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Abstract– We present a novel method of learning a set of locally linear trans-
formations called ”Locally Linear Discriminant Analysis (LLDA)” for nonlinear
classification problems. The underlying idea is that global nonlinear data struc-
tures are locally linear and local structures can be linearly aligned. Input vectors
are projected into each local feature space by linear transformations found to yield
locally linearly transformed classes that maximize the between-class covariance
while minimizing the within-class covariance in the aligned output space. This
maximizes the separability of classes locally while promoting consistency between
the multiple local representations of single class objects. In face recognition, linear
discriminant analysis (LDA) has been widely adopted owing to its efficiency but it
does not capture nonlinear manifolds of faces which exhibit pose variations. Con-
ventional kernel-based nonlinear classification methods such as generalized dis-
criminant analysis (GDA) and support vector machine (SVM) classification have
the drawbacks of high computational cost and potential overfitting. Our method
is suitable for multi-class nonlinear discrimination and it is highly computation-
ally efficient compared to GDA. Due to the linear base structure of the solution the
method does not suffer from overfitting. A novel gradient based learning algo-
rithm is proposed for finding the optimal set of local linear bases. The optimiza-
tion does not exhibit the problem of local maxima. The discriminative and aligned
transformation functions facilitate robust face recognition in a low dimensional
subspace under pose variations using a single model image. The classification re-
sults are given for both synthetic and real face data.

Keywords– Linear Discriminant Analysis, Generalized Discriminant Analysis,
Support Vector Machine, Dimensionality Reduction, Face Recognition, Feature Ex-
traction, Pose Invariance, Subspace Representation
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Introduction

1 Introduction

The effectiveness of pattern classification methods can seriously be compromised
by various factors which often affect sensory information about an object. Fre-
quently observations from a single object class are multi-modally distributed and
samples of objects from different classes in the original data space are more closely
located to each other than to those of the same class. The data set of face images
taken from a certain number of different viewing angles is a typical example of
such problems. It is because the appearance change of face images due to pose
changes is usually larger than that caused by different identities. Generally, the
face manifold is known to be continuous with respect to continuous pose changes
in [23]. The proposed method for multi-modally distributed face classes may be
useful generally, as a continuous pose set can be divided into many subsets of
multi-modal distributions.

Linear Discriminant Analysis (LDA) [8, 20, 21] is a powerful method for face
recognition yielding an effective representation that linearly transforms the orig-
inal data space into a low dimensional feature space where the data is as well
separated as possible under the assumption that the data classes are gaussian
with equal co-variance structure. However, the method fails to solve non-linear
problems as illustrated in Figure 1 (a), because LDA only considers a single lin-
ear transformation in a global coordinate system. The transformed face classes
are still multi-modally distributed. The multiple LDA system [7, 16, 25] which
adopts several independent local transformations attempts to overcome the short-
comings of LDA but it fails to learn any global data structure as shown in Figure 1
(b). In the LDA mixture model [7, 16], it is assumed that single class objects are
distributed normally with an identity covariance matrix structure. Then it just fo-
cuses on maximizing the discriminability of the local structures and it does not
make any effort to achieve consistency of the local representations for any single
object class. In the upper picture of Figure 1 (b), the two data sets C11 and C12

corresponding to the different modalities of a class are unfortunately positioned in
different directions of the corresponding local components, u11 and u21, therefore
having different representations in a global coordinates as illustrated below. Dif-
ferent classes are mixed up in the transformed space. The view-based method for
face recognition proposed by Pentland [25] would experience the same difficulty
in these circumstances. Following their idea, we could divide images into differ-
ent pose groups and then train LDA separately for each group, which is similar to
using the LDA mixture. Because these LDA bases do not encode any relationships
of the different pose groups, it is not guaranteed that this ’view-based LDA’ would
yield a consistent representation of different pose images of a single identity. In
many conventional face recognition systems [7, 18, 20, 21, 25] which adopt a linear
machine such as LDA or LDA mixture model, as many gallery samples as possible
are required so as to capture all the modes of the class distributions. However, it is
often difficult to obtain various mode (or pose) images of one person.

Support vector machine (SVM) based on kernels has been successfully applied
for nonlinear classification problems such as face detection [29, 30]. However, this
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Figure 1: Comparison of LDA, LDA mixture and LLDA for the non-linear classifica-
tion problem. Only LLDA guarantees that the two multi-modally distributed face
classes in the input space are transformed into the class-wise single-modally
distributed in the output space. Each upper plot shows the simulated data distri-
butions and the components found by LDA, LDA mixture and LLDA. In the lower
graphs the transformed class distributions in the global output coordinate system
are drawn. The data is generated by C11 = {X ∼ N(21.6, 2), Y ∼ N(21.6, 1)},
C12 = {X ∼ N(7.5, 2), Y ∼ N(7.5, 0.8)}, C21 = {X ∼ N(26, 2), Y ∼ N(16, 2)},
and C22 = {X ∼ N(8, 2), Y ∼ N(16, 1.2)},where N(a, b) is a normal variable.
200 data points with mean a and standard deviation b are drawn for each mode.
Cij is the j-th cluster of the i-th class, uij is the j-th component of the i-th cluster
and ui denotes the i-th component of the output coordinate system.

