-learnt action has occurred (yellow cube) on the screen. 3D Finger
CAPE could be applied to the selection process in an arm reachable AR/VR space.

Abstract— In this paper we present a novel framework for simultaneous detection of click action and estimation of occluded fingertip
positions from egocentric viewed single-depth image sequences. For the detection and estimation, a novel probabilistic inference
based on knowledge priors of clicking motion and clicked position is presented. Based on the detection and estimation results,
we were able to achieve a fine resolution level of a bare hand-based interaction with virtual objects in egocentric viewpoint. Our
contributions include: (i) a rotation and translation invariant finger clicking action and position estimation using the combination of 2D
image-based fingertip detection with 3D hand posture estimation in egocentric viewpoint. (ii) a novel spatio-temporal random forest,
which performs the detection and estimation efficiently in a single framework. We also present (iii) a selection process utilizing the
proposed clicking action detection and position estimation in an arm reachable AR/VR space, which does not require any additional
device. Experimental results show that the proposed method delivers promising performance under frequent self-occlusions in the
process of selecting objects in AR/VR space whilst wearing an egocentric-depth camera-attached HMD.

Index Terms—Hand tracking, spatio-temporal forest, selection, augmented reality, computer vision, self-occlusion, clicking action
detection, fingertip position estimation
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1 INTRODUCTION

Real-time 3D finger clicking action detection and clicked position es-
timation (3D Finger CAPE) in egocentric view whilst allowing free
movement of head-mounted display (HMD) promises several possi-
bilities for augmented reality (AR) and virtual reality (VR) interaction
scenarios. 3D Finger CAPE aims to infer an occluded fingertip posi-
tion as well as clicking action, based on joint points or preliminarily
detected fingertip points, from a single-depth image. In AR/VR, re-
search on bare hand tracking and gesture recognition has produced
many compelling interaction scenarios, notably multi-touch interac-
tion in mid-air [11], gesture-based input in a wearable AR environment
[7, 10], VR scene navigation based on hand tracking [30], and direct
object-touch interaction in VR environment by wearing HMD with
hand posture estimating sensor (e.g. Leap Motion [1]) attached in the
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front. However, much of this work was not motivated toward the more
sophisticated movements of fingers, especially occluded fingertips. Al-
though there have been studies about hand posture recognition in the
field of computer vision, the most recent methods [8, 27, 12, 25, 36]
cannot be repurposed directly to 3D Finger CAPE, due to the follow-
ing challenges of the task:

Self-occlusion in egocentric viewpoint. Self-occlusions are a com-
mon problem in general hand pose estimation because of the sophisti-
cated articulations of the hand. Self-occlusions in egocentric viewpoint
in particular, however, characteristically have more challenges, as vi-
sual information regarding fingertip position is hidden by the back of
the hand, as shown in Fig. 1. Additionally, some data from the finger
are also hidden by the other fingers when clicking action occurs. The
mentioned problems are frequently observed when users are allowed
to move their heads freely and utilize multiple fingers to select objects
in a wearable AR/VR environment.

Variances of clicking motion. Having no restrictions on a user’s fin-
ger movements and clicking actions supports a more natural human
computer interaction, but leads to other challenges, even for the simple
motion of finger bending. More specifically, the large variety of pos-
sible movements makes it difficult for the system to decide the target
motion. There might be several different types of clicking motion be-
cause there are 4 degrees-of-freedom (DOF) for a finger. For instance,
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especially with clicking action, a user can tap by using only one joint,
bridging finger and palm, or using all joints, utilizing the full 4 DOF.
The addressed problems cannot be easily solved (or generalized) by
taking a heuristic algorithm because they are caused by the different
combinations of the utilized joints, joint positions, speeds, and axes
related to the fingers of different users.

Variances of natural posture. Having no restrictions on a user’s pos-
ture guarantees more comfortable user interaction, but leads to addi-
tional challenges, such as variance of motion. More specifically, in
addition to the complexity of 4 DOF of a finger, the complexity of 6
DOF (rotation and translation) of the palm of the hand is added to be
invariant to the posture of the hand. Nevertheless, it is better to not
force restrictions on users in order to resolve the possible problems
of self-occlusions, variances of motion, or posture. By enforcing strict
rules (such as having all fingers be shown at all times or having the
speed of the clicking motion be consistent) on a user makes the user
fatigued and the interaction techniques become unnatural.

Addressing the above challenges, a novel spatio-temporal (ST) for-
est for 3D Finger CAPE is proposed. The ST forest is designed to take
benefits from utilizing both spatial and temporal features without any
performance degradation. The ST forest not only captures temporal
features (e.g. velocity and acceleration), but also utilizes spatial fea-
tures (e.g. offset between joints) to both detect action and accurately
estimate the position of the fingertip with high stability in egocentric
viewpoint. For that, the ST forest learns from the sequence of points
for fingertips and hand joints, which are detected by using the conven-
tional methods [17, 25]. Even though both detected fingertip and joint
data points based on [17, 25] are somewhat noisy due to fast motions
of the hand and some fingertips being hidden, the proposed ST forest
is able to define the best split function utilizing the most important
joints, axes, and offset times which are necessary to consider in order
to detect the clicking actions and estimate positions at each split node.

In addition, based on the results of 3D Finger CAPE testing, we
both quantitatively and qualitatively experimented the proposed tech-
nology in a selection process of VR. For verifying its contribution to
the AR/VR community, we made the challenging environment by re-
ferring to the prior work [4, 5], which is based on the combinations of
sparse, dense, static, and dynamic objects. As far as we are aware, the
proposed method is the first framework utilizing spatio-temporal infor-
mation in a single random forest framework and utilizing its results to
select AR/VR objects in egocentric viewpoint, causing self-occlusions
and variances of motion. The main contributions are threefold:

(1) Invariant to the rotation and translation of hand: Based on the
combination of 2D fingertip detection and 3D hand posture estimation,
the clicking actions and occluded fingertip positions are detectable re-
gardless of the positioning of the hand, which is a large improvement
over the conventional methods based on the static gestures that require
strict front-facing positioning in order for detection to be possible.

