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Design and Fusion of Pose-Invariant
Face-Identification Experts
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Abstract—We address the problem of pose-invariant face recog-
nition based on a single model image. To cope with novel view face
images, a model of the effect of pose changes on face appearance
must be available. Face images at an arbitrary pose can be mapped
to a reference pose by the model yielding view-invariant represen-
tation. Such a model typically relies on dense correspondences of
different view face images, which are difficult to establish in prac-
tice. Errors in the correspondences seriously degrade the accuracy
of any recognizer. Therefore, we assume only the minimal pos-
sible set of correspondences, given by the corresponding eye po-
sitions. We investigate a number of approaches to pose-invariant
face recognition exploiting such a minimal set of facial features
correspondences. Four different methods are proposed as pose-in-
variant face recognition “experts” and combined in a single frame-
work of expert fusion. Each expert explicitly or implicitly realizes
the three sequential functions jointly required to capture the non-
linear manifolds of face pose changes: representation, view trans-
formation, and class discriminative feature extraction. Within this
structure, the experts are designed for diversity. We compare a de-
sign in which the three stages are sequentially optimized with two
methods which employ an overall single nonlinear function learnt
from different view face images. We also propose an approach ex-
ploiting a three-dimensional face data. A lookup table storing facial
feature correspondences between different pose images, found by
3-D face models, is constructed. The designed experts are different
in their nature owing to different sources of information and ar-
chitectures used. The proposed fusion architecture of the pose-in-
variant face experts achieves an impressive accuracy gain by virtue
of the individual experts diversity. It is experimentally shown that
the individual experts outperform the classical linear discriminant
analysis (LDA) method on the XM2VTS face data set consisting of
about 300 face classes. Further impressive performance gains are
obtained by combining the outputs of the experts using different
fusion strategies.

Index Terms—Expert fusion, face image synthesis, linear
discriminant analysis (LDA), multiple classifier system, pose-in-
variant face recognition.

I. INTRODUCTION

FACE recognition has been competing with other biometric
techniques such as fingerprint and iris recognition, with the

understanding that it is less accurate but more user-friendly. The
potential of face-recognition technologies is to identify humans
without notice and at a distance. However, to realize this poten-
tial, it is essential to counteract the degradation in performance
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exhibited by face recognition systems for views different from
the frontal pose. In the recent report [1] of the face-recognition
vendor test (FRVT) 2002, which is the best known face com-
petition, the verification rates (when the false accept rate (FAR)

) of all competing vendors for the faces which are ro-
tated 45 right/left or 30 up/down, are less than about 45%.
Most of them just achieved 20% or 30% verification accuracy
for such a large rotation. This is a quite disappointing level of
accuracy considering that all vendors showed more than 95%
accuracy for the frontal faces. The pose data set has 87 iden-
tities without changes in illumination and expression. While it
is true that, when more samples under different conditions are
collected, better recognition performance is obtained, it is hard,
or sometimes impossible, to acquire images of various views of
the subjects, as in the case of passport photograph recognition.

In the recognition of faces imaged from nonfrontal views
using a single model image, prior experience of the effect of
view changes is essential. This can be obtained by learning from
“prototype” or training faces, which can be either two-dimen-
sional (2-D) or three-dimensional (3-D) data, and applied to new
test faces to be recognized. Classically, a generic 3-D model
of a human face has been used to synthesize face images from
different view points [2], and approximate models, such as a
cylinder, have also been applied to face recognition [3]. There
are a number of methods [4]–[9] which have recently been de-
veloped to recognize a novel view face image based on statistical
models acquired from prototype face images. Vetter and Poggio
showed that new views can be synthesized from a single 2-D
image in [4]. In their work, face images are first represented in a
view subspace and the transformation matrices linking face im-
ages of different views are estimated. More recently, Blanz [7]
utilized a 3-D morphable model and Li [6] applied kernel dis-
criminant analysis and 3-D point distribution model for view-in-
variant face recognition. There are also other related studies
[10]–[12], although they are in a slightly different field in that
they require not a single but several model images for view-in-
variance modeling. In spite of the previous successes, all of the
above methods have a strong drawback in requiring dense cor-
respondence of facial features of different pose face images for
image normalization. The step of feature detection or correspon-
dence analysis, which is needed for separating the shape and
texture components of face images in these methods, is usu-
ally difficult in itself [13], [14]. Errors in correspondences se-
riously degrade the face recognition accuracy of these methods,
as shown in [7].