is inefficient for multi-class recognition and inappropriate when a single sample
per class is available to build a class model. By design generalized discriminant
analysis (GDA) [2, 14, 22, 31] is suitable for multi-class face recognition problems
whereby the original data is mapped into a high-dimensional feature space via a
kernel function. The GDA representation learnt from training face classes of var-
ious pose images can be exploited to achieve pose robust representation of novel
face classes. Therefore, recognition with a single model image of the novel classes
is facilitated. However, GDA generally has the drawback of high computational
cost in classification and overfitting. In applications such as classification of large
data sets on the Internet or video, the computational complexity is particularly
important. The global structure of nonlinear manifolds was represented by a lo-
cally linear structure in [5, 11]. These methods perform unsupervised learning for
locally linear dimensionality reduction but not a supervised learning for discrimi-
nation.

In this study, several locally linear transformations are concurrently sought so
that the class structures manifest by the locally transformed data are well sepa-
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Introduction

rated in the output space. The proposed method is called ”Locally Linear Discrim-
inant Analysis (LLDA)”. The underlying idea of the proposed approach is that
global nonlinear data structures are locally linear and local structures can be lin-
early aligned. Single class training objects, even if multi-modally distributed, are
transformed into a cluster that is as small as possible with a maximum distance to
the different class training objects, by a set of locally linear functions, as illustrated
in Figure 1 (c). The linear functions learnt from training face classes of various pose
images can be efficiently generalized to novel classes. Even when a single model
image per class is provided, it is much easier to recognize a novel view image in
the aligned output space.

The advocated method maximizes the separability of classes locally while pro-
moting consistency between the multiple local representations of single class ob-
jects. Compared with the conventional nonlinear methods based on kernels, the
proposed method is much more computationally efficient because it only involves
linear transformations. By virtue of its linear base structure the proposed method
also reduces overfitting normally exhibited by conventional non-linear methods.
The transformation functions (or bases) learned from the face images of two differ-
ent views are visualized in the Figure 2 (a). The functions can be exploited as the
bases of a low dimensional subspace for robust face recognition. The basis func-
tions of each cluster are specific to a particular facial pose. We note two interesting
points in this Figure. First the bases of each cluster are similar to those of classical
LDA and this ensures that face images of different identities at the same pose are
discriminative. Secondly, the corresponding components of the two different clus-
ters, for example, uf1 and ur1 are aligned to each other. They are characterized by
a certain rotation and scaling with similar intensity variation. In consequence, face
images of the same identity at different poses have quasi-invariant representation
as shown in Figure 2 (a) and (b). For conciseness, only four face classes are plotted
in the subspaces of Principal Component Analysis (PCA) [24], view-based LDA
(or LDA mixture) and LLDA in Figure 2 (b). Each class has the four samples of
two different poses and two different time sessions. While LDA and view-based
LDA have shuffled class samples, LLDA achieves class distinctive distributions of
samples.

The chapter is organized as follows: The next section briefly reviews the con-
ventional methods for linear and nonlinear discriminant analysis. The proposed
LLDA method is formulated in Section 3 and a solution of the optimization prob-
lem involved is presented in Section 4. Section 5 further simplifies the proposed
method by replacing the Gaussian mixture model with the case that combines K-
means clustering. Section 6 is devoted to the analysis of the computational com-
plexity. Section 7.1 presents the results of experiments performed to demonstrate
the beneficial properties of the proposed method on synthetic data. In Section 7.2,
the method is applied to face recognition problem. Conclusions are drawn in Sec-
tion 8.
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Figure 2: LLDA Representation. (a) Locally discriminative and aligned LLDA bases yield
similar representations of posed face images. uij denotes the j-th component of
the i-th cluster. (b) Face image distributions in the first three dimensions of PCA,
view-based LDA and LLDA. Whereas LDA and view-based LDA have shuffled
class samples, LLDA achieves class distinctive distributions. Different classes
are marked as different symbols.

2 Review of Conventional Linear and Nonlinear Dis-

criminant Methods

2.1 Linear Discriminant Analysis

LDA is a class specific method in the sense that it represents data to make it useful
for classification [8]. Let X = {x1,x2, ...,xM} be a data set of given N-dimensional
vectors of face images. Each data point belongs to one of C object classes {X1, ...,Xc, ...,XC}.
The between-class scatter matrix and the within-class scatter matrix are defined as

B =
C∑

c=1

Mc(mc −m)(mc −m)T , W =
C∑

c=1

∑
x∈Xc

(x−mc)(x−mc)
T ,

where mc denotes the class mean and m is the global mean of the entire sam-
ple. The number of vectors in class Xc is denoted by Mc. LDA finds a matrix, U,
maximizing the ratio of the determinant of the between-class scatter matrix to the
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Review of Conventional Linear and Nonlinear Discriminant Methods

determinant of the within-class scatter matrix as

Uopt = max
argU

|UTBU|
|UTWU| = [u1,u2, ...,uN ].

