Making a Shallow Network Deep:
Growing a Tree from Decision
Regions of a Boosting Classifier
Tae-Kyun Kim*, Ignas Budvytis*, Roberto Cipolla
CUED/F-INFENG/TR633
1 July 2009

* indicates equal contributions.

Department of Engineering
University of Cambridge
Trumpington Street
Cambridge CB2 1PZ, UK

{tkk22|ib255]|cipolla}@eng.cam.ac.uk

Making a Shallow Network Deep: Growing a
Tree from Decision Regions of a Boosting
Classifier

Tae-Kyun Kim'*, Ignas Budvytis'*, Roberto Cipolla*

L. Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK.
* indicates equal contributions.

Abstract— This paper presents a novel way to speed up the classification time of a boos-
ting classifier. Despite boosting already being known as a common technique in applica-
tions demanding very fast classification, its flat structure leaves a room to be improved
in speed. We make the shallow (flat) network deep (hierarchical) by growing a tree from
the decision regions of a boosting classifier. This provides many short paths for speeding
up and preserves reasonably smooth decision regions for good generalisation. We express
the conversion as a Boolean optimisation problem, which has been previously studied for
circuit design. A novel method is proposed for a large number of binary variables, i.e.
weak-learners of a boosting classifier. The learnt boosting classifier splits the data space
into 2" primitive regions by n binary weak-learners. The decision regions of boosting are
encoded by the set of extended regions each of which aggregates many primitive regions
of the same label. A decision tree is then grown using the modified information gain
measure based on the coding of regions. Experiments on the synthetic and face image
data sets have shown that the tree obtained is reasonably short in terms of average path
length of data points, significantly speeding up a boosting classifier at similar accuracy.
The proposed two stage cascade allows any number of weak-learners outperforming the
corresponding boosting cascade in speed. The method is also demonstrated for rapid ob-
ject tracking and segmentation problems.

Keywords— Boosting, Fast Classification, Decision Tree, Boolean Optimisation, Cas-
cade, Object Detection, Rapid Object Tracking, Segmentation.

1 Introduction

Boosting classifiers have been widely adopted in visual recognition, in particular for object
detection [1], tracking [2] and segmentation [3] problems, requiring very fast classification.

2

€= X

X
H1(x): a boosting |
classifier l,

Ha(x)

Figure 1: Boosting as a tree. (a) Boosting cascade is seen as an imbalanced tree. Each node is a
boosting classifier. (b) A boosting classifier has a very shallow and flat network where each node
is a decision-stump i.e. weak-learner.

Boosting forms a strong classifier by aggregating simple weak-learners which deliver both
quick and accurate performance. Classification time is usually further reduced using a cas-
cade of boosting classifiers (a so-called “coarse-to-fine” strategy [1]). The cascade could be
seen as a degenerate tree as shown in Figure 1(a). In this tree, each node corresponds
to a strong boosting classifier. First classifiers are set to have a smaller number of weak-
learners in order to quickly filter out negative class samples. Subsequent classifiers have
more weak-learners and therefore can make a finer decision. This deep structure effec-
tively improves the speed of the single boosting classifier containing all weak-learners.
However, designing a cascade, requires setting a number of parameters: the number of
classifier stages, weak-learners and the threshold for each stage. Torralba et al have pro-
posed sharing weak-learners among multiple boosting classifiers for efficient multi-object
and multi-pose detection [4]. By placing the most common weak-learners of classifiers at
the top of the hierarchical structure, whose path corresponds to a boosting classifier, the
total number of weak-learners to use is reduced accelerating classification. The method is
useful for multiple boosting classifiers.

In this work, we propose a novel way to reduce the classification time of a single boos-
ting classifier without sacrificing its accuracy. Our algorithm is also applicable for mul-
tiple boosting classifiers as a general meta algorithm. The chance for improvement comes
from the fact that a boosting classifier can be seen as a very shallow network as shown
in Figure 1(b), where each weak-learner is a decision-stump. The flat structure ensures
reasonably smooth decision regions for good generalisation. It is, however, not optimal in
classification time since it exploits all weak-learners for any data point. Some data points
are easier than others and thus can be classified by a smaller number of weak-learners.
The proposed method converts the shallow network to a deep hierarchical structure, i.e.
a decision tree. The obtained tree speeds up the boosting classifier by having many short
paths and exhibits good accuracy by preserving the decision regions. We introduce a no-
vel Boolean optimisation method for obtaining a reasonably short tree for a large number

of weak-learners of a boosting classifier. The two stage cascade built on the proposed
tree allows the conversion with any number of weak-learners, significantly speeding up a
conventional cascade as well as a single boosting classifier.