Among other relevant works, Graham and Allinson [15] ap-
plied a neural network for learning the view transfer function of
the normalized face images with fixed eye positions. Talukder
[16] also proposed a method for the eye registered face images,
which involves finding a linear-view transfer matrix similarly to
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[4]. However, these studies lack a proper experimental valida-
tion. Moreover, the methods could further be improved by opti-
mizing the three stages associated with the view transformation
functions.

Discriminant analysis and multiple classifier fusion are two
key elements of the proposed study. Linear discriminant anal-
ysis (LDA) is a well-known method [17], [18] of extracting class
discriminative features of a piece of data. The method finds a
linear transformation function which minimizes the scatter of
data in the same class while maximizing the scatter of data in
different classes. If the manifolds of image appearance changes
are captured by the linear function from the training face classes,
the function can be applied to new test face classes. However,
the method fails in a nonlinear classification problem. To over-
come the limitation of LDA, nonlinear frameworks of discrimi-
nant analysis have also been proposed in our former work [19],
[20] as well as in the classical work [21]. Locally LDA (LLDA)
exploits a set of piecewise linear functions [20] and generalized
discriminant analysis (GDA) a kernel function [21] to learn non-
linear manifolds of data for the purpose of class-discriminative
feature extraction.

Multiple classifier system is one of the subjects that have been
intensively studied [22]. Generally, classifier selection and clas-
sifier fusion are the two types of combination [23]. While only
one or a few local experts are nominated to make the decision
in classifier selection, classifier fusion assumes that all classi-
fiers are trained over the whole feature space, and thereby they
are considered as complementary [24]–[27]. In the comparative
studies of multiple expert fusion for personal identity verifica-
tion, simple fusion strategies such as combination by averaging
or majority vote were demonstrated to improve the verification
performance [27]–[29]. Multiple classifier outputs are usually
treated as classifier conditional posterior probabilities for the
classes [30]. Under some assumptions, fusion often reduces to
simple aggregation operators such as the product or average
[27]. These simple fusion strategies do not require any addi-
tional training. Some trainable strategies such as decision tem-
plates [31] or the behavior knowledge space [26] method have
also been proposed for person identity verification in [32]–[34].

In this paper, we propose methodology for the design and fu-
sion of pose-invariant face identification experts based on the
minimum information for face normalization. We assume that
a single frontal image registered with reference to the eye po-
sitions is given as a model. We design four different types of
robust experts for face identification at unknown views. Errors
of the experts might be uncorrelated owing to dissimilarity of
the sources of information and architectures used in the ex-
perts. A combining classifier is finally proposed for further ac-
curacy improvement. All of the four experts can be approxi-
mately decomposed into the three basic sequential steps with the
component functions: representation, view transformation, and
class-wise discriminative feature extraction. Within this struc-
ture, the experts can be categorized into the methods based on
statistical learning of face images captured at different views
and the methods based on 3-D face models. In one of the four
methods of learning, the three-stage process is empirically opti-
mized by choosing the best combination of the component func-
tions. Note that this three-stage process may be suboptimal as
each step is separately trained. Two methods using nonlinear

discriminant analysis techniques, which replace the three-stage
functions, are also proposed. In addition, a computationally ef-
ficient approach based on a lookup table (LUT), which stores
the correspondences of different pose images found by 3-D face
models, is developed for complementing the methods based on
statistical learning. All of these experts are quite different in
their nature owing to different sources of information and ar-
chitectures used. Thus, their fusion promises performance im-
provement. Importantly, the expert fusion exhibits quasi-mono-
tonic behavior as the number of combined experts increases.

Section II briefly reviews conventional LDA as a core method
for constructing the proposed experts. The basic structure of
the proposed experts and the overall expert fusion architecture
for pose-invariant face identification is given in Section III.
Section IV is devoted to the detailed descriptions of the in-
dividual expert design. In Section V, the motivation for and
strategies of expert fusion are presented. The experimental
results and conclusions are drawn in Sections VI and VII,
respectively.