(2) Spatio-temporal information learning: The proposed ST forest
utilizes both temporal and spatial information to find the best split
function at every split node, efficiently handling both action detection
and 3D position estimation in a single tree, whilst keeping high detec-
tion and estimation accuracies independent of the variance of motion.
(3) Robust bare hand-based selection under self-occlusions: Con-
sidering the issue of occluded fingertips in an AR/VR selection pro-
cess, we suggest a novel approach for natural user interface (NUI)
research in egocentric viewpoint, based on the results of the forest.
Using the proposed 3D Finger CAPE especially helps to select ob-
jects in wearable AR/VR interfaces and provides better performance
in accuracy, compared to the conventional methods [3, 20, 25].

2 RELATED WORK

Hand-based interaction in AR. As more AR devices are being devel-
oped, demands for natural hand-based interactions in the AR environ-
ment, such as fingertip positioning, clicking action or hand gesture,
are increasing. There have been some studies done using a device’s
built-in touch-panel [15], wrist [13] and finger [29]-worn sensors, and
optical markers [28]. However, that research cannot be redirected to-
ward an interaction scenario in AR. In AR, especially for user-3D
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graphic interaction scenarios, the 3D fingertip position in AR space
has to be estimated independently of such devices or sensors. Earlier
approaches for hand-based interactions in the AR environment are di-
versified, such as fingertip detection [17, 33] and silhouette segmenta-
tion of the hand [31]. Among the diversity, utilizing fingertip position
is one of the more interesting and more recent popularly researched
approaches because further possibilities still remain, such as gesture-
based interaction based on the fingertips [13, 6] and intuitive selection
and manipulation for AR objects [28].

The data, which can be gathered only from the visual information
presented, would be of the following two types:

Distance based fingertip detection: Bhuyan et al. [3] utilized a fin-
gertip position detector for sign language recognition in human-robot
interaction. The method depends on the distance between the center
position of the palm and contour points of the hand. The most distant
points are selected as fingertips, similar to other approaches [20, 19].
The basic idea of the 2D fingertip detection methods is that it is con-
ducted by selecting the geodesic maxima. It is also extended to the
case of 3D depth images to detect fingertips [16]. The previous works,
however, did not consider the egocentric viewpoint. As a result, those
methods might fail to detect occluded fingertips.

3D hand posture estimation-based fingertip detection: Recently
presented 3D hand posture estimation methods [8, 27, 12, 25, 35, 32]
show good performances on average. Even though a finger is occluded,
[12, 25] especially could solve the global optimization problem by de-
pending on the rest of the hand, besides the occluded finger. However,
the global optimization causes their obtuse tracking of fast motion, es-
pecially for the suddenly occluded fingertip. Very recent approaches
[35, 32] for 3D hand posture estimation are fast and can handle slight
occlusions, but our challenge of complete occlusions from an egocen-
tric viewpoint are too difficult for them. Furthermore, they all show
some difficulties at the finely detailed level, when sophisticated finger
movement occurs. Hence, the sophisticated movement of fingertips,
such as clicking actions in egocentric viewpoint, might not be esti-
mated utilizing these methods.

Spatio-temporal forests for action detection and regression.
There have been several approaches to analyze spatio-temporal data
with a random forest framework. In order to estimate spatially and
temporally varying relational data, spatio-temporal relational probabil-
ity trees were proposed [23, 34] and applied to understanding weather
processes [24]. The relational feature-based tree building is not rigor-
ous enough for visual data analysis. Yao et.al. [37] extended 2D object
detecting Hough forests [9] to multi-class action detection in spatio-
temporal domain. However, the method requires many dense spatio-
temporal local features of relatively long video sequences for robust
Hough voting, so on-line detection is impractical. In [26] a simultane-
ous action recognition and localization method based on a vocabulary
forest was proposed. It works on data from an uncontrolled environ-
ment, but this method also requires a large number of local features,
represented in many vocabulary trees. Yu et.al. [38, 39, 40] proposed
a random forest based voting method for action detection and search.
Although local feature matching becomes much faster, its coarse-to-
fine sub-volume search for action detection requires full sequences for
an off-line fashion that is not suitable for on-line detection, especially
for AR applications.

In our application it is necessary to have a unified framework that
can process sequential data for real-time action detection and do posi-
tion estimation, simultaneously. To the best of our knowledge, there is
no such method that can fulfill all the requirements.

3 METHODOLOGY
3.1 Problem Formulation

In this paper, the 3D Finger CAPE is formulated, as shown in Fig. 2.
In order to utilize spatio-temporal information, we assume that a se-
quence of frames V is given as an input. From each image included in
the sequence 3D finger joint locations P[5 and 3D fingertip loca-
tions s[4 (Which are represented as feature vectors) are extracted by
a publicly available 3D pose estimator R [25] and a modified 3D fin-
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Fig. 2. Graphical representation of the proposed framework (gray nodes:
input features).

gertip detector Fg based on depth image (described in Sec. 3.2.1). The
3D fingertip detector Fg is a random forest which is using a fingertip
shape g as features. By selectively combining those feature vectors at
every frame, the spatio-temporal (ST) feature vectors x are composed
as input vectors for the proposed framework. Our approach simultane-
ously learns clicking action a and fingertip position a’. The proposed
ST forest Fy is trained to separately capture the spatial or temporal
features at each node. After passing the ST feature vectors x through
the ST forest Fy, both action status I and 3D fingertip position A’ are
estimated by averaging the results stored at the leaf nodes of each tree.

3.2 Spatio-Temporal Feature

The depth image-based fingertip detection method Fg using random
forest generally provides fast and robust fingertip detection results.
However, it easily fails to detect the fingertips when the fingertips are
occluded by the back of the hand or the other fingers. Alternatively,
the state-of-the-art 3D hand posture estimator R provides reasonable
posture estimation performance, even if some parts of the fingers are
occluded. However, the estimator R cannot finely estimate location of
every joint as a real hand shape, even in the case where the fingers
are all stretched out or finger movements are relatively slow. Thus, we
propose to utilize a combination of the two different features in a depth
image-based 3D fingertip detector and a 3D hand posture estimator at
the same time. Based on a depth image, we extract 2D positions first,
then, by utilizing a 3D depth value in the position, we will thus be able
to determine the 3D position of the extracted fingertips. The proposed
method captures sophisticated movements from the 2D image-based
fingertip data s and the general stable posture from the 3D hand pos-
ture data .