The solution {ui|i = 1, 2, ..., N} is a set of generalized eigenvectors of B and W
i.e., Bui = λiWui. Usually PCA is performed first to avoid a singularity of the
within-class scatter matrix commonly encountered in face recognition [20, 21].

2.2 Generalized Discriminant Analysis

The GDA [2] is a method designed for non-linear classification based on a kernel
function Φ which transforms the original space X to a new high dimensional fea-
ture space Z s.t. Φ : X → Z. The within-class (or total) scatter and between-class
scatter matrix of the non-linearly mapped data is

BΦ =
C∑

c=1

Mcm
Φ
c (mΦ

c )T , WΦ =
C∑

c=1

∑
x∈Xc

Φ(x)Φ(x)T ,

where mΦ
c is the mean of class Xc in Z and Mc is the number of samples belonging

to Xc. The aim of the GDA is to find such projection matrix UΦ that maximizes the
ratio

UΦ
opt = max

argUΦ

|(UΦ)TBΦUΦ|
|(UΦ)TWΦUΦ| = [uΦ

1 , ...,uΦ
N ].

The vectors, uΦ can be found as the solution of the generalized eigenvalue problem
i.e. BΦuΦ

i = λiW
ΦuΦ

i . The training vectors are supposed to be centered (zero mean,
unit variance) in the feature space Z. From the theory of reproducing kernels, any
solution uΦ ∈ Z must lie in the span of all training samples in Z, i.e.,

uΦ =
C∑

c=1

Mc∑
i=1

αciΦ(xci),

where αci are some real weights and xci is the i-th sample of class c. The solution is
obtained by solving

λ =
αTKDKα

αTKKα
,

where α = (αc), c = 1, ..., C is a vector of weights with αc = (αci), i = 1, , Mc. The
kernel matrix K(M ×M) is composed of the dot products of non-linearly mapped
data, i.e.

K = (Kkl)k=1,...,C, l=1,...,C ,
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where Kkl = (k(xki,xlj))i=1,...,Mk, j=1,...,Ml
. The matrix D(M×M) is a block diagonal

matrix such that
D = (Dc)c=1,...,C ,

where c-th matrix Dc on the diagonal has all elements equal to 1/Mc. Solving
the eigenvalue problem yields the coefficient vectors α that define the projection
vectors uΦ ∈ Z. A projection of a testing vector xtest is computed as

(uΦ)T Φ(Xtest) =
C∑

c=1

Mc∑
i=1

αcik(xci,xtest).

3 Locally Linear Discriminant Analysis (LLDA)

The proposed method, LLDA is applicable to multi-class nonlinear classification
problems by using a set of locally linear transformations. Similarly to the notation
adopted in Section 2, consider a data set X = {x1,x2, ...,xM} of N-dimensional
vectors of face images and C classes {X1, ...,Xc, ...,XC}. The input vectors are
clustered into K subsets denoted by k, k = 1, ..., K and each subset k represents
a cluster which a different transformation function is applied to. A cluster is de-
fined by K-means clustering or Gaussian mixture modelling of the input vectors.
The number of clusters K is chosen to maximize an objective function defined on
the training set. Because K usually is a small positive integer, we can make the
best choice of K empirically. Assuming that the multi-modality of the face data
distribution is caused by the different poses, it is also pertinent to select K as the
number of pose groups. However, general model order selection for a high dimen-
sional data set remains an open problem. The basic LLDA approach draws on the
notion of ’soft clustering’, in which each data point belongs to each of the clusters
with a posterior probability P (k|x). The algorithm, that is combined with ’hard’
K-means clustering, will be discussed in Section 5. We define the locally linear
transformation Uk = [uk1,uk2, ...,ukN ], k = 1, ..., K such that

yi =
K∑

k=1

P (k|xi)U
T
k (xi − µk), (1)

where N is the dimension of the transformed space. The mean vector of the k-th
cluster µk is described by

µk =

(
M∑
i=1

P (k|xi)xi

)
/

(
M∑
i=1

P (k|xi)

)
. (2)

8
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The locally linear transformation matrices Uk are concurrently found so as to max-
imize the criterion function, J . Two objective functions are considered,