II. LDA

LDA is a class-specific method in the sense that it represents
data to make it useful for classification [17], [18]. Let

be a data set of given -dimensional vectors
of images. Each data point belongs to one of object classes

. The between-class scatter matrix and the
within-class scatter matrix are defined as

(1)

where denotes the class mean and is the global mean of
the entire sample set . The number of vectors in class is
denoted by . LDA finds a matrix maximizing the ratio
of the determinant of the between-class scatter matrix to the
determinant of the within-class scatter matrix as

(2)

The solution is a set of generalized
eigenvectors of and , i.e., . Usually, prin-
ciple component analysis (PCA) is performed first to avoid a
singularity of the within-class scatter matrix commonly encoun-
tered in face recognition [18].

III. STRUCTURE OF EXPERTS AND EXPERT FUSION

The fact that face data distribution of different poses is highly
nonlinear motivates us to exploit the benefits of nonlinear archi-
tectures for the experts. Even though the proposed experts have
different architectures and component functions, it is convenient
to explain them by the proposed basis structure comprising the
three sequential steps as shown in Fig. 1(a): representation, view
transformation, and discriminative feature extraction.

First, a pair of input face images (frontal and rotated face
image) is represented as low-dimensional feature vectors. The
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Fig. 1. (a) Basic component functions of the proposed view-invariant face recognition experts. (b) Overall structure of the multiple expert fusion system.

dimensionality of the vectors obtained by raster-scanning the
original images is often so high that the subsequent compo-
nent functions cannot be efficiently learned. A dimensionality
reduction is performed based on statistical models of images.
As different pose images have considerably different statistical
characteristics, it is beneficial to exploit multiple representation
functions, each of which covers a certain range of views. Using
a view-specific representation function , feature vector of an
image is given as

(3)

where and denote images within a certain range of frontal
views and rotated views, respectively. Index represents the th
face class.

In the view-transformation stage, different view images of the
same classes are forced to have a similar representation. This is
achieved by finding the respective transfer functions defined
as

(4)

where is the total number of the training face classes. The
view-transformation function can be bi-directional, that is, the
function can transform a frontal face to a rotated face or the
rotated face to the frontal face. In the basic model proposed,
the transformation to the frontal pose is adopted with the two
benefits: low memory to store the representation vectors of all
model face images and time-efficient recognition of a new test

image. In this approach, the same number of feature vectors
as the number of model face images are stored. Further, only
a single view transformation of a test image of an arbitrary pose
to the frontal pose is needed to compare it with all of the frontal
model faces stored. Note that the transfer function is also view-
specifically learned as denoted by in (4).

The transformed feature vectors of all rotated images and the
feature vectors of frontal images in the prototype set are the
input for learning a class-discriminant function . The discrim-
inant function maximizes the class separability of the training
data with the discriminative feature vectors defined as

(5)

With an analogy to LDA, the discriminant function can be
learned from the prototype face classes and applied to extract
efficient discriminative features from face images of the new test
classes. The expert finally produces a similarity value between
a frontal and a rotated face image, based on a distance of the
discriminative feature vectors of the two images.

The overall structure of the proposed fusion of the experts is
shown in Fig. 1(b). The four experts designed to enhance their
diversity are aggregated taking their confidences into account.
The multiple expert outputs are normalized to be comparable
and treated as expert-conditional class posterior probabilities.
As the purpose of this study is to examine the potential for im-
proving the recognition accuracy by fusing different types of
pose-invariant face experts, simple fixed fusion rules such as
the product and sum are employed as the aggregating operator.
Under the assumption of independence of the expert outputs, the
fusion by product is optimal. Even though such an assumption
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may be quite strong, it has been noted that these simple opera-
tors usually work well.

IV. EXPERT DESIGN

A. Three-Stage Linear Function Expert: PCA-Linear-Matrix
(LM)-LDA

As the performance of the experts depends on the choice of
the component functions for the proposed three-stage structure
presented in the previous section, various combinations of linear
and nonlinear functions obtained by statistical learning have
been compared in our former report [35]. The study showed
that the piecewise-linear combinatorial method PCA (as a func-
tion )-LM (as a function )- LDA (as a function ) is one of
the most accurate classifiers. As it is also attractive in terms of
computational costs, PCA-LM-LDA has been adopted as an ex-
pert in this study. In this approach, the three steps are separately
optimized.