The remainder of the paper is organised as follows: Section 2 briefly reviews related
works. Overview on the conversion is given in Section 3 and the problem formulation as
Boolean optimisation in Section 4. Section 5 presents the proposed method. Experimental
results are shown in Section 6 and the conclusion is drawn in Section 7.

2 Related work

Boolean expression minimisation. The aim of Boolean expression minimization is to mi-
nimize the number of terms and binary variables in the Boolean expression. Algorithms
for the minimisation have mainly been studied in the circuit design [10]. Since circuits
have strictly predefined specifications exact minimization was the goal of most studies.
The complexity of a logic expression rises exponentionally when the number of binary va-
riables increases. Therefore, exact minimisation is an NP-hard problem for a large number
of variables. Conventional optimization methods are limited to a small number of binary
variables, typically from a few to about 15 variables [10]. Boolean minimisation has been
also applied to size down a redundant decision tree, represented by a Boolean table [11].
See Section 4.1 for an example.

Boosting and tree. There are few studies that connect a boosting classifier to a single
decision tree because boosting has been typically thought as a regularisation method of
multiple decision tree classifiers [9]. Grossmann has proposed the method grows a tree by
the boosting mechanism [7]. The resulting tree, called AdaTree, consequently shows a re-
duced computation cost with respect to Adaboost without need of a cascade. It, however,
has suffered from lack of generalisation due to its tree nature, showing much worse ac-
curacy than Adaboost in the face detection experiment and the synthetic data experiment
under noise. Zhou has first introduced an idea of representing a learnt boosting classifier
by a Boolean table and implementing it as a binary decision tree [6]. His solution is a
brute force search for all possible tree configurations, not involving a reasonable optimi-
sation method. The method could afford to only about 5 and 10 weak-learners. The speed
gain obtained seems not large over a standard boosting classifier and almost negligible
over a straightforward way of improving the boosting classifier in speed, which is called
Fast exit (See Section 5.2 for the fast exit method).

3 Conversion of a boosting classifier into a tree
A boosting classifier is closely related to a decision tree. Both a boosting classifier and a de-
cision tree are composed of weak-learners (or equivalently decision-stumps/split-nodes).

Whereas the boosting classifier puts decision stumps in a flat structure (See Figure 1(b)),
the decision tree has a deep and hierarchical structure (See Figure 2(b)). The different

4

Boosting classifier Super tree

APL: 20
weaklearners

*
- %
**r; B o
APL: 3.8
35 weaklearners
(a) (b)

Figure 2: Converting a boosting classifier into a tree for speeding up. (a) The decision region of
boosting (top) is smooth compared to a conventional tree (bottom). (b) The proposed tree preserves
the decision boundary of boosting and has many short paths speeding up 5 times.

structures lead different behaviours: Boosting has a better generalisation but is slower
than a tree. The decision regions of a boosting classifier are reasonably smooth, which
yields good generalisation performance. Figure 2(a) exemplifies the decision regions of
the two methods. Here part of negative (blue) data points are scattered in the middle of
positive (red) samples. The boosting classifier shows a reasonable decision smoothness,
while a conventional tree forms complex decision regions trying to perfect the classifi-
cation of training points, which often causes overfitting. Tree pruning and regularisa-
tion of multiple trees have been an important topic to relieve the overfitting of a decision
tree [9, 8]. We propose a method to grow a tree from the decision regions of a boosting
classifier which would avoid overfitting. As shown in Figure 2(b), the tree obtained by the
proposed method, called super tree, preserves the decision regions. (1) Super tree places a
leaf node on every region that is important to form the identical decision boundary (i.e.
accuracy). (2) Super tree has many short paths that reduces the average number of weak-
learners to use when classifying a data point. In the example, super tree on average needs
3.8 weak-learners to perform classification whereas boosting classifier needs 20. Note that
a booting classifier exploits all weak-learners learnt for every point.