J1 = log(|B̃|/|W̃|), and J2 = (1− α)|B̃| − α|̇W̃|, (3)

where B̃ and W̃ are the between-class and within-class scatter matrices in the lo-
cally linear transformed feature space respectively. The constant α takes values
from the interval [0 1]. The objective functions maximize the between-class scatter
while minimizing the within-class scatter in the locally transformed feature space.
One of the differences between the two defined objective functions is manifest in
the efficiency of ”learning”. The log objective function J1 has the benefit of not
requiring a free parameter α but it is more costly computationally. The function
J2 can efficiently be optimised iteratively, once α is selected. This is exemplified
in the subsequent section. In terms of their performance, the two approaches are
similar as reported in the experimental section 7.1. The global mean m̃ of all the
transformed samples is

m̃ =
1

M

M∑
i=1

yi =
1

M

M∑
i=1

K∑

k=1

P (k|xi)U
T
k (xi − µk), (4)

where M is the total number of the samples. By substituting for µi from equa-
tion (2), we get m̃ =

−→
0 . The sample mean for class c which consists of Mc samples

is given by

m̃c =
1

Mc

∑
x∈Xc

y =
K∑

k=1

UT
k mck, (5)

where mck = 1
Mc

∑
x∈Xc

P (k|x)(x− µk).

The term mck denotes the sample mean of a class c in the k-th cluster. Because
the transformation is defined with respect to the original cluster mean µk, the total
mean m̃k of the transformed data in every cluster becomes zero. Using equations
(4) and (5) the transformed between-class scatter matrix is given as:

B̃ =
C∑

c=1

Mc(m̃c − m̃)(m̃c − m̃)T

=
C∑

c=1

Mc

(
K∑

k=1

UT
k mck

)(
K∑

k=1

UT
k mck

)T

(6)

=
K∑

k=1

UT
k BkUk +

K−1∑
i=1

K∑
j=i+1

UT
i BijUj +

(
K−1∑
i=1

K∑
j=i+1

UT
i BijUj

)T

9
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where

Bk =
C∑

c=1

Mcmckm
T
ck, and Bij =

C∑
c=1

Mcmcim
T
cj.

The between-class scatter matrix consists of the scatter matrices associated with
the respective clusters and the correlation matrix of the data samples belonging to
two different clusters. The correlation matrix encodes the relationships of the two
local structures for alignment. Similarly, the within-class scatter is defined by

W̃ =
C∑

c=1

∑
x∈Xc

(y − m̃c)(y − m̃c)
T (7)

=
K∑

k=1

UT
k WkUk +

K−1∑
i=1

K∑
j=i+1

UT
i WijUj +

(
K−1∑
i=1

K∑
j=i+1

UT
i WijUj

)T

,

Wk =
C∑

c=1

∑
x∈Xc

(P (k|x)(x− µk)−mck) (P (k|x)(x− µk)−mck)
T

Wij =
C∑

c=1

∑
x∈Xc

(P (i|x)(x− µi)−mci)
(
P (j|x)(x− µj)−mcj

)T
.

Matrix Wk describes a local cluster and Wij is the cross-term of two local clusters.

Generalization. Please note that the proposed algorithm without the cross terms
Bij and Wij would adhere to the same concept as the LDA mixture model by fo-
cusing just on the local separability. Moreover, the defined criterion with K = 1 is
identical to that of the conventional LDA.

4 Gradient based Solution for LLDA

In this section, we provide an efficient iterative optimisation method based on
a gradient learning algorithm for an optimal set of locally linear transformation
functions. While it is hard to find good parameters of a kernel function for new
data in the conventional GDA, the proposed learning has only parameters which
reduce or eliminate overfitting. The discriminant based on such a piecewise linear
structure has the benefit of optimising a convex function with respect to the set of
basis vectors of the local coordinates, yielding a unique maximum.

The method is based on a one-basis vector solution for uk1, k = 1, ..., K. Other
methods based on incremental one-basis at a time solution can be found in [1, 33,
34] for discriminant or independent component analysis criteria. The proposed
gradient method yields a global maximum solution by virtue of the criterion func-
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tion being 2nd-order convex with respect to all the variables uk1, k = 1, ..., K. We
need to run the one-basis algorithm several times to obtain a multidimensional
solution Uk = [uk1,uk2, ...,ukN ], k = 1, ..., K. The vector orthogonalization is per-
formed to prevent different vectors from converging to the same maxima in every
iteration. We seek the vectors u which maximize the criterion function under the
constraint of being unit norm vectors:

Max J1 or J2,

for ||ukn|| = 1, k = 1, ..., K and n = 1, ..., N. (8)

This constrained optimization problem is solved by the method of projections on
the constraint set [1]. A vector normalization imposing a unit norm is executed
after every update of the vector. The learning rules are as follows:

Do the following steps with an index n starting from 1 to N for ukn, k = 1, ..., K.