3.2.1

In order to take the benefits of the proven fingertip detection methods,
we reimplemented [3, 20]’s method. Based on the binary classifica-
tion using RF structure, it provides fast fingertip detection results from
various viewpoints (mainly for the shown fingertips). For configuring
a scale-invariant fingertip shape feature, we first calculate the differ-
entiated values for configuring scale-invariant fingertip shape features
when there is a given contour based on Eq. 1, as shown in Fig. 4.

3D Fingertip Detection (based on Depth Image)

Ady=d;—di_y = f(c1) = flei-1), (M

where [ = {1,...,w}. w is a number of contour points, as shown in Fig.
4(a). c; represents the 2D position of the /-th contour point in an image
and d; represents the distance between the contour point ¢; and palm

center point p, described as d; = f(c;) = \/(Px - Clx)z +(py— cly)z.
Ad of Fig. 4(b) is calculated by Eq. 1. We set Ad; to zero. A sliding
window is determined by considering a current position of a contour
point [, where s, = [ — offset and s, = [ 4 offset shown in Fig.4(b). We
set the offset for the sliding window to 7, experimentally.

The fingertip shape feature vector Y = Ad|(_offset):(1+ offser)] 18 in-

variant to the scale changes, as shown in Fig. 4(b). With the feature

(®)

Fig. 4. Fingertips detection concept based on a depth image as a 2D

gray image: (a) fingertip detection concept
along the contour points.

(b) differentiation graph

configuration method, based on the standard RF classification model,
we learn the fingertip priors g of Fig. 2, (represented by Y in this sub-
section) labelled as true fingertip, which are extracted from the posi-
tion of the fingertip. Similarly to the two pixel test in [18], the test
function compares the values specified by the two randomly chosen
elements (e.g. Y(a) and Y(f3), where Y(-) indicates an element of the
feature vector Y), so that it splits a feature dataset Dy of a current split
node into two subsets D} and DI, s.t. D! = {Y(a) — Y(B) < 7,} and
D! = D;\D!. With the trained classifier Fs, we initially detect the can-
didate points of the fingertips by selecting the maximum probability
between true and false choices. Then we find the center position of
each fingertip, from clustering the candidate points into five groups of
points, as s; shown in Fig. 3(a).

3.2.2 3D Hand Posture Estimation

In this paper, we utilize the state-of-the-art 3D hand posture estima-
tor [25]. The estimator is based on physics simulation, specifically
magnetic properties, to track hand posture. If the joints are close to
the depth value, then the joints stick to the depth points based on the
physics property, similar to the behavior of magnets. Thus, it shows
generally stable overall posture estimation performance. Based on the
estimator, we extract hand joints ®g.50], Which is a set of 3D vectors,
as 3D joints configuring 3D hand posture. Moreover, the estimator pro-
vides a basis vector for each joint. Thus, in order to make scale and
rotation-invariant ST input features for learning and testing the pro-
posed ST forest, all 3D vectors included in ¢ and s are transformed to
the local coordinates of the base joint ®( of hand posture as Eq. 2.

-1
— R T
=M lVg = (OT 1) Vg, (2)

where v; and v, are local and global coordinates, respectively, and
M~ is the inverse matrix of the base joint ®y’s transformation matrix.

3.2.3 Spatio-temporal Feature Configuration

By selectively combining the elements from those feature vectors &
and s at every frame, spatial feature vector x is composed, as Eq. 3.
In addition, by gathering the x during the predefined time (see Sec.
6 for a detailed discussion), spatio-temporal input feature vector X =
{xit} is composed and the vector is used for the remaining part of the
framework, as shown in Fig. 2.

[of
Xip = 5; =
t

where i and ¢ represent finger and frame(time(ms)) indices, respec-
tively. ¢ is in the range of [1 : n]. For instance, if the specified finger
index is 3, the ®; is composed of {®P3, P4, P ¢} among Pg.29); aS
shown in Fig. 3(a).
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Fig. 3. The proposed clicking action detection & fingertip position estimation model:

(b)

(a) an example of configuring the ST feature based on the

detected fingertips and the estimated joints of the hand (b) examples of the process of the forest.

3.3 Spatio-temporal Forest

The aim of a ST forest is to detect clicking action and estimate finger-
tip position in a classifier, even if the fingertip is occluded. A ST forest
is an ensemble of randomized binary decision trees, containing two
types of nodes: split and leaf. As the ST forest is inspired by Hough
forests [9, 37], split nodes perform a task-specific test function, which
is determined by a randomly chosen parameter value #={0: action de-
tection, 1: position estimation} representing a task type, on input data
and makes the decision to route them either left or right. Leaf nodes
are terminating nodes representing a status of clicking action, and store
the probability of the status and store votes for the location of fingertip
in 3D space.

3.3.1

Each ST tree in the ST forest is grown by recursively splitting and
passing the current training data to two child nodes. At each node,
we randomly generate splitting candidates, ¥ = {(fy, Ty)}, consisting
of a function fy, and threshold 7y, which splits the input data D, into
two subsets D! and D", s.t. D! = {I|fy(V) < 1y} and D" = D\D'. A
function f for a splitting candidate is defined as:

Spatio-temporal Forest Learning

Pos ., (x)?n—p)) ) ifm=1.
F (V)= Vel (x5, p)7XZn,q)) : itm=2., ()

. \ \ ; _
Accj,. (xi<nip),xi(niq>,xi(nir)> , ifm=3.

where Pos(-) j,Vel(-) ; and Acc(-) ; are the functions returning the posi-
tion on the spec1ﬁed axis, and calculating the velocity and acceleration
vector using the values on the specified axis of the jth element of the
reconfigured spatial feature vectors x;s, respectively. xl‘; is a spatial
feature vector containing ith finger data at the last frame » of the video
V (described in Sec. 3.2.3). p, ¢ and r are random offsets in terms of
preceding time (ms) from the last frame of a sequence. The function
type m is determined based on the randomly chosen task type /4. For
instance, if & is 0, meaning action detection task, m is randomly cho-
sen between 2 and 3, which is similar to the random channel selection
among multi-feature channels of Hough forests [9, 37]. Otherwise, if
h is 1, meaning position estimation task, m is determined by 1.

