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Abstract

This work addresses three visual classification tasks: face recognition from a single
model image, object recognition by image sets (or ensembles) and action classification in
videos. The work assumes that images and videos are given as 2D and 3D bounding boxes
of patterns respectively, focusing on classification of isolated patterns. Whereas traditional
classification problems have involved a single query image and a set of model images per
class, the so called Single-to-Set matching task, the three tasks require different matching
strategies: Single-to-Single, Set-to-Set, and Video-to-Video matching to each of the three
tasks (in the afore-mentioned order) respectively. They are difficult to tackle in conven-
tional ways due to extremely limited model data and lack of principles to exploit image
sets or videos as inputs.

We propose novel methods of Discriminant Analysis (DA) for tackling the problems
concerned. Discriminant Analysis (DA) is a well-established method of classification that
approaches and often outperforms more complex modern methods. Owing to its simplic-
ity and powerfulness as a statistical representation method, Discriminant Analysis (DA)
could be best developed for the three problems.

To tackle the Single-to-Single matching task where both a query and a class model
are single samples, we ought to exploit class priors for robust matching. Discriminant
Analysis is performed for a set of prototype classes that have plenty of model samples and
is applied to a set of classes of single model samples concerned. Note that the two sets do
not involve same classes. The discriminative information learnt by DA from the prototype
classes plays as priors on the classes to be recognized. Under this framework, two novel
updates on Discriminant Analysis are proposed to 1) capture non-linearity of data and 2)
to perform on-line learning for the Single-to-Single matching task.

We extend Discriminant Analysis to cope with image sets/videos as inputs for the
Set-to-Set/Video-to-Video tasks where both a query and a model are image sets/videos
respectively. Canonical Correlation Analysis (CCA), a standard tool for inspecting linear
relations between two random variables, is set for measuring similarity between two sets
of images. CCA yields a subspace-based matching which is effectively invariant to pattern
variations on the subspaces. The CCA for multi-array data is also developed for similarity
between two videos. Novel methods of Discriminant Analysis with the image-set and
video similarity are then proposed for robust object recognition by image sets and action
classification in videos respectively.

Finally, we integrate the concepts/methods of learning non-linearity and on-line learn-
ing developed for the Single-to-Single task to the methods for the Set-to-Set and Video-
to-Video tasks. The Discriminant Analysis methods are conveniently integrated owing
to their coherency. Moreover, the method proposed as a general meta-algorithm can be
combined with other pre- or post-processing algorithms for further improvement, which
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is exemplified.
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CHAPTER 1

Introduction

1.1 Problems

We aim to classify patterns for three visual recognition problems; face recognition from
a single model image, object recognition by image sets (or ensembles) and action classi-
fication in videos. This work assumes that images and videos are given as 2D and 3D
bounding boxes of patterns respectively, focusing on classification of isolated patterns in
spatial or spatiotemporal domain. Pattern registration for the bounding boxes has been
done simply by a state-of-the-art object detector or a known color model of simple back-
ground. While typical classification problems have involved a single query image and
a set of model images of each class (so called Single-to-Set matching problem), the three
tasks require different matching strategies: Single-to-Single, Set-to-Set, and Video-to-Video
matching. Each of the three matching tasks is briefly explained as follows:

Single-to-Single:
The task of recognition with a single model image has received increasing attention

because of important applications such as automatic passport control at airports, where a
single photo in the passport is available as a model, and face image retrieval in Internet/or
unknown database. In the retrieval task, a single arbitrary query image is supplied by
users and every single image in the unknown database is matched with the single query,
producing a Single-to-Single matching problem. The task has emerged as an active research
area in Face Recognition Test (FRT) [154] and Moving Picture Experts Group (MPEG-7)
Standardisation for face image retrieval [1, 134, 80, 100]. The example patterns used for
evaluation of this study are shown in Figure 1.1.

Set-to-Set:
Rather than a single image input, more robust object recognition can be achieved clas-

sifying a set of images which represents a variation in object’s appearance. Sets may be
derived from sparse and unordered observations acquired by multiple still shots as well
as from a video sequence. Thus, the objective of this task is to classify an unknown set of
images to one of the training classes, each of which is also represented by image sets. The
example sets of an isolated general object are shown in Figure 1.2.
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(a) Single-to-Single matching strategy

(b) Face images captured from different views (XM2VTS).

Figure 1.1: Example Patterns For Single-to-Single Matching. Given a single model image per
subject (for e.g. a frontal view), novel view images should be classified.
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SetSet
ImageImage

(a) Set-to-Set matching strategy

(b) A set of object images collected from a turntable sequence.

(c) A set of object images collected from a random-moving-camera sequence.

Figure 1.2: Examples Patterns For Set-to-Set Matching. The two sets containing different pat-
tern variations resulting from different views and lighting.

Video-to-Video:

Over the last decades, human action/gesture classification has become an important
topic in computer vision for a variety of tasks such as video surveillance, object-level video
summarisation, video indexing, digital library organisation, etc [168, 143]. This task may
be tackled by classifying spatiotemporal patterns in aligned videos. Action detection may
first be performed to localise unit actions in input videos, followed by classification of the
localised actions. Example video samples with indication of action alignments are shown
in Figure 1.3.
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(a) Video-to-Video matching strategy

Hand
clapping
(hclp)

Hand
waving
(hwav)

Running
(run)

Walking
(walk)

(b) Example action classes (KTH). The bounding box and superimposition indicate the action
alignment in a spatiotemporal space.

Figure 1.3: Examples Patterns For Video-to-Video Matching.

1.2 Challenges

Although numerous methods have been developed to tackle the above matching prob-
lems, given its importance for real world applications, the tasks are still challenging. The
challenges of the problems are listed as follows:

• Learning with Extremely Limited Training Samples: Most state-of-the-art classifi-
cation methods (Support Vector Machine [22], boosted classifiers [164, 193], conven-
tional Discriminant Analysis (DA), probabilistic-Principal Component Analysis(PCA)
method [140] etc.) fail to work when only a single training sample is available (i.e.
for the Single-to-Single matching task). As there is no intra-class information avail-
able from the given classes, many studies have tackled the problem by unsupervised
learning, e.g. the Principal Component Analysis (PCA)-based methods for greater
robustness, by perturbing original samples [204, 224, 227], an image-as-matrix ap-
proach [215], or discarding some dimensions [195, 81, 82, 87, 204]. Part-based rep-
resentations [136, 198] have been also developed. However, these unsupervised
methods are inherently limited in delivering maximum discriminative information
of classes. The methods of generating novel view images [191, 15] are highly de-
pendent on dense correspondence of facial features, which is difficult to establish in
practice.

• Handling a Large Class Data Set: The important applications of the Single-to-Single
matching task such as passport control and face image retrieval handle a large num-
ber of classes which exhibit wide variation in object appearance. This raises a num-
ber of important issues both in learning and classification. With regard to learning,
a method should learn complex non-linear manifolds of the data set. It is difficult to
assume that all classes are simply linearly separable. On-line learning is also greatly
needed to update a current algorithm over new training sets in a time-efficient man-
ner. Practically, a complete set of training samples is not given in advance. For ap-
plications involving a large data set, computational complexity is particularly im-
portant at a classification stage. Existing kernel-based non-linear classification meth-
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ods [188, 8] require high computational cost in classification.

• Developing Image Set-to-Set Similarity: Whereas many previous works on match-
ing image sets for object recognition exploit temporal continuity between consecutive
images [116, 232, 118, 125, 58], this study does not make any such assumption. Set-
to-Set matching can be tackled in a straightforward way by assembling conventional
Single-to-Set matching problems, but the combining rules are ad-hoc, leaving room
for systematic exploration of set-property. The set-similarity achieved by comparing
probability density functions [27, 167, 234] is often inappropriate for the classifica-
tion task with image sets, as the image sets exhibit significantly different behavior
from training to testing in distributions (See Figure 1.2 for the example of two sets
of the same class). Computationally, the method using more than normal densities
has to resort to numerical methods for computing the probabilistic distances. On the
other hand, subspace-based set matching [38, 207, 199] seems effective in absorbing
the large intra-class variation of patterns placed on the subspaces and is also compu-
tationally efficient. However, there are no previous studies on optimal classification
of image sets either by density functions or subspaces.

• Exploiting Full Spatiotemporal Information: Many earlier methods for action/gesture
recognition have mainly conveyed only partial data of the space-time information
(mainly motion data) [168, 16, 202, 85, 14]. The part-based approaches [165, 32, 143],
so called bag-of-words, are based purely on local appearance, ignoring global shape
information. Despite recent progress in integrating global structural information to
the local appearance [203, 163], their performance is highly dependent on empirical
parameter settings of the space-time interest points and the code book. On the other
hand, previous studies on tensors [189, 7, 210] may be useful in analysing videos as
full spatiotemporal volumes (i.e. holistic methods). However, holistic methods are
typically more sensitive to background changes and geometrical variations in human
pose than part-based approaches.