4 Boolean optimisation formulation

A learnt boosting classifier is typically represented by the weighted sum of binary weak-
learners as

H(x) =) ashy(x), D

where «; is the weight and h; the i-th binary weak-learner in {—1, 1}. The learnt boosting
classifier splits a data space into 2™ primitive regions by m binary weak-learners. Regions

[wi[we]ws] Cc
R1 0 0 0

1, W1 g
R6 0 R2 0 0 1 0
R3 0 1 0 0
RS Ro » R4 0 1 1 1 »
R5 1 0 0 1
R1 0 W2
1 0 1 1
1 1 0 1
1 1 1 X

1 R6
R7 R3 e R7
o\! RS
W3
WiW2W3 v W1W2W3a v WiW2W3 v W1W2W3 —> W1v WiW2W3

Figure 3: Boolean expression minimisation for an optimally short tree. (a) A boosting classifier
splits the space by binary weak learners (left). The regions are represented by the boolean table
and the boolean expression is minimised (middle). An optimal short tree is built on the minimum
expression (right).

R;,i = 1,...,2™ are expressed as boolean codes (i.e. each weak-learner h; corresponds to
a binary variable w;). See Figure 3 for an example, where the boolean table is comprised
of 2° regions. The region class label c is determined by (1). Regions that have don’t care
labels are ignored in the optimisation. Region Ry in the example does not occupy the 2D
input space and is ignorable when representing decision regions. The region prior p(R;)
is introduced for data distribution as p(R;) = M,;/M where M; and M are the number of
data points in the i-th region and in total. The decision regions of the boosting classifier
are encoded by a set of regions represented as

B(R;) : boolean expression
c(R;) : region class label (2)
p(R;) : region prior

With the region conding, an optimally short tree is defined in terms of average expected
path length of data points as

where T denotes all possible configurations of a decision tree. E(It(R;)) is the expected
path length of the i-th region of T. The path length is simply the number of weak-learners
(or split-nodes) on the path to the i-th region. The decision tree should closely duplicate
the decision regions of the boosting classifier as a constraint of the optimisation: the re-
gions that do not share the same class label ¢(R;) must not be put in the same leaf-node of
the tree. Any regions of don't care labels are allowed to be merged with other regions for
the shortest path possible. Preserving the decision regions of the boosting classifier yields
reasonably smooth decision regions for good generalisation. The region smoothness is
defined by

(R — ()
™D A B, B, @

6

where H; is the hamming distance of the region boolean codes and c is the region label.
Neighbouring regions (i.e. the regions of small hamming distance) must have coherent
labels for the smoothness.

4.1 Discussion on boolean expression minimisation

Boolean expression minimisation has been used for hierarchical generalisation in [11]. The
expression for the table in Figure 3 can be minimised by optimally joining the regions that
share the same class label or don’t care label as

W1W2W3 vV W1W2W3 V W1W2W3 V W1W2W3
— W3 V W1W2W3

(5)

where V denotes OR operator. The minimised expression has a smaller number of terms.
Only the two terms corresponding to the joint regions R; — Rs and R, respectively are
left in the example. A short tree is then built from the minimised boolean expression by
placing more frequent variables at the top of the tree (See Figure 3(right))!. The method
for Boolean expression minimisation is close, but, however, not suited to our problem
that involves a large number of variables i.e. weak-learners. Furthermore, all regions are
treated with equal importance in the kind of methods. Note that we have formulated an
optimally short tree by considering data distribution in Section 4.

5 Growing a super tree

We propose a novel boolean optimisation method for obtaining a reasonably short tree for
a large number of weak-learners of a boosting classifier. The classifier information is effi-
ciently packed by using the region coding and a tree is grown by maximising the region
information gain. First, a base algorithm is explained, then its limitations and an impro-
ved method are presented. We use the notations in Section 4 to describe the algorithm.

Regions of data points. The number of primitive regions 2™ is intractable when m is large.
Regions R; that are occupied by any training data points are taken as input s.t. p(R;) > 0.
The number of input regions is thus smaller than the number of data points. Regions with
no data points are labeled don’t care.

Tree growing by the region information gain. We have found that the Huffman co-
ding [12] is closely related to our optimisation. It minimises the weighted (by region prior
in our problem) path length of code (region). The technique works by creating a binary
tree of nodes by maximising the entropy-based information gain. We similarly grow a
tree based on the region information gain for an optimally short tree. For a certain weak-
learner wj, j = 1, ..., m, the regions in the left split and the right split w.r.t. the weak-learner

'The example tree has the weak-learners arranged by weights «; in the hierarchy, which is not a general
case. See Figure 2 for the other example.

are readily given from the boolean expressions as

R, =R, \ Ry

where R, is the set of regions arriving at the node n and A is AND operator. At each node,
it is found the weak-learner that maximises

B ZRZ p ZRT p
ZRn p ZRn p

where p is the region prior and H is the entropy function of the region class distribution,
which is

AT =

H(R:) —

H(R:) (7)

Q(c) =) _p, where R} = {Rj|c(R;) = ¢} (8)

R

The node splitting is continued until all regions in a node have the coherent region label.