As mentioned above, in contrast with the standard RF, different
types of the splitting candidate I[/; are stored depending on the speci-
fied task & at each split node of the ST tree. For instance, if 4 is 0, the
splitting candidate giving the largest information gain is stored. Oth-
erwise, if & is 1, the splitting candidate giving the smallest regression
uncertainty is stored. The information gain is defined as:

IG(D) = H(D) — ¢ ‘H(Dk) )
ke{l,r} ‘Dl
where H(+) is Shannon’s Entropy as:
Y. p(u)log(p(u)), (6)

ue{T F}

In terms of the regression uncertainty, we simply define it based on
the variance of the fingertip position vectors in the local coordinates,
as follows:

D],

RU(D) = (sz) )

ke{l,r} ‘Dl

where X% is the sample covariance matrix of the set of the fingertip
position vectors and tr(-) is the trace function. The vectors indicate
the offsets from the base joint position to the fingertip position, both
transformed into the local coordinates based on Eq. 2. This process is
then repeated recursively on each split of the data, D' and D", until it
meets the stopping criteria. The growing process of the tree stops when
the sample number of the dataset is less than the predefined minimum
number (experimentally set as 20) or the depth of the tree exceeds the
predefined value (experimentally set as 10).

3.3.2 Testing

As shown in Fig. 3(b), the proposed ST trees find the optimal combina-
tions of parameters to find the best split function at each split node by
randomly selecting the value of each parameter in the learning phase,
described in Sec. 3.3.1. Moreover, at the leaf node of a ST tree in the
forest, clicking action probability and offset vector located in the local
coordinates of the base joint of the hand are stored at the training stage.
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Fig. 5. Examples of the modified geodesic maxima-based detection (red
dots) [3, 20] and the 3D hand posture estimation (skeletal model) [25]
for the various hand posture cases.

Thus, using the given ST feature X, based on the Eq. 8, the probabil-
ity of clicking action status and the fingertip position offset in local
coordinates are retrieved together from the proposed ST forest.

arg max
T, Fel {xyz}eN

P(Yr,Zn|X), ®)

where X = {x; 1., }. Yr is the probability of a status of clicking action
I, where I' = {True, False}. Z v 1s the local offset position x, y, z of the
estimated fingertip when clicking action has occurred. The probabil-
ity of clicking action Y1 and the fingertip position Z,, are calculated
by averaging the values stored at a leaf node of the trees in ST for-
est. The local positions of the fingertip are converted into the global
coordinates, which depend on the current posture of the hand.

4 [IMPLEMENTATION
4.1 Features and 3D Finger CAPE Results

In this paper, we reimplemented the geodesic maxima selection-based
fingertip detector [3, 20], as shown in Fig. 5. For making the stable
posture recognition configuring the dataset, we made use of the pub-
licly available 3D hand posture estimator [25], as shown in Fig. 5.

4.2 VR Environment and Scenarios for Experiments

For experiencing a more immersive VR environment, a user is re-
quested to wear a HMD, attached by a camera, as shown in Fig. 1.
We use Oculus Rift (Development Kit) [21] as a HMD and Intel’s Cre-
ative Interactive Gesture Camera [25] as a depth camera. To square
the viewing angle of the HMD with the angle of the camera, we used
109 degree, which is the default viewing angle value in vertical axis
of HMD. Moreover, in order to represent the possible input limitation
range of the viewing angle (72 x 58 degree) of the camera, we over-
laid translucent yellow guidelines of the range onto the VR viewer, as
shown in Fig. 7. The VR environment, which is shown in Fig. 7, is
implemented by Unity Engine [2]. The metric unit in the VR environ-
ment is homogenized as a mm.

4.2.1

As shown in Fig. 6, a virtual camera, mapped with the real camera,
is placed at the center of the origin in the virtual environment. In the
environment, we applied the values of the rotation parameters, which
are extracted from the built-in sensors of the HMD, to match the VR
viewing direction with the head’s direction, led by the user’s head
movements. As shown in Fig. 6, the virtual objects are enclosed by
the 1000 x 1000 x 500 cube-shaped space so that the moving objects
would be blocked by the walls of the space. The virtual objects are ran-
domly positioned in the range of [200 : 500] mm along z-axis, which
is the working range of the [25]’s solution. Moreover, on z-axis basis,

Four Different Scenarios of VR environment

Front-view

Fig. 7. Example of experimental scenarios of sparse and dense object
selections in static scene: (a) objects are spaced farther apart in the
sparse environment (b) objects are placed closer together in the dense
environment. In dynamic scene, the objects move in the VR environ-
ment.

the objects are also randomly distributed within the range of [—75:75]
degrees on each x and y axes.

Based on the above discussed VR environment setting, we im-
plemented four different scenarios by referring to the previous work
[4, 5], which are configured by the factors of arrangement and move-
ment. The arrangement factors consist of sparse and dense, as shown
in Fig. 7. The movement factors are categorized as static and dynamic.
In the static scenario, the sparse or dense objects stay in their initial
position during the task. In the sparse and dynamic scenario, each ob-
ject has its own initial velocity and travels with uniform motion, but
changes its direction periodically so as to prevent it from going out-
side of the arm reachable area. In the dense and dynamic scenario, all
objects are arranged in a grid, and rotating around the grid center axis
at approximately 30 degree/second. The target object is colored as a
purple cube. Moreover, as shown in Fig. 7, we made the objects in the
scenarios all small-sized (e.g. fingertip size) so that we can prove its
usefulness for elaborate interactions, such as fine point selection.