An eigen-subspace is chosen as a representation function
among the various linear and nonlinear dimensionality reduc-
tion methods [36]–[41]. The eigen-subspace is constructed
by PCA of the covariance matrix of the prototype face im-
ages resulting in a number of image-size eigenvectors [37].

is the matrix containing the eigen-
vectors corresponding to the largest eigenvalues of the
covariance matrix. Face images are represented as

(6)

where and are the eigenvector matrices learned from
a set of frontal face images and rotated face images of all classes,
respectively, and denote the means of the frontal and ro-
tated face images, respectively, and denotes the th face class.

Let ,
. is the number of the

eigenvectors used, thus being the dimensionality of the feature
vectors . is the total number of the face classes. The
linear matrix is defined as a view-transformation function
such that . The element , th element of the
th feature vector is represented as

(7)

This gives us equations to solve for the unknown param-
eters . Similarly, for the full matrix, we have a
linear regression problem which determines the un-
known parameters from the given equations. The linear
matrix can be calculated by

(8)

and the virtual frontal images generated by the view-trans-
formed matrix are the columns of the matrix

(9)

All nonfrontal images of the prototype face classes are trans-
formed to the frontal version by (9). The virtual frontal images
are the input for learning a discriminative function with the orig-
inal frontal images of the prototype faces. LDA is applied as a
learning method to minimize the volume of the same class faces
and maximize the volume of the different class faces [18]. To
avoid any problems arising from the within-class scatter matrix
being singular, the feature vectors , , are
used as the inputs of LDA instead of images. Let the LDA trans-
formation matrix learned be and the global mean of the entire
feature vectors be . The final class discriminative vectors
and of two face images and are given by

(10)

The confidence value of the two face images to be in the same
class is given as a reciprocal of the Euclidean distance

.

B. Monolithic Nonlinear Experts

1) LLDA: The method of discriminant analysis, LLDA [20],
was proposed as a technique for designing pose-invariant face
experts. It has a nonlinear optimization framework realized by
a piecewise linear structure for the extraction of discriminative
features from nonlinearly separated data. The single nonlinear
structure of LLDA can be considered to replace the three-stage
process of the PCA-LM-LDA method in the previous section.
The LLDA method has benefits in terms of efficient and optimal
learning by the single nonlinear optimization process compared
with the PCA-LM-LDA, where each of the three steps is se-
quentially trained. Compared with the conventional nonlinear
method based on kernel functions such as GDA, which will be
also presented as an expert in this study, the method has the ben-
efits of avoiding overfitting and low computational cost owing
to its piecewise linear structure as shown in [19].

The LLDA method concurrently finds the set of locally linear
functions, each of which is specific to a subset of input images.
The input images are clustered into subsets .
Each subset represents a pose group (a set of face images be-
longing to a certain range of views) in this study, which has a
different transformation function applied. Each face image be-
longs to the th pose subset with a posterior probability .
In the experiments in Section VI, the posterior probability will
be simply hardened with a given pose label of face images,
that is, if the face image belongs to the th pose group,
then and for all of the other ’s.
The locally linear transformation ,

, is defined such that

(11)
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Fig. 2. LLDA for pose-invariant face classification: Left shows the original
class data distributions of the two different pose groups and the pose-specific
components found. The transformed data distributions are shown on the right.
C is the j-th pose cluster of the i-th class, u is the j-th component of the
i-th pose cluster. The pose-wise clustered face images in the original data space
become class-wise clustered in the transformed space.

where is the mean of the images in the th pose group and
is the discriminative feature vector of an image . The ma-

trices containing locally linear transformations are concur-
rently found so as to maximize the between-class covariance
while minimizing the within-class covariance by analogy to the
optimization concept of LDA explained in Section II. The con-
cept of LLDA is illustrated in Fig. 2. Different view face images
are class-wise clustered in the transformed space by the two sets
of pose-specific transformations learned. Refer to previous work
[19], [20] for the details of learning.