1. Randomly initialize K unit vectors ukn.

2. Calculate the gradient of the objective function with respect to the variables
ukn by

∂J1

∂ukn

=
(
2B̃−1Bk − 2W̃−1Wk

)
ukn +

K∑

i=1,i6=k

(
2B̃−1Bki − 2W̃−1Wki

)
uin, or

∂J2

∂ukn

= (2(1− α)Bk − 2αWk)ukn +
K∑

i=1,i 6=k

(2(1− α)Bki − 2αWki)uin. (9)

3. Update with an appropriate step size η as

∆ukn ← η
∂J

∂ukn

. (10)

4. Carry out the deflationary orthogonalization by

ukn ← ukn −
n−1∑
i=1

(
uT

knuki

)
uki. (11)

5. Normalize the vectors ukn by

ukn ← ukn/||ukn||. (12)

11
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Repeat the processes 2 ∼ 5 until the algorithm converges to a stable point, set
n := n + 1 and then go to the step 1.

Note that the two objective functions have different learning costs. When calcu-
lating the gradients of J2 in (9), all the matrices, here scalar values, are previously
given but the two matrices B̃−1,W̃−1 in the learning of J1 should be iteratively
updated. For the synthetic data example given in Figure 1, the optimization of J1

takes about 15 times longer than that of J2. While the learning of J1 has a benefit
of avoiding a free parameter α, J2 has a simpler optimization cost when the para-
meter α is fixed. By changing α, one can control the importance of the variance of
the between-class to that of the within-class data distributions. The orthogonaliza-
tion (11) ensures that the proposed discriminant is defined by orthonormal basis
vectors in each local coordinate system. The orthonormalisation of the bases yields
more robust performance in the presence of estimation error (please refer to [33, 34]
for the details). The benefits of orthonormal bases in discriminant analysis over
the classical LDA have also been explained in the previous studies. Although we
do not provide a proof of convergence or uniqueness of the gradient based iter-
ative learning method, its convergence to a global maximum can be expected by
virtue of the criterion being a 2nd-order convex function with respect to a basis
vector, ukn, of each local coordinate system, and the joint set of the basis vectors
ukn, k = 1, ..., K, as explained in [3, 17]. Figure 3 shows the convergence charac-
teristics of the learning process for the synthetic data presented in Figure 1. The
constant α was explored in steps of 0.1 and 0.1 was found to maximize the value
of J2. The value of J2 according to the angles of basis vectors has a unique global
maximum. It is also noted that the gradient optimization method of the objective
function quickly converges regardless of constant α. The learning using the objec-
tive function J1 also stably approaches a unique maximum.

Lagrangian method for the constrained optimization. A solution to
the constrained optimization problem can also be obtained by using the method of
Lagrangian multipliers as

L = (1− α)|B̃| − α|W̃| −
K∑

k=1

Λk(U
T
k Uk − I), (13)

where I is the identity matrix and the diagonal matrix of eigen-values is

Λk =




λk1 0
. . .

0 λkN



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Figure 3: Convex optimization in LLDA learning. The proposed gradient-based learning
is performed for the data distribution shown in Figure 1, where K is set to 2
and step size η is fixed to 0.1. (a) Value of the criterion J2 (left) as a function
of orientation of u11,u21 with α = 0.1. The distributions of the two classes
C1 = C11

⋃
C12, C2 = C21

⋃
C22 on the first major component u1, are drawn

(right) as a series while J2 is maximized. (b) Convergence graphs of J2 with
α = 0.1, 0.5 and J1.

The gradient of the Lagrangian function with respect to the basis vectors is

∂L

∂ukn

= (2(1− α)Bk − 2αWk − 2λknI)ukn +
K∑

i=1,i 6=k

(2(1− α)Bki − 2αWki)uin = 0

(14)
The solution can be found by numerical optimization of the Lagrangian function.
However, in practice, a numerical optimization can only be used in low dimen-
sional data spaces. As a reference, we utilized the numerical optimization ”solve”
function in Matlab to solve the two dimensional problem shown in Figure 1. The
constraint optimization took 600 times longer than the gradient based optimization
of J2. The two proposed methods of gradient based learning are much favoured
for their efficiency.
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5 LLDA with K-means Clustering

Let us revisit the basic model derived in Section 3 by considering the special case
involving a discrete posterior probability. K-means clustering divides a data set
into disjoint subsets. If the data point x belongs to the k∗-th cluster, P (k∗|x) = 1
and P (k|x) = 0 for all the other k’s. The mean vector of the k-th cluster µk in (2)
can be rewritten by

µk =

(∑
x

P (k|x)x

)
/

(∑
x

P (k|x)

)
=

(∑

x∈k

x

)
/M ′

k, (15)

where M ′
k is the sample number of the cluster k. The defined transformation in (1)

becomes
y = UT

k (x− µk) for x ∈ k. (16)

The definition of the global mean (4) and the class mean (5) changes as follows:

m̃ =
1

M

K∑

k=1

UT
k

∑

x∈k

(x− µk) =
−→
0 , m̃c =

K∑

k=1

UT
k mck, (17)

where
mck =

1

Mc

∑

x∈Xc
T

k

(x− µk).