5 EVALUATION

Experiments were performed to investigate the feasibility of the pro-
posed approach in both quantitative (using our newly gathered hand
dataset) and qualitative manners (through user tests in VR environ-
ment). Especially for the user test, we migrate the selection mecha-
nism utilizing the 3D Finger CAPE into VR environment to show its
practical use. In the user test, we specifically focus on the index finger
for both clicking action and 3D occluded fingertip position estimation.
As we mentioned above, the 3D Finger CAPE could be used for direct
interactions in AR environment, where the AR objects are registered
in the environment and a user can naturally approach the AR objects,
so making the space arm reachable.
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5.1 The 3D Finger CAPE Evaluation Dataset

Existing public hand posture and gesture datasets are inadequate to
meet the main objectives of the proposed approach. Whilst bench-
marks such as [22, 14] utilize the dataset which contains easily dis-
criminable hand shapes so that they can classify the pre-determined
type of gesture (rather than the natural movement of the hand or fin-
gers) from frontal view camera, our framework focuses on the more
sophisticated movements of fingers (e.g. bending fingers as well as the
3D translation and 3D rotation of the hand) captured from egocentric
view camera. Moreover, the benchmarks utilize the dataset which are
captured over a clean background. However, our framework focuses
on the natural hand images captured over a natural background.

Dataset. To this end, we collected the 3D Finger CAPE dataset for
training and testing the proposed ST forest by using Intel’s Creative In-
teractive Gesture Camera [25]. However, there is still an issue of how
to make a ground truth data for the occluded fingertip position when
there is no information due to the loss of the depth values of the oc-
cluded fingertip. To overcome that information loss, we propose using
a paired camera, which can get synchronized frames captured from
the frontal and egocentric viewpoints. By utilizing the frontal view-
point camera, we could capture the depth information of the fingertip,
which is occluded in the egocentric viewpoint.

For training, we have collected 10 sequences for the index finger
from 3 different subjects with varying hand sizes by asking each sub-
ject to make various motions of clicking action utilizing different joints
of each finger. Each sequence was then sampled by manually picking
the last frame of the clicking action as a true action, and adjusting the
pre-estimated fingertip position based on [25] in 3D space as a clicking
position. When we manually picked a frame, a set of preceding frames
is converted into a spatio-temporal feature of a clicking action. Each
sequence, comprised of 2,000 frames, has at least 25 clicking actions.
The dataset, including only positive actions, contains 296 actions of
ground truth annotated training pairs of clicking action and fingertip
position. Negative actions are randomly sampled by selecting frames
from the remaining frames of the training videos which were not la-
belled as true samples, to form the complete dataset.

Because the finger’s movements, especially the more sophisticated
clicking actions, are not easily discriminable, not only the manually
picked frame, but also the frames nearest to the labelled frame and po-
sitions in the frames, could also be true clicking actions and clicked
positions. Moreover, because we manually labelled the ground truth,
we cannot assure that it is the precise ground truth. Hence, in order to
make the ground truth more practical, we applied a perturbation factor
by applying 5% of the number of frame 7, configuring the ST feature.
To establish this, we add an additional +5% of the configured ST fea-
ture frames, and label them as another last frame of the true clicking
action and clicked position in the frame. By applying the perturbation
factor, we were able to collect five times the number of true click-
ing actions and fingertip positions for the final dataset, which count as
2.9K, including each 1.4K positive and negative samples, for training.

For testing, we have collected 10 sequences (306 actions in total)
, which are different from the training sequences, from the 3 differ-
ent subjects, capturing different clicking motions utilizing different
joints and occluded fingertip positions caused by natural hand and
head movements causing scale and viewpoint changes. Furthermore,
as Melax’s method [25] requires initialization (frontal view of an open
hand), in order to do a fair comparison, both the training and testing
sequences start in this way.

5.2 Experimental Results using Dataset

Number of tree selection. First, before checking the feasibility of our
technical contributions as experiments, we tested to find the satura-
tion point of the accuracy by trying a different number of trees in the
ST forest so that we can get an optimal performance with a minimal
number of trees. As shown in Fig. 8, we confirm that the Equal Er-
ror Rates (EER) of clicking action detection are saturated when the
number of trees exceeds 11. Thus, we set 11 as the adequate num-
ber of trees to configure a forest for the rest of the experiments in
this paper. In the stage of growing trees, we considered the following
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Fig. 8. Experimental results showing the Equal Error Rate (EER) of ac-
tion detection for two different cases (see text).

variables, which are an ‘axis’, an ‘index of element’ of reconfigured
spatial feature vector, and preceding ‘time offsets’ depending on the
specified ‘frame number’, which is determined by the ‘task type’ (see
Sec. 3.3.1). Among them, in order to simplify the splitting criteria, we
only considered x and y axes for the variable ‘axis’ because experi-
ments confirmed that the x axis only minimally affects optimal split
function, while it can sometimes cause degradation of accuracy due to
the confusion caused by a larger number of variables. For each param-
eter, we tested 15 times to find an optimal value of each parameter by
randomly changing the value of it, so that the ST tree learns optimal
split function.

For the clicking action detection, we determined the true action by
picking the local maxima among the candidates of clicking action de-
tection results, which are within the perturbation range that we have
already applied for the making of the training dataset. Because the
ST forest gives the probability result for each clicking action, we can
easily pick the frame having the highest probability among the val-
ues within the perturbation range. As shown in Fig. 8, the EER of
the proposed 3D Finger CAPE, picking the local maxima within the
perturbation range, are lower than the general case in which it counts
the success of clicking action detection only when the action is de-
tected at the exact same frame with the labelled frame of the testing
sequence. In our test dataset, experimentally, +5% perturbation range
is converted into £2 frames.