Let and be a frontal image and a rotated image of the
th face class, respectively, and suppose that the corresponding

pose-specific linear transformation matrices of LLDA are
and . The final output vectors of the LLDA method are
given as

(12)

where and denote the means of the frontal and rotated
images of the prototype faces, respectively. The confidence
value of the two face images to be in the same class is given as
a reciprocal of the Euclidean distance .

Note that the locally linear transformations in (12) corre-
spond to the combinations of the three-stage functions of the
PCA-LM-LDA expert in (10) as

(13)

because the term in (10) is common for all face images
and thus can be eliminated in image comparison. The functions
sequentially trained in the PCA-LM-LDA expert are efficiently
represented by the functions learned in the single optimization
framework of LLDA. The results of an experimental compar-
ison of the experts, LLDA and PCA-LM-LDA, will be presented
in Section VI.

2) GDA: The GDA [21] is a method designed for nonlinear
classification based on a kernel function which transforms
the original space to a new high-dimensional feature space

such that . After transforming a data point
into high-dimensional space, a linear classification function is
sought in the transformed space similarly to LDA. In this study,
the method is applied to the different pose face images of the

prototype set, resulting in a single nonlinear transformation to
extract class-discrimination features of the test face images.

The projection of a face image is computed by the projec-
tion vectors as

(14)

where are real weights learned during training and is
the th prototype face from class . is a kernel function. Here,
an RBF kernel with an adjustable width was deployed to cope
with nonlinear manifolds of multiview face data. For the details
of learning the weights , refer to [21].

The major difference of the GDA expert from the previous
three-stage linear method PCA-LM-LDA is again in that a
single nonlinear transformation function is applied to
different view face images, and , as

(15)

where and are the discriminative feature vectors of
and , respectively. While different overall linear func-

tions are applied to different view faces in both PCA-LM-LDA
and LLDA experts [that is, the resulting overall functions are
view-specific as shown in (13)], a single transformation function

is commonly applied to different view faces and by
the GDA expert. The kernel function of GDA is flexible enough
to capture highly nonlinear manifolds of the prototype face data
so that the transformed prototype data is well class-wise clus-
tered. To avoid overfitting of the GDA expert on the prototype
set, a proper independent face data set has been exploited for
evaluating the kernel parameters (see Section VI).

The confidence value of the expert is again inversely propor-
tional to the Euclidean distance .

C. Expert With a Pose Correction by 3-D Correspondence LUT

The three methods explained in the previous sections are
purely based on statistical learning of images. They will be
shown to be effective for capturing face view changes but a
complementary benefit of using 3-D face models has also been
investigated for further accuracy improvement. We propose
a novel view-transformation of face images based on 3-D
correspondence LUT (3D-LUT) which effectively replaces the
representation and view-transformation function of the basic
three-stage structure of the proposed pose-invariant experts.
Conventional LDA is then applied to the images transformed
by the 3D-LUT for discriminative feature extraction.

The method is motivated by the fact that, once a face image
is texture mapped on a generic 3-D face model, images of ar-
bitrary views can be synthesized. In our approach, the normal
procedure of texture mapping, 3-D rotation, and rendering in
computer graphics is replaced by a direct image transformation
expressed in terms of the correspondence LUT, as illustrated
in Fig. 3. The facial feature correspondences between different
view images are found by using 3-D face models and stored in
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Fig. 3. Virtual view generation by using the 3D-LUT.

a general correspondence LUT. The view-transformation by the
LUT is extremely efficient in time.

During the training, the parameters of 3-D rotation of face
models and texture mapping are adjusted so that output face im-
ages at different views are normalized with reference to a fixed
eye position. The image-sized LUT contains 2-D coordinates as
an element which describes the correspondence of pixels of the
frontal and rotated view face images as

(16)

where is a point of the rotated view image of the th face
class and is the corresponding point of the frontal view
image. Such correspondences were sought by picking the same
color pixels of the projected frontal and rotated images of the
synthetic color-textured 3-D face models as shown in Fig. 3. The
generic view-transformation function is simply constructed by
averaging the correspondences of all face classes by

(17)

where is the number of the face classes. By using the average
LUT, rotated face images are virtually generated from frontal
face images. Pixel values of a virtual view face image are
obtained from those of the corresponding pixels of the frontal
image as