• Small Sample Size: Action/gesture recognition may be seen as a spatiotemporal
pattern classification problem. Learning with video inputs is generally more difficult
than learning with images regarding Small Sample Size problems. Simple vectoriza-
tion of a video achieved by concatenating all pixels in a three-dimensional volume
causes a high dimension of N3, which is much larger than N2 of an image (where N
is a dimension of each axis). Also, it is often difficult to collect a sufficient number of
video samples for training. Most state-of-the-art classification methods (for e.g. Sup-
port Vector Machine [22], boosting classifiers [164, 193]) depend on a large number
of and representative class samples in training.

1.3 Discriminant Analysis vs. Classifier

This study approaches the three visual pattern classification problems through a statistical
learning method based on Discriminant Analysis (DA). Originally developed in 1936 by
R.A. Fisher, Discriminant Analysis (DA) is a classic proven method of classification. It often
produces models whose accuracy approaches and even exceeds more complex modern
methods. For clarity, it may be worth comparing Discriminant Analysis with a classifier,
another popular classification approach.
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Traditionally, pattern classification studies are divided into two large parts: representa-
tion of inputs (or feature extraction) and classification. The former concerns learning low-
dimensional representations of given high-dimensional inputs, s.t. F : X ∈ RN −→ Y ∈
Rn, N > n. Low-dimensional representation greatly helps subsequent class modelling and
facilitates classification. The latter learning a classifier (or a discriminant function) which
assigns a class to given inputs as G : X ∈ RN −→ Y ∈ {1, 2} in a typical binary case.

Discriminant Analysis learns optimal representation of input vectors for maximum
class separation. With the learnt representation, a simple Nearest Neighboring classi-
fier(NN) delivers good recognition accuracy. Discriminant Analysis has often been applied
to a large number of classes with a few training images per class, e.g. face recognition tasks
with hundreds of persons. On the other hand, classifiers directly learn a decision bound-
ary rather than the representation of individual samples. Classifiers such as Support Vec-
tor Machines [22] and Boosting [164, 193], were originally designed for a binary class task.
Typically, for given high-dimensional visual inputs, classifiers are heavily dependent on a
large number of and representative training samples per class to learn a proper decision
boundary. They have mostly been adopted for the case of binary or a small number of
classes with plenty of training samples per class.

Discriminant Analysis is closely related to a discriminant function (or classifier). It is
equivalent to optimal Bayesian discriminant function (or Bayes classifier) on the Gaussian
equal-class covariance assumption [33]. This simple assumption greatly reduces a number
of parameters to estimate for learning under small sample size and could be reasonable for
e.g. a face recognition task, where the most appearance changes in facial images may be
dominated by extrinsic factors such as lighting conditions and view-point changes rather
than differences in faces themselves. Different face classes may therefore exhibit similar
covariance structures. Once images are projected into a lower-dimensional space by the
transformation function, class diversity in covariances can be still reflected in subsequent
classification e.g. in a non-parametric way by Nearest Neighbor (NN) classifiers.

1.4 Contributions

We extend the classical Discriminant Analysis method to cope with a single model image
and image sets/videos as inputs for the three matching tasks. Four major contributions
and integration efforts are explained.

Conventional Discriminant Analysis (DA) can not directly handle the Single-to-Single
matching task where each class has a single model sample and thus there is no intra-class
variation available from a given model set. Assuming that human faces exhibit similar
intra-class variation, we have proposed learning the transformation function of Discrim-
inant Analysis from an independent training set which contains prototype face classes of
multiple samples per class, and apply the leant function to compare any single query and
the model set, as illustrated in Figure 1.4. The training and the model sets contain differ-
ent face classes. The Discriminant Analysis method has well generalised the intra-class
information learnt from the training set, delivering good retrieval accuracy in the model
set. This method was adopted as a key function of the MPEG-7 (Moving Picture Expert
Group) standard for face image retrieval [1, 134, 80, 100]. Motivated by our success, we
have updated the method for the Single-to-Single matching task in two ways:

• A Non-linear Extension of Discriminant Analysis [98]: A single linear model is in-
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Figure 1.4: Block Diagram of the Proposed Methods for the Single-to-Single Matching Task.
The method learns Discriminant Analysis, the non-linear DA (called Locally Linear Dis-
criminant Analysis (LLDA)), or the on-line DA (called Incremental Linear Discriminant
Analysis (ILDA)) from an independent training set and applies the learnt DA to compare
a single query with any image in a model set.

sufficient to learning non-linear manifolds of a data set exhibiting large appearance
changes. We propose a method of non-linear discriminant analysis for the recogni-
tion task with a single model image. A set of locally linear transformations, so-called
Locally Linear Discriminant Analysis (LLDA), are learnt to capture non-linear man-
ifolds of prototypes and are applied to novel faces. A novel key idea is that each local
model is aligned with the others while being locally discriminative. This facilitates
recognition of multi-modally distributed classes with single model samples. Com-
pared with Kernel Discriminant Analysis [8], our method is highly time-efficient and
avoids overfitting owing to its linear base structures. See Chapter 4 for details.

• Incremental Learning of Discriminant Analysis [106]: In practice, a complete set
of prototypes or training samples is not given in advance. Execution of the batch-
computation, whenever new data is presented, is too expensive in terms both of time
and space. An efficient update algorithm of LDA is needed to accumulate the infor-
mation conveyed by new data so that the method’s future accuracy is enhanced. A
new on-line solution yielding close agreement with the batch-mode, which is called
Incremental Linear Discriminant Analysis (ILDA), is obtained by applying the con-
cept of sufficient spanning set approximation in each update step of LDA. The pro-
posed method is evaluated on a database merging scenario for face image retrieval,
i.e. the Single-to-Single matching task. See Chapter 5.

For the Set-to-Set and Video-to-Video matching tasks, we propose novel Discriminant
Analysis methods on top of Canonical Correlation Analysis [60, 5] (CCA) as a tool to mea-
sure pairwise set-similarity or video-similarity. CCA, since Hotelling (1936), has provided
a standard tool for inspecting linear relations between two random variables or two sets
of vectors. A key purpose in using CCA in this work is to obtain an efficient invariant
subspace-based matching of two image sets (or videos) to pattern variations that resort to
the subspaces (See Chapter 6 for details).

• Discriminant Analysis of Image Set Classes [104]: We propose novel discrimi-
nant analysis methods for optimal image-set classification based on the CCA-based
image-set similarity. The proposed methods, called Discriminative Canonical Cor-
relations (DCC) and Orthogonal Subspace Method (OSM), learn the transformation
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Figure 1.5: Block Diagram of the Proposed Methods for the Set-to-Set or Video-to-Video
Matching Task. The proposed methods, called Discriminative Canonical Correla-
tions (DCC) and Orthogonal Subspace Method (OSM), learn the transformation of
input vectors so that the transformed image sets or videos are maximally separated
according to the similarity yielded by CCA (for Set-to-Set) or Tensor CCA (for Video-to-
Video).

of input vectors so that the transformed image sets are maximally class-wise sepa-
rated according to the set-similarity yielded by Canonical Correlation Analysis. The
proposed solution for object recognition with image sets is illustrated in Figure 1.5.

• Generalisation of CCA into High-order Tensors [105]: Conventional CCA is insuffi-
cient for action/gesture classification tasks as it does not encode temporal (ordering)
information. CCA simply treats a video as a set of frames. We extend classical CCA
into that of two high-order tensors (or multi-array data) for Video-to-Video matching.
We call this Tensor Canonical Correlation Analysis (TCCA). The proposed extension
of CCA for two videos is seen as the aggregation of many different sub-CCAs, one of
which corresponds to the classical CCA of two image sets. Similarly, the discriminant
analysis methods of image sets are applied with the new Video-to-Video similarity
to robust action/gesture classification problems.

Finally, we explain integrations. The proposed methods are integrated within the Dis-
criminant Analysis framework. The non-linear model and incremental learning method,
which were proposed for Single-to-Single matching, are integrated into the methods for
Set-to-Set and Video-to-Video matching [103]. The proposed method as a general meta-
algorithm can, moreover, be combined with other pre- or post-processing for further im-
provement. As an example, the method is combined with the image representation based
on the Scale-Invariant-Feature-Transform (SIFT)1 rather than the raw-pixel representation of
images in gesture recognition [107].