For 3D fingertip position estimation, we determined the fingertip
position by picking the highest value of voting, which is accumulated
by the results of each tree. Because the leaf node of each tree of the
ST forest stores the offset vector located in the local coordinates of
the base joint of the hand, the quantized offset vector position is voted
by every tree of the forest. Then, by picking the cell having the high-
est voting value, representing an offset vector, we estimated the 3D
fingertip position. As a result, the measured distance errors between
the ground truth values of the dataset and the 3D occluded finger-
tip position estimations based on the three different methods— depth
image-based fingertip detection [3, 20], 3D hand posture estimation
[25] and the proposed ST forest— were 27.02mm (excluding 77.09%
detection failure cases), 35.03mm and 25.55mm, respectively. Experi-
mentally, the average processing time of the proposed framework was
32.63 ms (30.65 FPS) in our experimental environment, which was an
Intel Core-i7 3770 CPU processor with 8GB of DRAM.

We analyze the quantitative results of the 3D fingertip position es-
timation later in Sec. 5.3 because we confirmed that there is a consis-
tency between the results gathered based on the dataset and the results
gathered from the user test, as well as to avoid redundant descriptions.
Expanding to multiple fingers. As a second experiment, we con-
firmed the expandability of the proposed ST forest. Even though the
addressed challenges, including self-occlusion, variance of motion and
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Fig. 9. ROC curves of clicking action classification for five fingers by the
proposed ST forest.

variance of comfortable posture depending on each individual, are fre-
quently observable in the case of utilizing the index finger, the case
utilizing multiple fingers obviously makes a more severe challenge,
especially in terms of self-occlusion. For instance, when a user bends
their ring finger in egocentric viewpoint with a comfortable hand pos-
ture, the finger could be occluded by other fingers as well as by the
back of the hand. Thus, we additionally collected 10 sequences-per-
finger (training: 50 sequences and 16.2K, testing: 1.6K actions in to-
tal). The collected 3D Finger CAPE dataset includes those challenges,
especially for the middle and ring fingers and the pinky. Based on the
proposed ST forest with different finger index i (see Sec. 3.2.3), we
tested to check the feasibility of using multiple fingers.

As shown in Fig. 9, the Receiver Operating Characteristic (ROC)
curves show that the ST forest-based clicking action detection works
accurately for the use of multiple fingers. The reason why the method
still shows the reasonable result is that the depth image-based fingertip
detection rarely fails to detect fingertips when the finger is bent where
3D posture estimation fails. Thus, as the ST forest has been optimized
for classification during learning, the ST input features, by finding the
optimal combinations of variables, achieve excellent accuracy. For in-
stance, when 3D hand posture data is unreliable, it relies more on the
depth image-based fingertip data, which is independent of the 3D pos-
ture data. The clicking action detection accuracies of ST forest utiliz-
ing thumb, index finger, middle finger, ring finger, and pinky show
89.80%, 96.90%, 95.68%, 92.82% and 94.37%, respectively.

5.3 Experimental Results via User Tests

In addition to the experiments based on the dataset, to test the feasi-
bility of the proposed 3D Finger CAPE in VR environment, we did a
user test for a selection process in VR environment. The experimental
environment of the user test is the same as our implementation setting
of the four interaction scenarios (see Sec. 4).

Subjects. We ran 12 (male) participants with ages ranging from 22
to 39 with a mean age of 29, four of them office workers and eight
graduate students. All participants are aware of the basic knowledge
of AR/VR, and two-thirds of them have an experience in using the
AR/VR application. Our user study took approximately 45 minutes-
per-person, including the training, testing and verbal interview based
on the completed post-questionnaire.

Experimental task. Before starting the experimental task, participants
were supervised in training session for about 10 minutes to adapt to
the VR environment. Moreover, they were asked to do natural clicking
motions with natural hand posture, especially using their index finger
in the four scenarios. The selection results, which were detected in
the training session, were excluded from the evaluation and analysis.
In advance, the proctor calibrated a user’s hand size and changed the
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Table 1. Post-Questionnaire

Q#-1 | This method is easy to use.
Q#-2 | This method is a natural way to select the virtual object.
Q#-3 | I want to use this method again in the future.

parameters to allow the 3D hand posture estimator [25] to work prop-
erly. After that, the proctor demonstrated an initialization process for
the 3D hand posture estimator, to prepare for the case where the esti-
mator failed to track a user’s hand, so that the user can reinitialize the
estimator by himself in a testing session.

After the training session, participants were asked to select target
objects (purple cube) in the four scenarios, using their natural clicking
motion. When the action is detected, based on the 3D Finger CAPE,
the estimated fingertip position is retrieved simultaneously. Based on
the distance between the estimated position and the target object, the
system checks if the target object is selected or not. When the distance
is closer than 20mm, the system determines that the virtual object is
selected. Moreover, as a visual feedback of the selection result, if the
target is selected, the color and size of the object changes.
Experimental design and procedure. There are two types for an eval-
uation session. The aim of the first session is to compare the per-
formances of the 3D fingertip position estimation triggered by three
different methods, which are: depth image-based detection, 3D hand
posture estimation-based detection, and 3D Finger CAPE, in a quan-
titative manner, as shown in Fig. 10. The aim of the second session is
to analyze the characteristics of each method in a qualitative manner.
Participants were asked to take a 1 minute break between the scenarios
for mitigating fatigue. During the experiments, the behavior of partic-
ipants and the values gathered from the HMD and camera were also
recorded for post-analysis.

We used a within-methods design in the first session. In this ses-
sion, participants were asked to perform the four scenarios described
in Sec. 4.2. In the first session of the evaluation, all three methods were
activated internally to check the distance between the target and the es-
timated position. If the target object is selected by at least one method
among the three in the scenario, the stage is finished and the next stage
showing another random arrangement of virtual objects starts. Each
scenario has 18 stages. The order of the scenarios were randomized
for counterbalance.