The key idea in the method above has two-folds: 1) growing a tree from the decision
regions and 2) using the region prior (data distribution). Compared to conventional trees
built on data points, the proposed tree is grown upon smooth decision regions guaran-
teeing good generalisation. Using the region prior helps getting an optimally short tree in
the sense of average path length of data points.

5.1 Extended regions

The base algorithm in the previous section seems sufficient for a low dimensional input
space e.g. 2D. Encoding only the regions of data points results in strictly different decision
regions from those of a boosting classifier. Regions of no data points may be assigned
different class labels from the original ones, since they are don’t cares in the tree learning.
When a test point falls into those regions, the boosting classifier and the tree would make
different decisions. Serious degradation is encountered in accuracy when the dimension
of data space is high for a given number of training data. Regions along the decision
boundary are apparently important although they do not have an actual data point when
training. Covering as much of the decision regions of the boosting classifier as possible
ensures good performance. Adding up the primitive regions is, however, soon compu-
tationally prohibitive. To help close duplication of the decision regions, we propose the
extended regions and the accordingly modified region information gain.

Extended regions. The region transformation is proposed to cover the decision regions
in a fairly sufficient and yet computationally tractable manner. It takes each primitive re-
gion of data point (R;) multiple times (See Figure 10) and pushes it closer into the decision
boundary by randomly flipping 1’s to 0’s (if the region class is positive) or 0’s to 1's (if ne-
gative) until the boosting sum gets close to 0. See Figure 4 for an example. The extended
region F'R; is then obtained by replacing all 0’s in the boolean code of the pushed region
with don’t care variables as e.g. B(ER;) = wixwsxx. Each extended region thus contains

8

Wi W2 W3 W4 W5 Sum C

Weight 1.0 0.8 0.7 0.5 0.2 8.2

Region 1 0 1 1 0 1.2 1
Boundaryregion 1 0 1 0 D 0 0.2 1
Extendedregion 1 X 1 X X 0.2-3.2 1

Figure 4: Extended region coding.

many primitive regions of the same class label including the ones near to the decision
boundary. Since the region space is big enough, it is unlikely to get identical extended
regions or many regions with significant overlaps by the random drawing. The extended
regions preserves the region class label ¢(R;) and prior p(R;).

Modified region information gain. When splitting nodes (See (6)) an extended region
can be placed in both left and right splits because of the existence of don’t care variables.
This doesn’t hurt the duplication of the decision regions but does increase the average tree
length by the repetition of same extended regions at different nodes. To compensate the
repetition, the information gain is modified as

R+ |R,|.

AT = (
where A7 is the information gain described in (7), which takes a value in [—o0,0]. The
first term always equals to one for the primitive regions but is in the range of [1, 2] for
the extended regions. The modified gain penalises weak-learners that put many extended
regions in both splits. The weight factor ¢ is set empirically (See Figure 11). See Figure 5
for the algorithm.

5.2 Two stage cascade

The proposed method works well up to several tens of weak-learners on a standard PC.
The two stage cascade is proposed for allowing any number of weak-learners of a boosting
classifier. It places the super tree at the first stage and the fast-exit method (described be-
low) at the second stage. The proposed design significantly speeds up the corresponding
two stage fast exit cascade, two stage boosting cascade, as well as a single boosting classi-
fier (See Section 6.2). The super tree as a general meta algorithm is not limited to two stage
cascade. It can be further speeded up by more stages as in a standard boosting cascade.
In the other sense, the proposed method can be seen as a convenient way of obtaining the
comparable speed-up to many stage cascade only by the single super tree or the proposed
two stage cascade. Note that designing a cascade requires a lot of parameters to be set,
which is obviously more difficult with more stages.

Algorithm: Growing a super tree

Input: a set of the data point regions 2 or the extended regions 'R, encoded

by {B, ¢, p}
Output: a decision tree

1.Start with a root node n = 1 containing the list of all regions R,,.