1.5 Structure of This Report

The following chapters are organised as follows:

• Chapter 2 reviews literature on the three recognition problems.

1SIFT is a histogram representation of gradient directions of local regions. It helps invariance to image
scale, rotation and partially changing viewpoints and illumination [129].

7
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• Chapter 3 provides background to Discriminant Analysis and Canonical Correlation
Analysis and their bibliographic notes.

• Chapter 4 explains the non-linear extension of Discriminant Analysis for the Single-
to-Single matching task. A set of locally linear models is proposed for view-invariant
face recognition with a single model image.

• Chapter 5 presents a novel solution for incremental learning of Linear Discriminant
Analysis which is useful for model reinforcement by new training data. The method
is evaluated on a database merging scenario for face image retrieval, i.e. the Single-
to-Single matching task.

• Chapter 6 addresses various object recognition problems with image sets (i.e. Set-
to-Set matching). In the proposed method, Canonical Correlation Analysis (CCA)
is exploited for image-set similarity and novel discriminant analysis methods are
proposed to maximise image-set class separation in terms of CCA.

• Chapter 7 tackles the problem of Video-to-Video matching for human action/gesture
classification by extending Canonical Correlation Analysis into multi-array data. The
proposed method, so called Tensor Canonical Correlation Analysis (TCCA), is eval-
uated on a public data set for comparison with many state-of-the-art methods.

• Chapter 8 describes integration efforts. The Discriminant Analysis method devel-
oped for image sets and the SIFT-based representation are integrated to Tensor CCA
for more robust gesture recognition.

• Chapter 9 explains the integration of the non-linear model and the incremental learn-
ing method which are proposed for Single-to-Single matching, into the methods for
Set-to-Set and Video-to-Video matching.

• Chapter 10 concludes the dissertation with suggested directions for future research.

8



CHAPTER 2

Literature Review

In this chapter, we offer a comprehensive but not exhaustive literature review by categoris-
ing methods to address each of the three recognition problems.

2.1 Single-to-Single matching

’Human face’ is a special topic in computer vision research because of its importance in
many applications. In this subsection, literature on automatic recognition of faces with a
single-per-class image is reviewed. The problem of so-called ’a single-per-class (or person)
sample’ has been intensively studied for important applications such as automatic pass-
port control at airports (where a single photo is available in a passport as a model) and
face image retrieval on Web or unknown face database. In the retrieval task, a single arbi-
trary query image is supplied by users and every single image in the unknown database is
matched with the single query. Both tasks require robust matching between a single model
and a single query image, i.e. Single-to-Single matching. This task is also an extreme case
of the small sample size problem in general pattern classification studies [77, 156]. Most
visual learning methods suffer from a paucity of training samples due to high-dimensional
visual inputs. Extremely limited training samples, i.e. a single-per-class sample, makes this
task very challenging. This problem has rapidly emerged as an active research sub-area of
Face Recognition (FR) test protocol FERET [153] in recent years and MPEG-7 (Moving Pic-
ture Experts Group) Standardisation for face image retrieval [80, 99, 134].

First of all, most state-of-the-art classification methods fail to work, relying heavily
on large size and representative of training sets. They include Support Vector Machine
(SVM) [22], boosting classifiers [164], Linear Discriminant Analysis (LDA) [9, 226], and
state-of-the-art face recognition methods, e.g. probabilistic eigenface [140], and Laplacian-
face methods [66]. Other feasible approaches are summarized as follows:

2.1.1 Unsupervised Learning Methods

The recognition task with a single-per-class image belongs by nature to an unsupervised
learning problem, as there is no intra-class information available from given classes. Many
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extensions of Principal Component Analysis (PCA), a representative method of unsuper-
vised learning, have been developed for higher robustness [204, 224, 215]. Many decom-
pose an original face space and discard some less stable dimensions for robust feature
extraction [195, 81, 82, 87, 204]. For example, second-order PCA methods attempted to
remove illumination effects by removing the first few eigenvectors [195, 81, 82, 87]. In an-
other method, image matrices have been exploited as inputs rather than raster-scanned
vectors for reliable estimation of a covariance matrix [215]. Unsupervised methods can be
directly applied to this task, as they do not require class information. These are, however,
inherently inferior to any discriminative approach which captures maximum discrimina-
tive information, addressed in Section 2.1.4.

2.1.2 Part-based Methods

Part-based representation has benefits for dimension and flexibility in learning under small
sample size. Local region-based image descriptions return a lower-dimensional input
space rather than holistic representations of images. Local methods are also flexible in
weighting each region according to its importance. These properties of local methods fa-
cilitate robust learning and recognition under small sample size. Gabor wavelet-based
algorithm on a deformable topology graph was developed [133, 198]. The locally-applied
wavelet features are robust in illumination change, distortion and scaling. The correspon-
dence solving required for the elastic grid is, however, difficult and computationally de-
manding in practice. The Hidden Markov Model (HMM) characterises face pattern as
a dynamic random process [213, 89, 142, 141, 34]. The drawback of this method is that
it resorts to a local minimum if sufficient training samples are not given. In [137], sub-
spaces were locally computed. To deal with pose change under the one sample condition,
a multi-subregion based probabilistic approach [84] was proposed similar to the Bayesian
method [140].

2.1.3 Generating Virtual Samples

Another mainstream attempt to solve the one-sample problem is to enlarge an actual train-
ing set by e.g. perturbing original images [227, 136, 224] or by using several filters [227].
In [74], a Linear Discriminant Analysis (LDA)-based method was proposed by the spatial
perturbation to handle the one-sample problem. However, the enlarged training set by
perturbation contains highly correlated samples, which do not greatly help accuracy en-
hancement. Meanwhile, numerous approaches have tried to generate virtual face images
by geometrical transformation such as rotation [191, 15] and by facial symmetry [212, 57].
They require dense correspondences of facial features for image normalization prior to
transformation. Unfortunately, the correspondence-solving itself is difficult in practice and
errors in correspondences seriously degrade recognition performance as shown in [15].

2.1.4 MPEG-7 Competition

In the protocol of MPEG-7 [134] and FERET [153], a prototype set, which is independent of
both gallery and probe set, is additionally defined for training. The prototype set serves as
a generic training set, consisting of multiple samples per class. The gallery and probe set
do not include the classes of the prototype set. Motivated by the experimental protocol of
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MPEG-7 and FERET, many studies have learnt class priors from the independent prototype
set and applied them to the gallery and probe set for testing. Most methods [195, 81, 82, 87],
however, have resorted to unsupervised learning partly due to difficulty in achieving good
generalisation of discriminative information (as priors) across classes. During the MPEG-
7 standard efforts, we have proposed Linear Discriminant Analysis (LDA) to learn the
discriminative information from the prototype face classes and generalise it to new face
classes, assuming that humans exhibit similar intra-class variation [99]; that is, the trans-
formation matrix of LDA is learnt from the prototype set and applied to new face classes.
A face image is further partitioned into several facial components to simplify image sta-
tistics for modelling and the components are then encoded by Linear Discriminant Analy-
sis (LDA). The method has well delivered the discriminant information to novel classes
achieving the best retrieval accuracy among proposals for the MPEG7 international stan-
dard. Competitive proposals include PCA-based methods (the second-order PCA meth-
ods [195] and the Fourier spectral PCA method [81]), part-based methods (The Pseudo 2D-
HMM [34], the embedded HMM method [142, 141] and the eHMM with the second-order
eigenvectors [89]) and Discriminant Analysis-based methods (the Generalised Discrimi-
nant Analysis [39] and component-based Linear Discriminant Analysis methods [99]). The
method promoted to an international standard combines Fourier spectral space and our
component-based LDA method [99, 83].

2.2 Set-to-Set Matching

Many computer vision tasks may be cast as image-set matching problems (or generally
vector-set). In object recognition, for example, a set of vectors may represent a variation
in an object’s appearance – be it due to camera pose changes, non-rigid deformations or
variation in illumination conditions. Image sets may be derived not only from video but
also sparse and unordered observations acquired by multiple still shots. The objective of
this task is to classify an unknown set of vectors to one of the training classes, each of which
is also represented by vector sets, thus requiring Set-to-Set matching. Relevant approaches
to the set-to-set matching can be broadly partitioned into a probability density-based or
manifold (or subspace)-based method, and a straightforward assembly approach.