We conducted the second session for examining the difference of
the user experiences, based on the three different methods. Based on a
within-subjects design, participants were also asked to select the target
object in the scenario composed of dense and static objects (scenario#-
3), as shown in Fig. 7(b). However, at each trial, only one individual
method is activated and the estimated fingertip position is visualized
as clicking action is detected. Each trial for showing an individual
method consists of 10 stages, and only the position of the target ob-
ject is changed at every stage so that the participants only focus on
the characteristics of the different methods. After the session, post-
questionnaire utilizing 7 Likert scale was given (see Table 1) to get the
feedback from the participants. After completing the session for test-
ing the three different methods, participants were asked to rank their
preference of each method.
3D Fingertip Position Estimation and Statistical Analysis. Based
on the data recorded from the first session, we transformed the esti-
mated 3D fingertip positions in the global coordinates into the posi-
tions in the camera coordinates. In the first session, for each clicking
action, a 2 or 3-tuple including three dimensional vector is stored, be-
cause all three methods are activated at the same time. When depth
image-based fingertip detection fails, only 2-tuple could be stored.
Based on the gathered set of tuples through the four scenarios of the
sessions with all the participants, we counted up the success and failure
cases of each method for further analysis. Outliers, recorded because
of the false action detection, were rejected by checking if the distance
of the estimated point was farther than the predefined threshold. Ex-
perimentally, we set the threshold to 80 mm.

As shown in Fig. 10, based on the recorded data, we plotted the
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Fig. 10. The results of the distance errors between the target position (0,0,0) coordinates and the estimated fingertip position, based on GM-based
(red dots) [3, 20], HPE-based (green dots) [25], and the 3D Finger CAPE (blue dots), plotted in the camera coordinates gathered in the four different
scenarios, composed of: (a) sparse and static objects (scenario#-1) (b) sparse and dynamic objects (scenario#-2) (c) dense and static objects

(scenario#-3) (d) dense and dynamic objects (scenario#-4).

distance error points resulting from the three different methods (red
points: Geodesic Maxima (GM)-based method (also represented as
depth image-based method in this paper) [3, 20], green points: 3D
Hand Posture Estimation (HPE)-based method [25], and blue points:
the 3D Finger CAPE). When fingertips are visible during the click-
ing actions, GM-based method provides the most accurate estimation
results. However, as shown in 11, the method easily fails to detect the
fingertip when it is bent variably and occluded. Thus, as we mentioned
above, in order to make it successful, GM-based method restricts the
natural interaction and makes users feel pressured to keep the strict
posture. In addition, even though 3D posture estimation-based detec-
tion [25] does not fail to track the posture of the hand, it does not fit
the fingertips at a fine level.

Moreover, when a finger is suddenly occluded because of a clicking
motion in egocentric viewpoint, the part of the skeleton model repre-
senting the finger tends to stay at the position where the depth value
was in the preceding frames or is slowly bent to find optimal solution
based on the structural constraints of the finger skeleton, like a guess-
ing procedure. Because of the characteristics of the 3D HPE-based
method [25], the estimation points of the fingertip are generally plot-
ted above the target position, as shown in 10. In contrast to the state-
of-the-art methods, the 3D Finger CAPE provides the most accurate
and stable results, as shown in Table 2. The reason why the distance
errors gathered through the user test are somewhat larger in number
than the errors based on the dataset described in Sec. 5.2 is because
there are human factors causing different types of error, such as depth
perceptions. Thus, the error distributions, even between the scenarios,
are different from each other.

Additionally, in order to check the statistical significance of the
results, we utilized the Repeated Measures analysis of variance
(ANOVA) test and the T-test as a post-hoc test. As a result, we con-
firmed that the distance error results based on the three methods are
statistically significant as well as the error distribution of each method
is distinguished from other methods at a 99% significance level (see
Table 3), in all scenarios except the scenario composed of sparse and
dynamic objects (scenario#-2). The stages of the scenario#-2 made
users feel confused about the depth perception and, as a result, the

Table 2. Mean (standard deviation) of distance error between the target
object and the estimated position, based on each method in the different
scenarios. (Unit: mm)

Scenario# GM-based [3,20] | HPE-based [25] CAPE

#-1 33.77 42.58 38.26
(sparse&static) (21.62) (23.68) (19.21)
#-2 38.13 46.09 43.55
(sparse&dynamic) (18.32) (22.09) (20.30)
#-3 38.02 47.52 37.99
(dense&static) (21.92) (23.49) (18.12)
#-4 38.45 51.88 37.31
(dense&dynamic) (22.28) (23.73) (17.52)

three methods were not able to perform properly in that scenario. The
reason why the T-test values between the GM-based method [3, 20]
and the CAPE method in the scenarios of #-3 and 4 do not show sta-
tistical significance is that the analysis was done with the estimated
points from the GM-based method, which were made by declassitying
the failure cases.

Preferences based on Post-Questionnaire. Finally, through the post-
questionnaire utilizing the 7 Likert scale shown in Table 1 and an infor-
mal verbal interview, we checked the order of the preferences among
the three methods. As shown in Fig. 12, the proposed 3D Finger CAPE
is the most preferred method in terms of the selection process in VR
environment, based on the answers of the questionnaire. In order to
check the statistical significance of the results based on the Likert
score, which is a non-parametric value, we utilized the Friedman test
and Wilcoxon Signed Rank test as a post-hoc test, which are appropri-
ate for the analysis of non-parametric values. As shown in Table 4, we
confirmed that there are statistically significant differences between
3D Finger CAPE and other methods.

Comments from the interview session. Even though some participants
noticed that there was some odd tendencies with the other methods,
such as the estimated position based on GM method relies on the max-
imally distant position of the hand shape, rather than the real posi-
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Fig. 12. Mean and standard deviation results of user’s preference on
each method based on the post-questionnaire. (GM: [3, 20], HPE: [25])

Table 4. Statistical results based on the questionnaire, based on Fried-
man and T-test as a post-hoc test.