(18)

The rotational direction from the frontal to an arbitrary angle
is more beneficial in this method as more pixel information is
kept in the frontal face images. Each pose group has an average
correspondence LUT . After transforming all frontal faces

in the prototype data set to a rotated view , LDA is applied to
the pairs of the transformed images and the original rotated
images of all classes. Let and denote vector represen-
tations of the images and , respectively. LDA is performed
on the vectors and to learn a class-discrimination func-
tion, and final discriminative feature vectors are obtained by

(19)

where is the solution matrix of LDA and is the mean vector
of the entire vectors and , . is the number
of the prototype face classes. The output of the expert is again a
reciprocal of the Euclidean distance of the discriminative feature
vectors and .

V. EXPERT FUSION: MOTIVATION AND STRATEGIES

Four different approaches to pose-invariant face identification
have been proposed in the previous sections. PCA-LM-LDA,
LLDA and GDA are based on statistical learning of 2-D ap-
pearance images of faces and the 3D-LUT method exploits 3-D
facial models. PCA-LM-LDA and 3D-LUT explicitly generate
virtual-view face images and exploit them for learning discrim-
inative features, whereas LLDA and GDA compute view-robust
representations of face input images. Some examples of the vir-
tual-view face images obtained by PCA-LM-LDA and 3D-LUT
are shown in Fig. 4. The characteristics of the two results are
considerably different, and the errors in the transformations
are hopefully uncorrelated. The errors in the view transforma-
tion generated by PCA-LM-LDA come from the blur of the
transformed faces to the frontal views. The blurred images lose
high-frequency components of the original face shapes. On the
other hand, the rotation by 3D-LUT loses shape information
mainly around face boundaries as shown in Fig. 4(c). While
the generalization performance of the transformation of the
PCA-LM-LDA method is degraded for nontrained face classes,
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Fig. 4. Examples of the synthesized images of four face classes by the two
methods. (a) Original five pose images. (b) Transformed face images to a frontal
view by PCA-LM-LDA. (c) Transformed frontal face images to a rotated view
by 3D-LUT.

Fig. 5. Transformation functions of LLDA. Each row shows the local pose
functions of LLDA. The corresponding local functions of the two pose groups,
e.g., u and u , are characterized by a rotation, ensuring view-invariant rep-
resentation.

the rotation by 3D-LUT relatively well maintains its gener-
alization performance. LLDA and GDA implicitly represent
face images by similar representation vectors regardless of face
poses. Fig. 5 shows some example transformation functions
of LLDA. The local functions of LLDA, which are specific
to a certain pose group, seem to provide discriminant features
for different faces at the same view as the conventional LDA.
Moreover, the method is likely to produce consistent features
for the same face classes regardless of view angles, because
all corresponding functions of the two different pose groups,
for example, and , are characterized by an appropriate
rotation (see each pair of and in Fig. 5). On the
contrary, GDA first maps images to high-dimensional vectors
and deploys a common global function to extract effective
features for classification. The GDA method possesses different
characteristics from LLDA in terms of decision boundaries and,
consequently, classification error probabilities. We experimen-
tally found that all of the experts enhanced the performance
of the conventional well-known method, PCA-LDA, which
is also known as “fisherface” [18], and contributed to the

Fig. 6. Normalized data samples of (a) XM2VTS DB and (b) PIE DB.

TABLE I
IDENTIFICATION RATES OF INDIVIDUAL EXPERTS. TENFOLD CROSS

VALIDATION WAS PERFORMED. AVERAGE AND STANDARD

DEVIATION OF THE METHODS ARE REPORTED

accuracy improvement of the expert fusion. The fact that the
experts exploit quite different information sources and have
distinct architectures promotes their diversity, which leads to
accuracy improvement owing to their classification errors being
uncorrelated.