2.2.1 Probabilistic Density-based Methods

In probability density-based approaches, each set is represented by a parametric distrib-
ution function, typically a Gaussian. The closeness of the two distributions is then mea-
sured by e.g. the Kullback-Leibler Divergence (KLD) [27, 167]. However, the Gaussian
assumption is often invalid when modelling complex nonlinear manifolds. Mixture mod-
els [4] or non-parametric densities have been used to reflect nonlinearity. A drawback of
these methods lies in the requirement of numerical methods to compute distances of mix-
tures or non-parametric densities. Nonlinearity has been also tackled by kernel methods
in [233]. Various probabilistic distance measures include Chernoff distance [25], Matusita
distance [138], Symmetric KL divergence [27], Patrick-Fisher distance [150], Lissack-Fu dis-
tance [122], Kolmogorov distance [2] and resistor-average distance (RAD) [3]. Overall, it is
difficult to estimate parameters of densities with limited samples (typically the number of
images in a single set is small) and probability density-based methods easily fail when the
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training and novel test sets do not show strong statistical relations.

2.2.2 Manifold (or Subspace)-based Methods

A manifold can be effectively captured by a mean and a set of basis vectors, which are
obtained by subspace analysis. A joint manifold distance to cluster appearances was pro-
posed in [38] and piece-wise linear identity manifold in [119] where a video sequence cor-
responds to a trajectory traced out in the identity surface. Relatively recently, Canonical
Correlation Analysis (CCA) (or Principal Angles), which is an established method of in-
specting linear relations between two random variables [71, 79, 51, 11], has received in-
creasing attention for image set matching [207, 199, 45, 144, 110, 46]. Each image set is
represented by a linear subspace and the angles between two low-dimensional subspaces
are exploited as a similarity measure between two image sets (See Chapter 3 and Chapter 6
for more details). The benefits of using CCA over other methods for object recognition
with image sets have been noted, e.g. efficiency, accuracy and robustness [100, 4]. Com-
putation of the principal angles has been extended into a nonlinear feature space called
reproducing kernel Hilbert space (RKHS) induced by a positive definite kernel function
in [199, 60]. An additional potential benefit of the kernel extension is that, given such ker-
nel function, it can be readily plugged into a classification scheme such as support vector
machine (SVM) [199]. Another non-linear extension method of CCA has been proposed
by multiple subspaces in our work [100].

To summarise, manifold-based matching methods are less constrained than probabilis-
tic density-based methods, yielding invariance to data variations on manifolds. Invariance
up to the manifolds greatly helps classification of image sets which exhibit large intra-class
variations. Previous studies have, however, not generally addressed optimal set classifi-
cation by exploiting given class information: An exception lies in the Constrained Mutual
Subspace Method (CMSM) [45, 144], which is that most closely related to this study. In
CMSM, a constrained subspace is defined as the subspace in which the entire class pop-
ulation exhibits small variance. The authors have showed that the face image sets were
class-wise more separated in the constrained subspace in terms of canonical correlations
(See Chapter 3 and Chapter 6 for more details).

2.2.3 Simple Assembly Algorithms

The Set-to-Set matching problem can be tackled by straightforward assembly methods.
These combine results of many Single-to-Single or Single-to-Set matchings and include
Nearest Neighbour (NN) and Hausdorff distance matching, both of which are based on
matching of paired individual samples of two sets [162, 33]. The methods are based on the
premise that similarity of a pair sets is reflected by the similarity of the nearest samples
of the two respective sets. Thus, the overall recognition performance of the assembly al-
gorithms mainly depends on that of base algorithm, i.e. Single-to-Single matching. Some
approaches might use several representative samples of sets for e.g. by clustering tech-
niques. As mentioned, the assembly algorithms use multiple observations in a straightfor-
ward fashion, neglecting set properties. The combining rules are somewhat ad-hoc. Note
also that such methods are very time consuming as they require comparison of every pair
of samples drawn from the two sets. Instead, any model-based method afore-mentioned
greatly speeds up the Set-to-Set matching task.
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2.3 Video-to-Video Matching

The topic of discriminating patterns in a spatiotemporal space is addressed for action and
gesture recognition problems.

2.3.1 Explicit Motion Estimation

Many methods for action categorisation have been suggested. Traditional approaches are
based on the comparison of motion data requiring explicit motion estimation [12, 35]. The
performance of such algorithms is highly dependent on the quality of the motion esti-
mation, which is a hard problem in practice due to smooth surfaces, singularities, self-
occlusions, appearance changes and the aperture problem.

2.3.2 Analysis of Space-Time Volumes

Some recent work has analysed human action directly in the space-time volume without
explicit motion estimation [168, 16, 202, 85]. Motion history images and the space-time
local gradients are used to represent video data in [16, 202] and [168] respectively, having
the benefits of being able to analyse quite complex and low-resolution dynamic scenes.
Both representations, however, only partially convey space-time information (mainly the
motion data) and are unreliable in cases of motion discontinuities and motion aliasing.
Additionally, the method in [168] involves manual setting of important parameters such
as positions and scales of the local space-time patches.

Importantly, it has been reported that spatial information contains cues as important
as dynamic information for human action classification [14]. In this study, actions are
represented as space-time shapes by the silhouette images and the Poisson equation. It
assumes, however, that silhouettes are extracted from video. Furthermore, as noted in [14],
the silhouette images are insufficient to represent complex spatial information.

2.3.3 Approach by Bag-of-Words

There is another important line of action recognition methods which are based on space-
time interest points and visual code words [143, 165, 32, 113]. Originally, this technique
was widely applied to image-based object categorisation tasks. Local variations around
the interest points in videos are quantized by a code book. Histogram representations are
then combined with either a Support Vector Machine (SVM) [165] or a probabilistic gen-
erative model [143]. Although they have yielded good accuracy mainly due to the high
discrimination power of individual local space-time descriptors, they exhibit ambiguity by
ignoring global space-time shape information of action classes. Approaches by so called
’bag-of-words’ do not exploit any global structural information since purely based on the
local appearance information. In spite of recent attempts to combine the structural with
local information [203, 163], methods based on the bag-of-words often suffer from difficul-
ties in setting of the parameters of the space-time interest points and the code book, whose
best setting is application or data dependent.
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2.3.4 Learning over Tensors

Traditional classification approaches may be applied to action recognition by simple vec-
torization or tensor representations of videos.

Many previous studies [189, 7, 210] have dealt with tensor data in its original form to
consider multi-dimensional relations of data and to avoid the curse of dimensionality when
the multi-dimensional data array are simply vectorized. Whereas various learning meth-
ods associated with tensors have been proposed, they do not take video data as input for
classification. A video sequence can be treated as a general 3rd-order tensor. The ensem-
bles of multilinear classifiers and discriminant analysis method have been developed for
the tensors obtained from color images [7] and filter banks applied to a single gray im-
age [210] respectively.

Recently, the Support Vector Machine with general tensor representation has been pro-
posed in [201], where a small experiment was carried out with videos for action classifica-
tion. Holistic representations are, however, typically sensitive to background changes and
geometrical variations in human pose, requiring an efficient feature extraction method.

2.4 Limits of Scope

We limit the scope of our study as above. Other topics on video-based recognition are
briefly discussed in the following.

2.4.1 Object Recognition in Video with Temporal Constraint

Studies on object recognition in videos propose simultaneous tracking and recognition [231,
232] to incorporate temporal coherence of images on the model of state transition proba-
bility and observational likelihood. Video-based face recognition under pose variation has
been studied by several pose appearance manifolds [116]. Temporal continuity is directly
captured by the transition probabilities between pose manifolds. The adaptive Hidden
Markov Model (HMM) has been proposed to capture the dynamics [125]. However, these
temporal information may not directly help object classification because an object (face) or
a camera often moves arbitrarily. It is difficult to impose a strong constraint on temporal
appearance changes. In this thesis, the topic of object recognition in videos will be re-
garded as the recognition problems by image sets without assuming temporal continuity.
For pattern discrimination in the full spatiotemporal domain, human action and gesture
recognition will be tackled.

2.4.2 Dynamic Texture Recognition

Dynamic texture recognition has been studied in recent decades [161]. It deals with videos
which exhibit some patterns of temporal stationarity such as ocean waves, smoke and
waterfalls. Images of stationary process are represented as the output of a stochastic dy-
namical model. It would be of interest to see how our proposed method works for this
type of repetitive video patterns in future.
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2.4.3 Shape from Motion

If a set of images or a video is available as input, 3D depth information can in theory be ob-
tained and exploited for recognition. In spite of extensive studies on 3D model reconstruc-
tion, few approaches perform the recognition task directly using the 3D model from Shape
from Motion. Most methods are dependent on some special 3D input equipment (See Face
Recognition Grand Challenge (FRGC) [37] where the challenge include recognition tasks
by 3D face models obtained by a laser scanner). This may be partly because current tech-
niques are not accurate enough to produce 3D models for recognition and there remain
many problems such as registration and matching even after obtaining 3D information.
Due to the difficulty in explicit 3D representation and matching in real environments, we
omit this topic from this thesis.