2.Fori=1,...m

3. Spit the node: (R}, R,) = split(R,, w;) (by (6)).

4. Compute the gain: A7 = gain(R;, R,) (by (7) or (9) for the extended re-
gion).

5.End

6.Find w; that maximises the information gain.

7.If the gain is sufficient, save it as a split node. Else, save it as a leaf node.

8.Go to a child of split node and recurse the steps 2-7 setting R,, = R, or R,.

Figure 5: Pseudocode of the algorithm

Fast-exit. It applies the weak-learners in the order of weights a and exits as soon as the
boosting sum (1) reaches to the value whose sign cannot be altered by the remaining weak-
learners. This method speeds up a boosting classifier for exactly the same accuracy regard-
less of the number of weak-learners.

6 Experiments

6.1 Classification of synthetic 2D data

We have made 2D synthetic data sets. Data points of two classes were generated from
Gaussian mixtures as shown in Figure 6. The bottom row shows the imbalanced sets that
have a big chunk of negative points at a certain location. The six test sets were created
by randomly perturbing the train sets. We have compared the two methods here: a boos-
ting classifier (AnyBoost implementation [5]) and the proposed tree using the data point
regions. Vertical and horizontal lines are weak-learners of boosting. Figure 7(left) and
(right) shows the results for the data sets in the top and bottom row respectively. The left
and right y-axis in the graph show the classification error rate and the average path length
i.e. number of weak-learners used per point. Note first that the both methods do drop the
accuracy when the number of weak-learners is increased indicating good generalisation.
The proposed method exhibited the same accuracy as the boosting classifier for all number
of weak-learners. While the boosting classifier linearly increased the average path length
for the number of weak-learners, the proposed method quickly converged significantly
reducing down the average path length. At 40 weak-learners, the super tree speeds up
the boosting classifier by around 10 times and 20 times for the balanced and imbalanced
cases respectively. As expected, the speed gain is bigger when the data distribution is im-
balanced, since the proposed method achieves shorter paths for more data point regions

10

Figure 6: 2D synthetic data sets. The bottom row shows the imbalanced data sets that have a big chunk
of negative samples at a location.

whereas the path length is fixed for all regions in Boosting.

6.2 Object detection

For training, we used the MPEG-7 face data set that has 11,845 face images [14]. BANCA
face set (520 faces) and Caltech background image sets (900 images) were exploited for
bootstrapping. The total number of negative images for training, which were either boots-
trapped or randomly drawn, is 50,128. We used 21,780 Haar-like features on integral
images as weak-learners. We have tested on the MIT+CMU frontal face test set [13], which
consists of 130 images with 507 labeled frontal faces. 507 face and 57000 random image
patches were cropped and resized into 24x24 images. Example images are shown in Fi-
gure 8. The methods include a boosting classifier, Fast exit, Fast exit (two-stage cascade),
Super tree and Super tree (two-stage cascade). For the super tree, we used the extended
regions. Fixing the accuracy at 0 threshold, we have compared the average path lengths
of the methods in Figure 9. The super tree speeds up the boosting classifier by 3-4.3 times
and the fast exit by 1.6-2.6 times. The two-stage cascade solution of 60 weak-learner super
tree and 200 weak-learner fast exit outperformed the standard boosting by 6.6-12.7 times
and even the two-stage cascade of 60 and 200 weak-learner fast exits by 2.5 times.

Figure 10 and Figure 11 shows performance of the super tree for the two internal pa-
rameters: the number of extended regions per primitive region and the power in the in-
formation gain (2). To obtain the close accuracy to the boosting classifier, the required
number of extended regions per region grew as the number of weak-learners of Boosting

11

T T T T T T T 40
=== Boosting error rate
Super tree error rate
02 f =@= Boosting path length 1 -
Super tree path length §’
2
2
: 5
é 8 20@
1
w o1t b %
S
S
m 6 <
N ta
v/ ?‘
o4 2
M
'
0 0
0 5 10 15 20 25 30 35 40
number of weaklearners
T T T T T T T 40
=== Boosting error rate
02k Super tree error rate |
=@= Boosting path length =
Super tree path length o
2
2
. 3
§ 120 N
S
Ww o1t 7 g
S
Q
>
<
,’ % 5
B SO SRS 5
O (v 1 1 1 1 1 1 1 O
0 5 10 15 20 25 30 35 40

number of weaklearners

Figure 7: Experimental results on the synthetic data. Super tree obtains the same accuracy as the
booting classifier significantly shortening the average path length for the balanced data sets (left)
and the imbalanced sets (right).

increased. The exponential growth in the number of extended regions made our single
tree solution limited to about 60-80 weak-learners. For about the given number of training
samples, using 200 extended regions and 100 weak-learners would start hitting theoretical
memory boundaries. The performance is not very sensitive for different parameter values
in the range as shown in Figure 11. The number of weak-learners and extended regions
was set as 40. Power 1-5 gave the best performance. The values smaller than 0.5 increased
the average path length and the values larger than 10 increased the error rate.