The transformed between-class matrix (6) and the within-class scatter matrix (7)
can similarly be expressed by changing the notation from P (k|x) to x ∈ k. The
learning algorithm in Section 4 finds the optimal set of locally linear transformation
Uk, k = 1, ..., K.

When a new pattern xtest is presented, it is first assigned to one of the clusters
by

xtest ∈ k∗ = min
argk

||xtest − µk|| (18)

and transformed by using the corresponding function

ytest = UT
k∗(xtest − µk∗). (19)

6 Computational Complexity

The complexity of the algorithms depends on the computational costs associated
with extracting the features and with matching.

14
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Feature extraction. For the linear subspace methods such as PCA and LDA, the
cost of feature extraction is determined by the dimensionality N of the input vector,
x, and the number of components of the subspace S. The cost of extracting features
using linear methods is approximately proportional to N × S. In the nonlinear
subspace methods like the GDA, the n-th component of the projection of vector x
is computed as

yn =
M∑
i=1

αnik(xi,x), (20)

where M is the total number of training patterns, αni is a real weight and k denotes
a kernel function. The cost of extracting features of the GDA is about N × S ×M .
The proposed method, LLDA has a similar cost with that of PCA or LDA de-
pending on the preceding clustering algorithm. When a hard clustering such as
K-means is applied, the cost of extracting features is N × (S + K), where the addi-
tional term N ×K is for assigning a cluster to the input. When a soft clustering is
applied, the cost is multiplied by the number of clusters, i.e., N ×S×K. Note that
usually K ¿ M .

Matching. When the data points are represented as the S dimensional feature
vectors and C gallery samples are given for the C class categories, the matching
cost for recognition is C × S . This applies to all, the linear, nonlinear and the
proposed subspace methods.

7 Experiments

7.1 Results on Synthetic Data

Two sets of 2-dimensional synthetic data were experimented with. Set 1 has three
classes which have two distinct modes in their distributions generated respectively
by

X1 = {X ∼ N(7, 0.9), Y ∼ N(4.1, 0.8)}
⋃
{X ∼ N(−8.4, 0.9), Y ∼ N(−3, 0.7)}

X2 = {X ∼ N(5, 0.9), Y ∼ N(0.1, 1)}
⋃
{X ∼ N(−4, 0.9), Y ∼ N(0.1, 0.6)}

X3 = {X ∼ N(2.9, 0.9), Y ∼ N(2.9, 0.5)}
⋃
{X ∼ N(−4.2, 0.9), Y ∼ N(−4.2, 0.4)}

, where N(a, b) is a normal variable which has a mean a and standard deviation b.
200 data points were drawn from each Gaussian mode. Set 2 has two classes which
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have three distinct peaks in the distributions generated by

X1 = {X ∼ N(4.4, 1), Y ∼ N(5.4, 0.5)}
⋃
{X ∼ N(−4.7, 1), Y ∼ N(−3.9, 0.2)}

⋃
{X ∼ N(4.4, 1), Y ∼ N(−7.8, 0.8)}

X2 = {X ∼ N(7.6, 1), Y ∼ N(2.1, 0.9)}
⋃
{X ∼ N(−5, 1), Y ∼ N(−0.9, 0.6)}

⋃
{X ∼ N(1.6, 1), Y ∼ N(−9.9, 0.7)}

Conventional LDA, mixture of LDA, and GDA with the radial basis function (RBF)
as a kernel are compared with LLDA in terms of classification error. Euclidean dis-
tance(E.D.), normalized correlation(N.C.) and Mahalanobis distance(M.D.) were
utilized as similarity functions for the nearest neighbor (N.N.) classification. It is
noted that all the transformed data points were compared with the sample mean
of each class in (5).

In the method of LLDA, the number of clusters, K, was selected to maximize
the value of the objective function. For the example of the data of Set 1, the peak
values of J1 changed with K as follows: -7.14, 2.97, 0.85 for K = 1, 2, 3 respectively,
so the number K = 2 was chosen. This is much simpler than the parameter selec-
tion of RBF as a kernel function in GDA, because the standard deviation of RBF is
hard to initialize and it is a real (non integer) value. The axes of LDA, LDA mixture,
LLDA are drawn in Figure 4. Table 1 shows the average number of classification
errors with their standard deviation and the relative costs of feature extraction.
It is apparent that the proposed discriminant can well solve the non-linear clas-
sification problem on which the conventional linear methods fail and it is much
profitable in terms of computational efficiency as compared to GDA. The feature
extraction complexity of the proposed method is about 1/270 of that of GDA in
this example. Although the accuracy of GDA was slightly better, it is noted that
the kernel parameter of RBF in GDA was exhaustively searched to find the best
performance for the given data. In contrast, the proposed algorithm based on the
log objective function has only a small integer K to be adjusted and the learning
process is also much faster. Additionally note that, when the class distributions
have a single mode, LLDA with K = 1 yields a successful separation by behaving
like the conventional LDA. LLDA with K = 1 is identical to the conventional LDA
with the exception of the orthonormal constraint imposed on the axes by LLDA.