15



CHAPTER 3

Discriminant Analysis: Backgrounds
and Updates

This chapter offers an introductory explanation of Discriminant Analysis based on its rela-
tions to Bayesian decision theory, which is a fundamental probabilistic approach to pattern
classification problems. Canonical Correlation Analysis (CCA) as a key method for Set-to-
Set and Video-to-Video matching tasks is also explained. Interestingly, CCA itself can be
seen as a general form of Discriminant Analysis, as will be explained in Section 3.5. A bib-
liographical note on Discriminant Analysis and Canonical Correlation Analysis follows.

3.1 Bayesian Decision Theory

Bayesian decision theory is a fundamental pattern classification approach based on statis-
tical and probabilistic theories. It defines an optimal rule by which to assign correct classes
to given a set of vectors x by minimising the expected error caused by the decision rule.

Let x be a feature vector in a N -dimensional feature space RN . In classification tasks,
each x belongs to one of finite classes denoted by wi. The set of total c classes is {w1, ..., wc}.
Possible a actions are denoted by {α1, ...,αa}. In classification problems, αi is the decision
that the true class is wi, therefore a = c. P (wi) describes the prior probability of class
wi and P (x|wi) the class-conditional probability density function of x for given a class wi

(also called likelihood). By Bayes formula, the posterior probability of a class wi for given x,
P (wi|x), can be computed from the likelihood and priors [53, 19, 33, 131] by

P (wi|x) =
P (x|wi)P (wi)

P (x)
=

P (x|wi)P (wi)∑c
j=1 P (x|wj)P (wj)

. (3.1)

The loss function denoted by E(αi|wj) represents the loss incurred by taking the de-
cision αi for a given true class wj . The conditional loss of the decision αi for a given x is
defined as

E(αi|x) =
c∑

j=1

E(αi|wj)P (wj |x), (3.2)
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where P (wj |x) is the posterior probability [158, 33]. Thus, the conditional loss is the sum
of losses over all classes. The overall risk can then be defined as the sum of the conditional
losses over a whole given set of vectors x. For a more comprehensive representation, the
decision rule is now given as a functional form of x by α(x). The function takes one of
possible decisions in the set {α1, ...,αa}. The overall risk E is E =

∫
E(α(x)|x)P (x)dx.

By finding a decision rule which minimises the overall risk, the Bayes decision process
yields the optimal performance. In classification problems, the loss function E(αi|wj) can
be more precisely specified. If we make a decision αi when the true class is wj , then the
decision is correct if i = j and is erroneous if i 6= j. We assign no loss to a correct decision
and a unit loss to any erroneous decision, giving the symmetrical or zero-one loss function
by

E(αi|wj) =
{

0 i = j
1 i 6= j

i, j = 1, ..., c [158, 47]. Thus the conditional loss of the decision αi for a given x in (3.2) is

E(αi|x) =
∑

j 6=i

P (wj |x) = 1− P (wi|x). (3.3)

The optimal decision rule is to select i which minimises errors. This is equivalent to
choosing i which maximises the posterior probability P (wi|x). The Bayes decision rule to
minimise the risk [47, 158] is therefore to

Assign wi if P (wi|x) ≥ P (wj |x) for all j 6= i. (3.4)

3.2 Bayes Classifiers and Discriminant Functions

Classifiers may be represented by a set of discriminant functions. This section gives opti-
mal discriminant functions drawn by the Bayesian decision theory, which are either linear
or non-linear depending on assumptions on given distributions. Let gi(x), i = 1, ..., c
denote a set of discriminant functions of a classifier. The corresponding classifier is inter-
preted as a decision rule to assign a feature vector x to class wi if

gi(x) ≥ gj(x) for all j 6= i, (3.5)

[33, 47, 158, 19]. Thus the classifier consists of the c discriminant functions. Bayes decision
theory in the previous section is directly associated with the Bayes optimal discriminant
function as gi(x) = −E(αi|x) in general. For the minimum error case in classification
problems, the discriminant functions is

gi(x) = P (wi|x) =
P (x|wi)P (wi)∑c

j=1 P (x|wj)P (wj)
. (3.6)

A vector x is assigned to the class which has the maximum discriminant function or the
maximum posterior probability. If we have a monotonic increasing function f(·), we can

17



§3.2 CHAPTER 3

replace the discriminant function gi(x) with f(gi(x)) [19, 47]. Consequently there are many
equivalent discriminant functions yielding the optimal classification result. Some of them
are simpler in analytical and computational aspects. For the minimum-error-rate classifi-
cation, the discriminant function gi(x) can further be simplified as

gi(x) = P (x|wi)P (wi). (3.7)

The discriminant function can also take a logarithm of the above equation by

gi(x) = lnP (x|wi) + lnP (wi). (3.8)

The discriminant functions are further derived for the special cases of normal distribu-
tions p(x|wi). A normal distribution P (x|wi) ∼ N(mi,Σi) is given by

P (x|wi) =
1

(2π)N/2|Σi|1/2
exp[−1

2
(x−mi)T Σ−1

i (x−mi)]. (3.9)

The discriminant function in (3.8) can then be simply given as

gi(x) = −1
2
(x−mi)T Σ−1

i (x−mi)− N

2
ln 2π − 1

2
ln |Σi|+ lnP (wi). (3.10)

3.2.1 Case 1. Σi = Σ

If the class conditional densities p(x|wi) are Gaussian functions with equal covariance ma-
trices such that Σi = Σ, the resulting discriminant function is linear. A classifier that uses
linear discriminant functions is called a linear machine and such a classifier has many ben-
efits in computational efficiency and good generalisation performance for novel samples
in pattern classification problems. From a geometrical point of view, all the samples of the
ith class are in hyperellipsoidal clusters of equal size and shape being centered at the mean
vector mi [33, 47, 158].

In the case of Σi = Σ, the terms |Σi| and (N/2) ln 2π in (3.10) are common to all
classes and can thus be eliminated. Also, the quadratic term xT Σ−1x in the form of
(x − mi)T Σ−1(x − mi) is independent of classes, and thus removed to yield the linear
discriminant function as

gi(x) = tTi x + ti0, (3.11)

where
ti = Σ−1mi, ti0 = −1

2
mT

i Σ−1mi + lnP (wi). (3.12)

The decision boundary between two neighboring decision regions Di and Dj [47, 158, 19]
is represented as

tT (x− x0) = 0, (3.13)

where
t = Σ−1(mi −mj) (3.14)
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and

x0 =
1
2
(mi + mj)− ln[P (wi)/P (wj)]

(mi −mj)T Σ−1(mi −mj)
(mi −mj). (3.15)

The vector x0 is generally called a threshold of a classifier.

3.2.2 Case 2. Σi = arbitrary

The Bays optimal discriminant function for the general multivariate normal distributions
P (x|wi) is clearly quadratic. When Σi = arbitrary, the term (N/2) ln 2π in (3.10) can be
eliminated, thus rendering the discriminant function [33, 47, 19] as

gi(x) = xT Tix + tTi x + ti0, (3.16)

where
Ti = −1

2
Σ−1

i , ti = Σ−1
i mi (3.17)

and
ti0 = −1

2
mT

i Σ−1
i mi − 1

2
ln |Σi|+ ln P (wi). (3.18)

In this case, the discriminant function is non-linear and the decision regions are not simply
connected, resulting in complex decision boundaries even for a small number of classes [131,
33, 47, 158].

3.3 Discriminant Analysis

Originally developed in 1936 by R.A. Fisher, Discriminant Analysis is a proven method of
classification. Discriminant Analysis often produces models whose accuracy approaches
and occasionally exceeds that of more complex modern methods. Discriminant analysis
has proved a powerful method for dimensionality reduction and classification that projects
high-dimensional data onto a low-dimensional space where the data achieves maximum
class separation [33, 47]. After low-dimensional representation of the data, it may be com-
bined with any parametric or nonparametric methods (for e.g. Nearest Neighboring clas-
sifier (NN)) for classification.