12

Haar-like features MPEG-7 face data Caltech background dataset MIT+CMU facetest set

- ﬂ!.lﬁ..’illlll

Figure 8: Example face images.

Boosting Fast exit Fast exit (cascade) Supertree Supertree (cascade)
No. of weak False False Average | pogq False Average | poq False Average | ppgq False Average | oo False SRR
learners positives negatives f;an‘g th positives | negatives Ipeantg th positives negatives IZE::Q th positives negatives Ipeantg th positives negatives f;‘g th
20 501 120 20 501 120 11.70 476 122 7.51
40 264 126 40 264 126 23.26 231 127 12.23
60 222 143 60 222 143 37.24 212 142 14.38
100 148 146 100 148 146 69.28 144 149 374 145 152 151
200 120 143 200 120 143 146.19 146 148 38.1 128 146 15.8

Figure 9: Experimental results on the face image sets.

No. weak-learners 10 20 30 40 50 60

No. per region 1 1 2 10 40 50
False+es/ super tree 593/157 367/146 292/136 262/129 203/142 224/129
False-es Boosting 588/157 378/143 291/137 264/126 202/142 222/143

Figure 10: Performance of super tree for the different numbers of extended regions per

region.
Power 0.5 1 3 5 10
Avg path length 16.4 12.3 11.9 14.5 15.8

False +es/False -es | 246/121 247123 237/124 235/120 251/132

Figure 11: Performance of super tree for varying power in the information gain.

Comparison with Random Forest

The single conventional decision tree of all possible pruning [9] has been shown to be
very poor. The accuracy of the single tree (false positives: 1995/false negatives: 120) is by
far worse than that of the single super tree of 20 weak-learners (false positives: 476/false
negatives: 122). The super tree was even shorter than the decision tree: the depth of the
super tree and conventional tree was about 7.5 and 9 respectively. It has been shown that
using more trees improves the accuracy of the decision tree but increases the classification

13

Supertree Random Supertree Random
method
Forest Forest
Avg path length 7.76 18.99 15.8 27.4
False +es/False -es 359/145 376/130 128/146 117132

Figure 12: Comparison with Random forest. Super tree is faster than RF by about 2 times at similar
accuracy.

time. We implemented Random Forest (RF) by various numbers of trees [8]. Figure 12
shows the average path length of super tree and RF by fixing the accuracy at 0 threshold.
The super tree outperforms RF. It is faster than RF by 1.73-2.45 times. Constructing forest
of super trees is an interesting open problem: it may improve the accuracy further taking
the advantage of super tree in speed.

6.3 Rapid tracking

Super tree is an effective tracking solution for rapid moving objects. Super tree achieves a
better tracking accuracy by faster classification than a boosting classifier. We have collec-
ted two sample sequences at 30 frames/second, one for training and the other for testing.
The positive train samples were collected using a guide rectangle and the negative samples
using randomly drawn patches around the guide rectangle. The pool of 21,780 haar-like
features was exploited for weak-learners. The super tree obtained from the boosting clas-
sifier of 60 weak-learners had 14 weak-learners as its average path length. The execu-
tion time of the trackers using two methods, which were implemented by Matlab mex
functions, is: 0.0015 (for integral images), 0.0117 (for weak-learners) and 0.0018 (for the
weighted sum by «a) seconds in Boosting, and 0.0015 (integral images) and 0.0027 (weak-
learners) seconds in Super tree. Thus, the execution rates of the two trackers including the
image capture time were 20 frames per second for boosting and 27 frames per second for
super tree. Figure 13 shows that the super tree tracks well the fast moving object in the
test sequence while the boosting tracker exhibits much drifting. The benefit of using Super
tree for rapid tracking would be bigger when a higher frame rate camera is available. The
execution rates for a 60 frame rate camera, based on the current speeds, are 31 frames (for
boosting) and 48 frames (for super tree).