7.2 View-invariant Face Recognition with One Sample Image

The proposed algorithm has been validated on the problem of free pose face recog-
nition in the scenario when only a single frontal image of each class is available as
a gallery image. To recognize a novel view face, some prior experiences of face
view changes are required. Conventional discriminative subspace methods such

16
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Figure 4: Simulated data distributions and the components found. Black solid lines
represent the first major components and gray dashed lines the second compo-
nents. (a) For Set 1. (b) For Set 2.

as LDA and GDA can be applied to learn a robust representation from any pro-
totype face set which exhibits different poses. GDA has a benefit of capturing
any nonlinear manifolds of face pose changes. Then, the learned subspace repre-
sentation can be applied to new test identities. In contrast, SVM which performs
binary classification and requires a considerable number of training samples for
each class, is completely inappropriate for this scenario.

There are a number of conventional techniques that have been developed for
view-invariant face recognition [4, 6, 10, 12, 13, 15, 25, 26, 28]. In spite of successes
of some approaches [6, 10, 12, 13, 26], they have an important drawback of re-
quiring dense correspondences of facial features for image normalization or more
than one model images. The step of correspondence solving or detection of abun-
dant salient facial features, which is needed for separating the shape and texture
components of face images in these methods, is usually difficult itself. Errors in
correspondences seriously degrade the performance of the subsequent recognition
methods as shown in [12]. In our experiments, the proposed algorithm, LLDA,
is compared with PCA, LDA and GDA as the benchmark subspace methods that
have been successfully applied to face recognition in the past and FaceIt(v.5.0), the
commercial face recognition system from Identix. FaceIt ranked top overall in the
Face Recognition Vendor Test 2000 and 2002 [?, 32].

Database: We used the XM2VTS data set annotated with pose labels of the face.
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E.D. N.C. M.D. Cost
Set1 (400 samples/class)

LDA 266±115 266±115 81±61 1
LDA mixture 254±27 255±23 169±45 1+ω

GDA 4.3±1.1 4.3±1.1 4.4±0.5 270
LLDA J1 + km 7.6±3.5 7.6±3.5 7±3.4 1+ω

LLDA J2 + km 7.6±3.5 8±3.6 7.3±3.7 1+ω

LLDA J1 + GMM 7.6±3.5 8±3.6 7.3±3.7 2+ω

Lagran. J2 7.6±3.2 8±2.6 7.3±2.8 1+ω

Set2 (600 samples/class)
LDA 308±129 308±129 207±272 1

LDA mixture 205±1.4 205±1.4 206±7 1+ω

GDA 4±1.4 4±1.4 4±0 278
LLDA J1 + km 9.5±3.5 9.5±3.5 7.5±3.5 1+ω

LLDA J2 + km 8±1.4 8±1.4 7±2.8 1+ω

Table 1: Classification Results (number of errors). ω indicates the computational cost
of deciding which cluster a new pattern belongs to. It is usually less than 1.
’LLDA J1 +km’ is the LLDA of the objective function J1 with K-means clustering
algorithm. ’LLDA J1 + GMM’ indicates the LLDA of the objective function J1 with
Gaussian mixture modelling. ’Lagrangian J2’ denotes a numerical solution of the
Lagrangian formulation.

The face database consists of 2950 facial images of 295 persons with 5 pose vari-
ations and 2 different time sessions which have 5 months time elapse. The data
set consists of 5 different pose groups (F,R,L,U,D) which are captured at frontal
view, about ±30 horizontal rotations and ±20 vertical rotations. The two images
of a pose group ’F’ captured at different times are denoted by F1 and F2. This may
be the largest public database that contains images of faces taken from different
view points. The images were normalized to 46*56 pixel resolution with a fixed
eye position and some normalized data samples are shown in Figure 5. The face
set is partitioned into the three subsets: 1250 images of 125 persons, 450 images of
45 persons and 1250 face images of 125 persons for the training(Tr), evaluation(Ev)
and test(Te) respectively. Please note that the three sets have different face identi-
ties. For the test of the commercial FaceIt system, the original images were applied
to the system with the manual eye positions.

Protocol and Setting: The training set is utilized to learn the subspace representa-
tion of the conventional PCA/LDA/GDA methods and LLDA with K-means. For
efficiency of learning, all of the algorithms were applied to the first 80 (λ80/λ1 =
0.004) eigenfeatures of the face images. Figure 6 shows the plots of eigenvalues
and J1 of LLDA as a function of dimensionality. The evaluation set is utilized to
adjust the kernel parameter of GDA(an RBF kernel with an adjustable width) and
the dimensionality of the output vectors for all the methods. The parameters are
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Figure 5: Normalized data samples. The left most image is given as the gallery image
and other rotated face images are used as testing images.
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Figure 6: (a) Eigenvalues of the face data. (b) Plot of J1 as a function of dimensionality.

properly quantized and all combinations of the discrete values of the quantized
parameters are examined to get the best recognition rate on the evaluation set.
In LLDA, the number of clusters corresponded to the number of the pose groups
and K-means algorithm was applied. The log objective function J1 was utilized to
learn the set of transformation functions and the learning rate was controlled to
have faster convergence. Typically, the learning took 2 or 3 minutes in Pentium IV
2GHz PC.