3.3.1 Two Class Case

Assume that a set of M N -dimensional samples {x1, ...,xM} is given. The set is partitioned
into two subsets of vectors X1 and X2, each of which corresponds to a class label w1 or w2

respectively. Each subset Xi consists of Mi sample vectors. A linear combination of the
components of x [47, 158, 53] is defined with t such that y = tTx, where y is an output
vector. The set of M output vectors y1, ...yM is divided into the two subsets Y1 and Y2

which correspond to X1 and X2 respectively. The magnitude of the linear combination t
is not useful for classification as it just scales the output vectors y. Thus t is normalized
s.t. ||t|| = 1. To find the optimal direction of t which yields accurate classification of the
vectors, the separation measures of the transformed (or projected) vectors are defined. A
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measure of the separation between the projected points of the classes, w1, w2, is defined as
the difference of the class means by

(m̃1 − m̃2)2 = tT (m1 −m2)(m1 −m2)T t = tTBt, (3.19)

where B = (m1−m2)(m1−m2)T is the between-class scatter matrix and m̃i,mi are the i-th
class mean of the projected data and the input data vectors respectively. The difference in
class means should be maximised relatively to a certain measure of the standard deviations
of each class [158, 53]. The sum of scatters of the projected samples within each class [33, 47]
is given as

σ̃2
1 + σ̃2

2 =
2∑

i=1

∑

x∈Xi

tT (x−mi)(x−mi)T t = tTWt,

where the within-class scatter matrix W is defined as the sum of the scatter matrices by
W =

∑2
i=1

∑
x∈Xi

(x−mi)(x−mi)T . The criterion function of the Fisher linear discrimi-
nant is given by

J(t) =
tTBt
tTWt

. (3.21)

The Fisher linear discriminant finds the direction of t which maximises J(t) under the
condition that ||t|| = 1 [53, 9, 226, 158, 47]. Solution to the simple two-class case problem
can be directly obtained since the between-class scatter matrix has just one rank and thus
Bt is always in the direction of m1 −m2 [33]. As the direction of the solution t alone is
significant, the solution of the function t is

t = W−1(m1 −m2). (3.22)

Its Equivalence to Bayes Optimal Discriminant Function.
It is noteworthy that the Fisher’s linear discriminant function is identical with the

Bays’s optimal discriminant function given in (3.14) when the classes have equal covari-
ance matrices such that Σi = Σ. The threshold of the Fisher’s linear classifier can be set at
that of the Bayes classifier as given in (3.14).

3.3.2 Multiple Class Case

As derived so far, Fisher’s linear discriminant function was originally developed for the
two-class problem. For the c-class problem, the generalisation of Fisher’s linear discrim-
inant involves c − 1 discriminant functions. Thus the projection is performed from a N -
dimensional space to a (c− 1)-dimensional space, where N ≥ c.

Let X = {x1,x2, ...,xM} be a data set of given N-dimensional vectors. Each data point
belongs to one of C classes {X1, ...,Xc, ...,XC}. The between-class scatter matrix and the
within-class scatter matrix are defined as

B =
C∑

c=1

Mc(mc −m)(mc −m)T , W =
C∑

c=1

∑

x∈Xc

(x−mc)(x−mc)T ,
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where mc denotes the class mean and m is the global mean of the entire sample. The
number of vectors in class Xc is denoted by Mc. LDA finds a matrix, U, maximising
the ratio of the determinant of the between-class scatter matrix to the determinant of the
within-class scatter matrix as

Uopt = max
argU

|UTBU|
|UTWU| = [u1,u2, ...,uN ].

This formula is the well-known generalised Rayleigh quotient in Mathematical Physics [172,
53, 47]. Clearly, the solution {ui|i = 1, 2, ..., N} is a set of generalised eigenvectors of B and
W i.e., Bui = λiWui. If the within-class scatter matrix W is non-singular, the generalised
eigenvalue problem can be

W−1Bui = λui. (3.23)

The solution ui is obtained by solving a conventional eigenvalue problem [172]. Usually
PCA is performed first to avoid a singularity of the within-class scatter matrix, which is
often encountered in recognition problems of high-dimensional inputs [9, 226].

3.4 Bibliographic Notes on Discriminant Analysis

There is indeed extensive literature on Discriminant Analysis (DA). This section cate-
gorises existing works and briefly explains some important studies.

3.4.1 Kernel or Generalised Discriminant Analysis

Numerous studies have been carried out on non-linear discriminant analysis by kernel
methods, so-called Kernel Discriminant Analysis (KDA) or Generalised Discriminant Analy-
sis (GDA). The underlying theory is close to that of support vector machines (SVM) inso-
far as this method provides a mapping of the input vectors into high-dimensional feature
space. In the transformed space, linear properties make it easy to extend and generalise the
classical Linear Discriminant Analysis (LDA) to non-linear discriminant analysis. Some
representative works are found in [8, 139]. Prior to these works, a nonparametric version
of discriminant analysis was proposed to yield richer nonlinear classification schemes by
using a mapping function (similar to kernel methods) in [62] and a compromise between
Linear and Quadratic Discriminant Analysis, so-called Regularized Discriminant Analy-
sis (RDA) in [43]. The RDA method was recently updated by the optimal regularization
parameter estimation [220].

The Generalised Discriminant Analysis (GDA) [8] is explained in detail: The method
is designed for non-linear classification based on a kernel function Φ which transforms the
original space X to a new high dimensional feature space Z s.t. Φ : X → Z. The within-
class (or total) scatter and between-class scatter matrix of the non-linearly mapped data
is

BΦ =
C∑

c=1

McmΦ
c (mΦ

c )T , WΦ =
C∑

c=1

∑

x∈Xc

Φ(x)Φ(x)T ,

where mΦ
c is the mean of class Xc in Z and Mc is the number of samples belonging to Xc.
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The aim of the GDA is to find such projection matrix UΦ that maximises the ratio

UΦ
opt = max

argUΦ

|(UΦ)TBΦUΦ|
|(UΦ)TWΦUΦ| = [uΦ

1 , ...,uΦ
N ].

The vectors, uΦ can be found as the solution of the generalised eigenvalue problem i.e.
BΦuΦ

i = λiWΦuΦ
i . The training vectors are supposed to be centered (zero mean, unit

variance) in the feature space Z. From the theory of reproducing kernels, any solution
uΦ ∈ Z must lie in the span of all training samples in Z, i.e.

uΦ =
C∑

c=1

Mc∑

i=1

αciΦ(xci),

where αci are real weights and xci is the i-th sample of class c. The solution is obtained by
solving

λ =
αTKDKα

αTKKα
,

where α = (αc), c = 1, ..., C is a vector of weights with αc = (αci), i = 1, , Mc. The kernel
matrix K(M ×M) is composed of the dot products of non-linearly mapped data, i.e.

K = (Kkl)k=1,...,C, l=1,...,C ,

where Kkl = (k(xki,xlj))i=1,...,Mk, j=1,...,Ml
. The matrix D(M × M) is a block diagonal

matrix such that
D = (Dc)c=1,...,C ,

where c-th matrix Dc on the diagonal has all elements equal to 1/Mc. Solving the eigen-
value problem yields the coefficient vectors α that define the projection vectors uΦ ∈ Z. A
projection of a testing vector xtest is computed as

(uΦ)T Φ(Xtest) =
C∑

c=1

Mc∑

i=1

αcik(xci,xtest).

3.4.2 Multiple Local Analysers

This category of study aims at solving nonlinear classification problems using a set of lo-
cal discriminant analysers. It may be considered a locally linear yet globally nonlinear
discriminant analyser; a special Kernel Discriminant Analysis (KDA) with a geometry-
adaptive-kernel, in contrast to traditional KDA whose kernel is independent of samples.
Its computation and memory cost are reduced a great deal compared with traditional
KDA, owing to its linear base structure, which is important for cases with a large num-
ber of samples. The linear property also helps to soften overfitting of KDA whose hyper-
parameters are hard to set. Since the work on Discriminant Analysis by Gaussian mix-
tures [64], many studies have been conducted especially in the past few years. Some recent
works have been motivated by the concept of preserving local structures in a supervised
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Figure 3.1: Comparison between LDA and LDA mixture for non-linear classification prob-
lem. Classical LDA (left) cannot dichotomise the classes exhibiting mixtures of
Gaussian, whereas the LDA mixture model (right) solves the problem locally.

manner [173, 23, 128, 209]. Multi-modal class distributions of varying covariance are con-
sidered in [183] and the criterion for the best clustering of each class into a set of subclasses
is derived in [236]. Figure 3.1 illustrates a comparison between classical LDA and the
Discriminant Analysis using Gaussian mixtures for the non-linear classification problem
where each class exhibits multi-modal distributions.