Fusion at the confidence level is considered, where the
matching scores reported by the individual experts are com-
bined. We have tested the simple fixed fusion rules such as
the sum, product, maximum, minimum, and median rules, as
the purpose of this research is just to assess the viability of
combining the pose-invariant face classifiers. Among the rules
above, the weighted sum rule is also considered, where the
weights reflect the accuracy of each expert achieved on an
independent evaluation set. The use of any trained combiner
instead of the fixed rules, provided a suitable sized evalua-
tion set is available, would be an extension to our work. The
confidence value of the base classifier for class is
given as a reciprocal of the normalized Euclidean distance of
the output vectors produced by each expert. The confidence
value is scaled so that it is in the range of . The combining
classifier is then defined as
follows:

(20)
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Fig. 7. Identification rates of individual experts on XM2VTS DB for the (a) same time session and (b) different time sessions.

When the training set is large enough and overfitting of the base
classifiers is avoided, the fixed combination rules are effective
[27].

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Experimental Setup

We used the XM2VTS face data base [42] for the ex-
periments. The face set consists of 2950 facial images of
295 persons with five pose variations (F, R, L, U, and D) and
two different time sessions (S1 and S2) recorded at five-month
intervals. This may be the largest public data set of subjects
taken in different poses. The XM2VTS data set was manually
annotated with pose labels of the face images. Each pose group
exhibits a range of variations in personal pose. The images in
all sessions were captured under the same illumination setting.
The experiments were designed to study the effect of pose on
the recognition accuracy, as well as the sensitivity to template
aging. The images were normalized to 46 56 pixel resolution
with a fixed eye position. The manually annotated eye positions
were exploited. Some of the normalized data samples are shown
in Fig. 6(a).

The data set was divided into three subsets in a random
tenfold manner: 1250 images of 125 persons, 450 images
of 45 persons, and 1250 face images of 125 persons for the
training, evaluation, and testing, respectively. The training (or
prototype) set was utilized to learn the transformation functions
of the base experts whereas the evaluation set served to adjust
the parameters of each expert such as the kernel parameters
of GDA, the dimensionality of the output vectors, and scaling
parameters of the individual experts for fusion. These param-
eters were chosen to achieve the best performance of each
expert in terms of identification rate on the evaluation set. The
recognition performance is reported as the identification rate on
the test set. The frontal face F-S1 of the test set was selected as
a gallery and the eight rotated face images of each class in the
test set were exploited as queries. Tenfold cross validation was
performed in all of the experiments. Note that the three sets for
training, evaluation, and testing consist of different face classes.
The experts are trained from the training face classes and are

applied to new face classes in the test set, that is, the experts
should show good generalization performance across different
face identities. In order to achieve a reasonable generalization,
the number of different subjects in the training set should be
large. Here, it was heuristically set to 125. As a sufficient
number of face classes were also required for the evaluation
and testing, a data set containing a fairly large number of face
classes was required. The XM2VTS data set just about met
these requirements.

B. Accuracy Comparison of the Experts

The four proposed experts have been compared with the
well-known conventional face recognition method, fisherface
method (PCA-LDA), where the basis functions of LDA are
learned from the eigen-features of the training set [18]. The
dimensionality of the feature vectors at both PCA and LDA
stages in the PCA-LDA method was chosen to yield its best
recognition accuracy over the evaluation set. For the method of
3D-LUT, we used 108 SNU 3-D scanned facial models [43].
For the GDA, an RBF kernel with an adjustable width was
deployed. The posterior probability in the LLDA method (see
Section IV-B1) was simply hardened to get a crisp pose label
for each face image.

The recognition accuracy of the single experts and the
PCA-LDA method is shown in Table I and Fig. 7 for the
separate experiments involving different poses and time ses-
sions. Overall, the four experts outperformed the classical
PCA-LDA method by about 10% on average. The four experts
were shown to be roughly comparable. However, the LLDA
and PCA-LM-LDA methods tended to be better than the other
two in terms of both mean accuracy and standard deviation of
the tenfold cross validation. The GDA method exhibited the
largest variation over the ten experiments with the different
combinations of the face classes in the training, evaluation, and
test sets. From Fig. 7, all of the experts and the conventional
method showed comparatively poor recognition rates for test
data from a different time session. The proposed four experts
showed 56.31% identification accuracy on average for the same
time session and 33.28% on average for the different time
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Fig. 8. Identification rates of the multiple expert system on XM2VTS DB for (a) the same time session and (b) a different time session.