In the test, the frontal face images of the test set, which are the leftmost images
in Figure 5, are registered as a gallery and all the other images of the test set are ex-
ploited as queries. All the test images are projected into the learned subspace and
Nearest-Neighbor based classification is performed based on the projection coef-
ficients. Recognition rates in (%) are measured. In LLDA, test face images were
assigned to one of the clusters by equation (18) and projected into the correspond-
ing subspace by (19).

Results : Table 2 presents the recognition rates on the evaluation and test set and
Figure 7 shows the performance curves of the test set as a function of dimension-
ality. The recognition rate of the evaluation and test set was much enhanced by
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PCA LDA GDA LLDA FaceIt
Ev Te Ev Te Ev Te Ev Te Ev Te

R1 13 4 55 43 66 49 66 56 73 64
L1 8 8 55 45 77 57 73 64 66 52
U1 28 16 53 43 73 52 71 66 46 36
D1 33 29 68 55 84 66 75 60 37 24
F2 75 70 73 63 82 71 75 66 95 83
R2 8 3 42 22 46 29 40 35 46 36
L2 4 4 33 27 44 36 48 47 46 30
U2 17 15 28 28 35 35 40 44 24 23
D2 20 10 31 32 42 32 35 40 33 9

Avg. 23 18 49 40 61 47 58 53 51 39

Table 2: Face Recognition Rates (%).

the proposed algorithm. FaceIt exhibited the best recognition performance for the
frontal images F2 but quite low recognition rates for the rotated faces especially in-
volving up/down rotations. More results showing the effects of the elapsed time
and the size of test population are given in Figure 8.

In LLDA, the number of clusters was chosen as the number of the pose groups
as previously mentioned by assuming that the multi-modality of the face class dis-
tributions is caused by the different poses. In each cluster, classes are assumed to
be linearly separable. Although this assumption is not necessarily true, as other
factors such as time elapse can make a class distributed multi-modally and not lin-
early separable, we found that LLDA performed much better as compared with
LDA/GDA/FaceIt. A performance degradation as a function of time was ob-
served for all the methods but a relative performance gain exhibited by LLDA was
still preserved as shown in Figure 8. As mentioned above, the results of the test set
were obtained by utilizing the output dimensionality found to be the best for the
evaluation set. The establishment of a proper evaluation set is important because
the test results are sensitive to the output dimensionality as shown in Figure 7.
This may be because the pose variation is so large that the methods find only few
meaningful axes. We can see that the evaluation set used proved adequate to solve
this peaking problem as the recognition results on the test set using the best di-
mensionality indicated by the evaluation set in Table 2 agreed with the best results
of the graph in Figure 7. GDA had the tendency highly to overfit on the training
set so that a separate evaluation set was needed to suppress this behaviour.

Regarding the complexity of the feature extraction, PCA, LDA and the LLDA
are approximately identical and GDA about 40 times worse than the linear meth-
ods. Please note that the complexity of GDA depends on the size of the train-
ing set. The proposed method is not expensive in terms of computational costs
and provides more robust and accurate performance for all the dimensionalities as
compared with the other methods.
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Figure 7: The test performance curves (in %)as a function of dimensionality.

8 Conclusion

A novel discriminant analysis method which can classify a non-linear structure
has been proposed for face recognition. Face data set that exhibits large pose vari-
ations has nonlinear manifolds and is not linearly separable. A set of local linear
transformations is found so that the locally linearly transformed classes maximize
the between-class covariance and minimize the within-class covariance in a sin-
gle global space. The proposed learning method for finding the optimal set of
locally linear bases does not suffer from the local-maxima problem and stably con-
verges to a global maximum point. The proposed discriminant provides a set of
discriminant features for the view-invariant face recognition with a given single
model image and it is highly efficient computationally as compared with the non-
linear discriminant analysis based on the kernel approach. By virtue of the linear
base structure of the solution, the method reduces overfitting. We intend to im-
prove the performance of the proposed approach by exploiting dense facial feature
correspondences for an image regularization step in the future. The current per-
formance was obtained with the images registered with a fixed eye position and
this can be seen as a poor basis of the image normalization for the method. More
elaborate regularization is expected to promote that face class structures are well
separated by a set of local linear transformations similarly with the results of [4].
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Figure 8: Recognition rates under aging for different sizes of test population. (a)
Recognition rates on the test set consisting of 125 identities . (b) Recognition
rates on the test set consisting of randomly chosen 50 identities.
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