3.4.3 Discriminant Analysis for Small Sample Size

One of main difficulties in applying classical LDA is that it needs to take an inverse of a
(within-class) scatter matrix which is singular under small sample size. Accordingly, lots of
variations of LDA have been developed to address this problem. One popular approach is
to perform Principal Component Analysis (PCA) prior to LDA [9, 226]. By reducing an in-
put dimension by PCA, the singular problem of LDA could be corrected. This PCA/LDA
approach has shown great success in face recognition tasks. Its theoretical justification
has also been studied [214]. Another two-stage approach exploits QR-decomposition in-
stead of PCA [218], so-called LDA/QR which achieves efficiency while overcoming the
singularity problem of classical LDA. For a similar purpose, the generalised Singular Value
Decomposition (SVD) is adopted to solve the generalised DA criterion in [72, 217]. More
traditionally, methods exploiting null-space of the with-class scatter, which are often called
Direct LDA or Null-space LDA, have been widely adopted for small sample size [24, 223].

3.4.4 Tensor Discriminant Analysis

A single image is originally given as a matrix rather than a concatenated vector. Rather
than vectoring an image in classical LDA, methods of discriminant analysis for handling
matrices as input have been developed. They consider multi-dimensional relations of data
by representing the data in its original form, i.e. matrices, and help to avoid the small-
sample size problem. When the multi-dimensional data array is simply vectorised in clas-
sical LDA, the input dimension is huge. The methods of two-dimensional LDA are pro-
posed in [216, 109]. Beyond 2D LDA, a more general framework of discriminant analysis
for high-order tensors (cf. a matrix is a second-order tensor) has been developed in for e.g.
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[210] where an image is encoded as a general tensor by applying Gabor wavelets to the
image, and in [7] where a single color image is a third-order tensor.

The 2D LDA [216] is briefly described: Let Ai ∈ Rr×c, for i = 1, ..., n, be the n im-
ages in the data set, clustered into classes Π1, ...,Πk, where Πi has ni images. Let Mi =
1/ni

∑
X∈Πi

X be the mean of the i−th class, 1 ≤ i ≤ k, and M = 1/n
∑k

i=1

∑
X∈Πi

X be
the global mean. In 2D LDA, images are regarded as two-dimensional signals. It aims to
find two transformation matrices L ∈ Rr×l1 and R ∈ Rc×l2 that map each Ai ∈ Rr×c, for
1 ≤ i ≤ n, to a matrix Bi ∈ Rl1×l2 such that Bi = LT AiR. The within-class and between-
class distances Dw and Db can be computed as follows:

Dw = tr(
k∑

i=1

∑

X∈Πi

(X −Mi)(X −Mi)T ), Db = tr(
k∑

i=1

ni(Mi −M)(Mi −M)T ).

In the transformed space by the transformations L, R, the within-class and the between-
class distances become

D̃w = tr(
k∑

i=1

∑

X∈Πi

LT (X −Mi)RRT (X −Mi)T L),

D̃b = tr(
k∑

i=1

niL
T (Mi −M)RRT (Mi −M)T L).

The optimal transformations L and R are found to maximise D̃b and minimise D̃w. An
iterative algorithm which solves either L or R fixing the other at each iteration is derived.

3.4.5 Robust Fisher Discriminant Analysis

In computer vision applications, outliers are often incurred within a sample (image) due to
corruption pixels by noise, alignment errors or occlusion. Similarly to the robust Principal
Component Analysis method [182], which makes PCA robust to the outliers, the method
of discriminant analysis has been developed for the pixel outliers. In [90], sensitivity of
classical Fisher Linear Discriminant (FLD) is alleviated by explicitly incorporating a model
of data uncertainty and optimizing for the worst-case scenario.

3.4.6 Nonparametric Discriminant Analysis

In Discriminant Analysis studies, the terminology of nonparametric has meant different
things. Generally Nonparametric Discriminant Analysis defines another version of scat-
ter matrices whose parameters (mean and covariance in the classical LDA) are estimated
from the data, not assuming the Gaussian class distributions. In pattern classification, a
nonparametric method has not received great attention. Nearest neighbour classification
(NN) instead, has a well-established position among other classification techniques due
to its practical and theoretical properties. A discriminant analysis framework in the sense
that a linear transformation is sought to improve NN performance was developed in [20].
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In [40], the Support Vector Machine (SVM)-based Nonparametric Discriminant Analysis,
whose scatter matrix is associated with the decision boundary of SVM, was proposed. The
semi-parametric discriminant analysis in the sense that class distributions are multivariate
normal after unspecified univariate monotone transformations, was proposed in [121].

The nonparametric discriminant analysis method developed in the Nearest Neighbour
sense [20] is further explained: Assume that a data matrix X = {x1,x2, ...,xM} ∈ RN×M

is given, where xi ∈ RN is a N -dimensional column vector obtained by raster-scanning
an image. Each vector belongs to one of the classes denoted by Ci. Linear discriminant
analysis (LDA) finds a transformation T ∈ RN×n (n ≤ N) which maps a vector x to
x̃ = TTx ∈ Rn such that the transformed data have maximum separation between classes
and minimum separation within classes with respect to the defined between-class and
within-class scatter measures. A nonparametric form of these scatter matrices is proposed
in [20] with the definition of the between-class and within-class neighbours of a sample
xi ∈ Cc given by

B =
1
M

M∑

i=1

wi(∆B
i )(∆B

i )T , W =
1
M

M∑

i=1

(∆W
i )(∆W

i )T (3.24)

where ∆B
i = xi − xB

i , ∆W
i = xi − xW

i , xB = {x′ ∈ Cc | ‖x′ − x‖ ≤ ‖z − x‖, ∀z ∈ Cc} and
xW = {x′ ∈ Cc | ‖x′ − x‖ ≤ ‖z − x‖, ∀z ∈ Cc}. The sample weight wi is to ”deemphasise”
samples away from class boundaries. Nonparametric Discriminant Analysis (NDA) finds
the optimal T which maximises trace(B̃) and minimises trace(W̃), where B̃,W̃ are the
scatter matrices of the transformed data. As these are explicitly represented with T by
B̃ = TTBT, W̃ = TTWT, the solution T can easily be obtained by solving the generalised
eigen-problem, BT = WTΛ, where Λ is the eigenvalue matrix.

3.4.7 Incremental LDA

Visual learning is supposed to be a continuous process, motivating a recent research trend
in online learning approaches. Classical machine learning performed in an isolation is
limited [31]. Inspiration for incremental LDA can also be drawn from numerous works on
incremental Principal Component Analysis (PCA) [59, 169]. However, extension of it to
LDA is not straightforward due to the difficulty of updating a discriminative model rather
than a generative model like PCA.

A number of incremental versions of LDA have been proposed [68, 120, 149, 219]. An
incremental version of LDA was proposed by assuming that the number of classes C is
negligible compared to the number of images in [219]. In [149] updating of the between-
class and within-class scatter matrices is mainly concerned, without consideration of the
subsequent LDA steps. Modified LDA criteria have been exploited for incremental learn-
ing [68, 208]. The work [120] deals with online updating of discriminative models for
the purpose of object tracking. Note that their use is just for binary classification. Effi-
cient algorithms for Kernel PCA and Kernel Discriminant Analysis have also been devel-
oped [26, 178].
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3.4.8 Probabilistic Linear Discriminant Analysis

LDA is often used for feature extraction in object recognition, but does not address the
problem of how to use these features for recognition. In Probabilistic PCA [179], it is
demonstrated that how the principal components of data can be determined by maximum-
likelihood estimation of parameters in a latent variable model. An EM algorithm has been
adopted for estimating the principal components iteratively. Similarly, the probabilistic
LDA method has been developed [76].

3.4.9 Heteroscedastic LDA (HLDA)

Different class covariances are considered in the method of discriminant analysis called
Heteroscedastic LDA. On the other hand, classical LDA is often called homoscedastic be-
cause classes are assumed to have a common covariance structure. The method for differ-
ent class covariances has often been applied in a pairwise fashion, i.e. class separation is
measured as the sum of all pairwise class distances each of which reflects different class
covariances [155, 127]. Weighting to reduce the role of the least stable sample classes was
proposed in [155, 126, 63].

3.4.10 Other Issues

It has been reported that the performance of LDA depends on feature selection. Auto-
matic determination of the optimal number of features for quadratic discriminant analysis
has been proposed via the normal approximation to the discriminant distribution [73]. Se-
lecting the principal components in a two-stage PCA/LDA algorithm has also been stud-
ied [235].

Independence or orthogonality of the discriminant components has been discussed for
e.g. in [206] and the Least Square solution for LDA proposed in [221]. Fast LDA has been
motivated by the study of binary PCA [177] using binary bases [176], which are linear
combinations of Haar-like box functions. This facilitates computational efficient subspace
projection. In a recent work [194], Discriminant Analysis with maximum margin crite-
rion has been proposed for reducing structural risk and promoting better generalisation
for novel data similarity with Support Vector Machine (SVM). The weighted maximum
margin discriminant analysis method has been shown to be better than SVM in [229].