TABLE II
IDENTIFICATION RATES OF THE FUSED MULTIPLE EXPERTS OBTAINED BY

TENFOLD CROSS VALIDATION. AVERAGE AND STANDARD DEVIATION

OF THE DIFFERENT COMBINING STRATEGIES ARE REPORTED

sessions. Both results exceed the corresponding identification
accuracy of the classical PCA-LDA method by about 10%.

We look at the two methods LLDA and PCA-LM-LDA
more closely as both experts are trained on the same sources
of information and have the most similar architectures among
the four experts, which are piecewise linear. Even though the
PCA-LM-LDA method learns the representation, view trans-
formation, and the discriminant function separately, and, thus,
suboptimally for given a training set, it exhibited comparable
performance to the LLDA method in the different pose cases.
This might be explained by overfitting of the methods for given
a training set. Further comparison of these two methods was
carried out by using the PIE data set of 66 identities [44], which
were equally divided into the training and test sets. As shown
in Fig. 6(b), each class has 15 images (three poses five
illuminations). The frontal face F1 of the test set was selected
as a gallery and all of the other images of the test set were
used as queries. The identification rates of the PCA-LM-LDA
and LLDA methods were 39% and 47.5%, respectively. The
LLDA method well captured the effects of pose and illumina-
tion variations, thus yielding superior recognition accuracy. In
spite of similarity of these two experts, they had still different
classification error characteristics of the given test samples and
were well suited for fusion.

C. Multiple Expert Fusion

Table II and Fig. 8 show the results of combining all four
experts by the six different fusion rules. All six different gating
rules improved the best individual expert and the conventional
PCA-LDA method. The sum and the weighted-sum rules
showed the best identification accuracy on average. In the
weighted-sum rule, the weights were reflected by the accuracy

Fig. 9. Cumulative identification plots for (a) the right-rotated, (b) left-rotated,
(c) up-rotated, and (d) down-rotated faces recorded in the same time session.

of the experts over the evaluation set. As all four experts
exhibited similar accuracy, the accuracy of the weighted-sum
and sum rules were similar. Note that the product rule also
achieved comparable accuracy with the sum rule, which has
about 10% improvement over the best proposed expert and 20%
over the PCA-LDA method. The best multiple expert system
showed 70.08% for the same time session and 42.06% for a
different time session. The cumulative identification rates for
each pose, R, L, U, and D, at the same time session are shown
in Fig. 9. The proposed fusion of the experts by the sum rule
showed constantly superior accuracy over all of the proposed
experts and the conventional PCA-LDA method at all different
pose cases. The proposed individual experts also consistently
outperformed the PCA-LDA method in all cases except the
down-rotated experiment. We also investigated the relationship
between accuracy and the number of experts fused. We first
found the best expert, PCA-LM-LDA, and then added the next
best performing expert, and so on, in the order LLDA, 3D-LUT,
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(a) (b)

Fig. 10. Identification rates of the multiple expert system for different number of the experts combined by the sum rule in (a) the same time session and (b) a
different time session.

GDA. The combined results were obtained by the sum rule. The
results are shown in Fig. 10. The identification rate improved
quasi-linearly as the number of different experts increased,
owing to different characteristics of the experts designed. The
accuracy of the proposed multiple expert system expert fusion
was significantly better than that of the conventional PCA-LDA
method. It improved the classical method from 46% 70%
for the same time session and 24.9% 42% for the different
time session, respectively, on the 125 face classes rotated by
more than 30 from a frontal pose.

VII. CONCLUSION AND FUTURE WORK

We proposed a multiple face-recognition expert system based
on different models of face view changes. Pose-invariant face
identification experts are obtained by learning the statistics of
face images or fitting 3-D face models. The proposed individual
experts outperformed the classical PCA-LDA method. The fu-
sion of the different experts yielded an impressive performance
improvement owing to their different characteristics in terms
of sources of information exploited and architectures used. We
intend further to improve the performance of the proposed ap-
proach by exploiting dense correspondences of facial features in
the future. The current performance was obtained with images
registered using fixed eye positions, and this is a poor basis for
face-image normalization. A more elaborate normalization of
face images by using the dense correspondence information is
expected to enhance the generalization performance of the pose
correction methods, as it was shown to be effective in previous
studies of pose-invariant face recognition [12].
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