6.4 Class segmentation

We have tested the method for the segmentation by pixel classification. Video sequences
collected from a camera mounted on a moving car were exploited for the experiment [15].
Boosting classifier and super tree were trained for the binary problem for the building class
against non-building class. 1323 DCT features were drawn from 21x21 RGB image patch
as weak-learners. The train set consisted of 7143 positive and 23217 negative pixels from
184 images of 11x15 pixel resolution. Randomisation in learning (similarly to Random

14

Figure 13: Performance of Boosting and Super tree trackers. Super tree tracker (solid red line)
achieves a better tracking accuracy by faster classification than Boosting tracker (dashed yellow
line).

Figure 14: Segmentation results.

forest) reduced the train time of the boosting classifier. The test set contained 38445 points
from 233 images. The correct recognition rate of Boosting of 40 weak-learners was 0.71 (as
global accuracy) or 0.736 (as average class accuracy). The super tree learnt by 10 extended
regions per region obtained the close accuracy as 0.70 (as global accuracy) or 0.728 (as
average class accuracy) using only 15 weak-learners on average. The accuracy obtained
seems comparable to [15]. Figure 14 shows the segmentation results.

7 Conclusion

We have proposed a novel way to speed up a boosting classifier. The problem is formu-
larised as boolean optimisation and a new method is proposed for boolean optimisation
with a large number of binary variables, i.e. weak-learners. The tree grown from the de-
cision regions of the boosting classifier, called Super tree, provides many short paths and
preserves the decision regions of the boosting classifier. The single super tree delivers the
close accuracy to the boosting classifier with a great speed-up for up to several tens of

15

weak-learners. The proposed two stage cascade allows any number of weak-learners. Ex-
periments have shown that the tree obtained is reasonably short in terms of average path
length outperforming a standard boosting classifier, fast exit, their cascade and Random
forest. The method has been also demonstrated for rapid object tracking and segmentation
problems.

16

Bibliography

[1] P. Viola and M. Jones, Robust real-time object detection, Int’l |. Computer Vision,
57(2):137-154, 2002.

[2] H. Grabner and H. Bischof, On-line boosting and vision, Proc. IEEE Conf. CVPR, pages
260-267, 2006.

[3] S. Avidan, SpatialBoost: Adding Spatial Reasoning to AdaBoost, Proc. ECCV, Graz,
Austria, 2006.

[4] A. Torralba, K. P. Murphy and W. T. Freeman, Sharing visual features for multiclass
and multiview object detection, IEEE Trans. on PAMI, 29(5):854-869, 2007.

[5] L. Mason, J. Baxter, P. Bartlett and M. Frean, Boosting algorithms as gradient descent,
Proc. Advances in Neural Information Processing Systems, pages 512-518, 2000.

[6] S. Zhou, A binary decision tree implementation of a boosted strong classifier, IEEE
Workshop on Analysis and Modeling of Faces and Gestures, pages 198-212, 2005.

[7] E. Grossmann, AdaTree: boosting a weak classifier into a decision tree, IEEE Workshop
on Learning in Computer Vision and Pattern Recognition, pages 105-105, 2004.

[8] L. Breiman, Random forests, Machine Learning, 45:5-32, 2001.

[9] J. Quinlan, Bagging, boosting, and c4.5, Proc. National. Conf. on Artificial Intelligence,
pages 725-730, 1996.

[10] H.Schwender, Minimization of Boolean Expressions Using Matrix Algebra, Technical
report, Collaborative Research Center SFB 475, University of Dortmund, 2007.

[11] J. Chen, Application of Boolean expression minimization to learning via hierarchical
generalization, Proc. ACM symposium on Applied computing, pages 303-307, 1994.

[12] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms, MIT Press
and McGraw-Hill, 2001.

[13] H. Rowley, S. Baluja, and T. Kanade, Neural network-based face detection, IEEE
Trans. on PAMI, 20:22-38, 1998.

17

[14] T-K. Kim, H. Kim, W. Hwang and J. Kittler, Component-based LDA Face Description
for Image Retrieval and MPEG-7 Standardisation, IVC, 23(7):631-642, 2005.

[15] G. Brostow, J. Shotton, J. Fauqueur and R. Cipolla, Segmentation and Recognition
using Structure from Motion Point Clouds, Proc. ECCV, Marseilles, 2008.

18