Fig. 11. Experimental results showing the number of trials from a subject | Question# | Friedman | GM (3, 20] vs. CAPE | HPE [25] vs. CAPE
and failures triggered by GM-based method [3, 20]: (gray) number of . 0=9.125 TT_ i717 TT_:jg
1 1 - crit — crit —
total trials (black) failure counts. <005 p < 0.05 p < 001
0=9.042 T=7 T=0
Table 3. Statistical results of the first session, based on ANOVA and #2 Toie = 17 Tovic =9
T-test as a post-hoc test. p<0.05 p < 0.05 p <0.01
Scenario# ANOVA [3, 20] vs. CAPE [25] vs. CAPE 0=06.167 T=5 T=14
#-1 Foaiue = 15.892 tvalue = 3.046 tyaiue = 3.384 #3 Terig =17 Terig =17
(sparse& F..;y =3.858 terir = 2.585 teris = 2.580 p <0.05 p < 0.05 p <0.05
static) p < 0.001 p<0.01 p < 0.001
#2 Foatne = 5.825 fvaiue = 4.038 fvaine = 1.087
(sparse& F.iy = 3.858 terip = 3.304 terip = 1.962 occlusions. Moreover, because it estimates occluded fingertip position
dynamic) p <0.05 p < 0.001 p <0.05 in 3D space, it interacts with AR objects intuitively.
#-3 Falue = 122.135 taiue = 0.024 talue = 9436 Besides the above translated quantitative and qualitative results
(dense& Ferir = 3.852 terip = 1.964 Terir = 3.297 shown in this paper, the technology has many possibilities to be ex-
static) p <0.001 p=0.981 p <0.001 tended into the field of gesture recognition and interaction applications
#-4 Fratue = 326.309 tvatue = 0.865 tvatue = 14.775 based on the bare hand movement because the proposed ST forest is
(denseé& Ferir = 3.852 ferir = 1.964 ferir = 3.296 easily applied for the multi-finger case, as shown in Fig. 9. For ex-
dynamic) p <0.001 p=0387 p <0.001 ample, various combinations of sequential bent fingers can generate

tion, and the estimated fingertip position based on 3D HPE method
stays in the starting position when fast finger movement occurs, most
participants did not notice those tendencies. Also, most felt the 3D
Finger CAPE gave better estimating response, in terms of the selec-
tion of the target object. Thus, most of the participants answered that
they prefer the 3D Finger CAPE for selecting VR objects. However, a
few participants answered that another method was more convenient
as they could adjust their hand movements to make the method suc-
ceed, adapting to the tendency of the estimator. On the other hand,
the restrictions on movements necessary to make the methods succeed
might cause a user fatigue. Additionally, a user needs time to know
how the method works before they are able to adapt to the tendency
and use it successfully. Because of the difficulties in perceiving depth,
users had some trouble to accurately select VR objects in the testing
sessions, as similarly described in the prior study [21].

6 DISCUSSION

The main differences between the methods based on the state-of-the-
arts [3, 20, 25] and our proposed ST forest are our focuses on not only
occlusion-invariant fingertip position estimation, but also clicking ac-
tion detection in occlusion situations. The existing methods [3, 20, 25]
are not able to detect the sophisticated movements of the fingers (es-
pecially self-occluded fingertips) and thus have to make a heuristic
rule to interact with AR objects, like “a user has to make a fist and
wait two seconds before selecting it” or “a user has to move their hand
about ten centimeters in a forward direction to select a menu item”.
However, those are still 2D selections and do not provide three dimen-
sional interaction results. In contrast, our proposed algorithm detects
clicking action, which is independent of the variance of motions and

various gestures, even in the case of occlusions, which means that the
gesture would be invariant to the scale, translation and rotation of the
hand in egocentric viewpoint. Moreover, in the case of applications
encouraging direct interactions with AR objects, use of the ST forest
is possible, such as when typing on an AR keyboard or piano playing
on an AR piano. In addition, physics based interaction is also possible
because a split function inside of the ST forest has already utilized the
velocity and acceleration values. Thus, we can utilize those values to
interact with AR objects in AR games.

Nevertheless, there are still some technical limitations. The pro-
posed framework depends on the performance of the utilized methods
[3, 20, 25] which are used for configuring the spatio-temporal fea-
ture. The utilized hand tracking method [25] sometimes fails to track
when most of the fingers are completely occluded. When the tracking
method fails, it needs to be reinitialized in order to get a proper spatio-
temporal feature. Consequently, a user was requested to keep their
hand naturally open so that the tracking method performs properly.
However, we expect that the gesture based on the proposed method
will become more realistic as the performance of the tracking tech-
nique gets better.

In addition, the performance of the proposed algorithm might be
degraded by severe variances of motion. For the feature configuration
described in Sec. 3.2.3, we set the maximum time period to 500 ms,
which can capture a general clicking action within the given time. Ac-
cording to our measurement results throughout the dataset, the action
occurs within 500 ms at most. As we confirmed from the experiments,
our proposed algorithm is invariant to the variances of motion happen-
ing within the short time period, especially for our dataset. However,
we inform that the large variances of a different gesture motion taking
a longer time period might affect the performance degradation.
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7 CONCLUSIONS

This paper presents the ST forest-based 3D Finger clicking action and
position estimation (CAPE) under self-occlusion scenarios of egocen-
tric viewpoint. One problem that arises from allowing a user to have
free movement whilst wearing head-mounted display (HMD) is the
occurrence of self-occluded (hidden) fingertip position and action de-
tection during occlusion. Experimental results demonstrate that our
approach, using a combination of depth image-based fingertip detec-
tion along with the help of 3D hand posture estimation from noisy and
occluded data, results in superior performance when compared with
state-of-the-art methods. Experimentally, the ST forest retains accu-
rate clicking action detection (96.90%) and the most accurate position
estimation performance (25.55 mm) when compared with state-of-the-
arts, especially as the position estimation provides comparably more
stability than the scattered estimation that can occur with previous
methods. Moreover, we found that the proposed method encourages
more intuitive direct interactions in the scenarios of small-sized ob-
ject selection, which is directly extendable into AR environment and
independent of rotation and translation of the hand.

In the future work, we plan to extend this work for more sophisti-
cated gesture recognition, including work utilizing all fingers and dif-
ferent combinations of the actions, as well as increase other fingers’
performance in the case of more severe self-occlusion. Moreover, we
plan to integrate a method that can deal with varying action speeds
(e.g. Dynamic Time Warping).
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