3.5 Relations Between Discriminant Analysis(DA), Canonical Cor-

relation Analysis(CCA) and Regression

Canonical Correlation Analysis (CCA) (since Hotelling (1936) [71]) for the analysis of
relations between two sets of variables, embodies Discriminant Analysis and multiple re-
gression as its special cases. CCA is equivalent to Discriminant Analysis or multiple re-
gression under certain conditions. Canonical Correlation Analysis involves two sets of
variables: it supposes that there exist n observations of each of p variables xi (i = 1, ..., p)
and of q variables yi (i = 1, ..., q). On the other hand, Discriminant Analysis includes n

26



CHAPTER 3 §3.6

observations of each of p variables xi (i = 1, ..., p), which are tagged with their respec-
tive categories or classes. Thus the Discriminant Analysis associates a set of independent
variables with a categorical target or dependent variable. Multiple linear regression described
by

y = β0 + β1x1 + β2x2 + · · ·+ βpxp + ε, (3.25)

where βis are the respective parameters of independent variables and ε is a random term,
is concerned with the estimation of one dependent variable by a linear combination of in-
dependent variables. This is a special case of Canonical Correlation Analysis with q = 1.

Canonical Correlation Analysis vs. Multiple Regression: As described above, whereas
multiple regression is used for many-to-one relations, canonical correlation analysis is used
for many-to-many. It has been reported that the two things are mathematically equivalent
under the condition that q = 1.

Discriminant Analysis vs. Linear Regression: Discriminant Analysis can be used only
for classification (i.e., with a categorical target variable), not for regression. The target vari-
able in the Discriminant Analysis is a discrete variable of two or more categories, whereas
it is a continuous variable in Linear Regression in general.

Discriminant Analysis vs. Logistic Regression: Both Logistic Regression and Discrimi-
nant Analysis allow one to predict a discrete outcome such as group membership from a
set of independent variables. The logistic regression may be better suited to cases where
the dependant variable is dichotomous, while the independent variables may be nominal,
ordinal, ratio or interval. Discriminant analysis might be more appropriate when the de-
pendant variable has more than two groups/categories. Logistic regression is much more
relaxed and flexible in its assumptions than discriminant analysis. Unlike discriminant
analysis, logistic regression does not have the requirements of the independent variables
to be normally distributed, linearly related, nor of equal variance within each group [175].
Freedom of being from the assumption of the discriminant analysis posits the logistic re-
gression as a tool to be used in many situations. However, when the assumptions regard-
ing the distribution of predictors are met, discriminant function analysis may be a more
powerful and efficient analytic strategy [175].

3.6 Canonical Correlation Analysis (CCA)

As seen above, Canonical Correlation Analysis (CCA) is a general method for inspecting
linear relations between two sets of variables, which will be exploited as a useful tool to
measure set-similarity or video-similarity in the following chapters. This section gives
an overview of CCA and its brief bibliographic notes. CCA has been adopted in various
fields, from Economics, Medicine, Meteorology and recently computer vision and pattern
recognition studies.
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Figure 3.2: Representation of Canonical Correlation Analysis (CCA). CCA measures principal
angles between two linear subspaces. Two sets of samples are represented as linear
subspaces which are here planes (denoted by L1 and L2). Canonical vectors u1,v1

on the planes are found to yield maximum correlations. The second canonical vectors
u2,v2 are determined to be perpendicular to the first.

3.6.1 Standard Formulation of CCA

A standard interpretation and solution of CCA is given as a method of correlating linear
relationships between two multidimensional variables. It finds basis vectors for two sets
of variables such that the correlation between the projections of the variables onto these
basis vectors are mutually maximised [71, 60]. Given two random vectors x ∈ Rm1 ,y ∈
Rm2 , a pair of transformations u,v is found to maximise a correlation of the two vectors
x′ = uTx,y′ = vTy as

ρ = max
u,v

E[x′y′T ]√
E[x′x′T ]E[y′y′T ]

= max
u,v

uTCxyv
(uTCxxuvTCyyv)1/2

(3.26)

where ρ is called the canonical correlation and multiple canonical correlations ρ1, ...ρd

where d < min(m1,m2) are defined by the next pairs of u,v which are orthogonal to
the previous ones.

Affine invariance of CCA.
Canonical correlations are invariant to affine transformations w.r.t. inputs, i.e. Ax +

b,Cy + d for arbitrary A ∈ Rm1×m1 ,b ∈ Rm1 ,C ∈ Rm2×m2 ,d ∈ Rm2 [17]. This proof is
straightforward from (3.26) as Cxy,Cxx,Cyy are covariance matrices and are multiplied
by canonical transformations u,v.

3.6.2 Principal Angles of Linear Subspaces

An alternative (and geometrical) formulation, which is equivalent to the standard formu-
lation of CCA (See [11] for details), is given by subspace concepts. Canonical correlations
are often referred to as principal angles (precisely cosine of principal angles) of linear sub-
spaces. Canonical correlations, which are cosines of principal angles 0 ≤ θ1 ≤ . . . ≤ θd ≤
(π/2) between any two d-dimensional linear subspaces L1 and L2, are uniquely defined
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Figure 3.3: Probabilistic Canonical Correlation Analysis tells how well two random variables
x,y are represented by a common source variable z [5].

as:
cos θi = max

ui∈L1

max
vi∈L2

uT
i vi (3.27)

subject to uT
i ui = vT

i vi = 1, uT
i uj = vT

i vj = 0, i 6= j. The concept of principal angles
between two linear subspaces is shown in Figure 3.2.

There are various ways to solve this problem. They are all equivalent, but the Singular
Value Decomposition (SVD) solution [11] is known to be more numerically stable than the
standard solutions [71, 60], as the number of free parameters to be estimated is smaller.
The solutions offered by neural networks have also been available through e.g. [48].

3.6.3 Probabilistic Interpretation of CCA

Several studies have been conducted in probabilistic interpretation of Canonical Correla-
tion Analysis. Two graphical models have been proposed in a recent work [5] and other
probabilistic derivations of CCA by neural networks in [112, 111]. The probabilistic inter-
pretation seems useful in deepening understanding of CCA.

A probabilistic model of CCA [5] is further detailed: as shown in Figure 3.3, the model
reveals how well two random variables x,y are represented by a common source variable
z ∈ Rd by the two likelihoods p(x|z), p(y|z), comprised of affine transformations. The
posterior expectations of z given x,y are

E(z|x) = MT
1 UT (x− µx), E(z|y) = MT

2 VT (y − µy), (3.28)

where U = [u1, ...,ud],V = [v1, ...,vd], M1,M2 are arbitrary matrices s.t. M1MT
2 =

diag(ρ1, ..., ρd) and µx, µy are the data means. Whatever M1,M2 are, the projections E(z|x), E(z|y)
lie in the d-dimensional subspaces that are identical to those obtained from standard CCA
by the canonical transformations U,V.

3.6.4 CCA by Mutual Information

A new method based on information theory for Canonical Correlation Analysis has been
proposed [222]. The method finds canonical coefficient vectors by maximising mutual
information of two random variables. Relations of a standard CCA to mutual information
and relevant information theories are also found in [17].
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3.6.5 Generalisation of CCA with Kernels

The CCA may be generalised by standard kernel tricks. Studies on Kernel CCA for non-
linear relations between two sets of vectors have been conducted in [199, 60, 197]. An
alternative model for non-linear CCA by alignment of local models has been proposed
in [190].

3.6.6 Generalisation of CCA for Multiple Sets

Standard Canonical Correlation Analysis has been designed for two sets of vectors. It has
been extended into that for relating several sets of vectors [86, 192, 60]. See [60] for some
relevant discussion.

3.6.7 Applications of CCA

There is much literature where CCA is successfully applied for various visual classification
tasks. As noted in Chapter 2, CCA has been successful in comparing two sets of images
for object (face) recognition. Relevant works include the simple application of principal
angles [207], efforts to improve discriminatory powers of principal angle features [45] (See
Section 3.6.8 for details), the kernel version of discriminative principal angles [46] and
multiple expert design by bagging or boosting [144]. Object recognition problems have
been tackled by a standard Kernel CCA [199, 200]. Moreover, CCA has been adopted for
classification of temporal stationary images, so-called dynamic texture recognition problems
in [161].

Canonical Correlation Analysis (CCA) has also been examined for a set-similarity mea-
sure of local image descriptions for general object recognition [36]. Each object image is
represented as a collection of local image descriptions and compared with other images by
CCA. The output of CCA is then supplied into Support Vector Machine for classification.
Many other kernels have been compared with the CCA in [36], where CCA was found to be
poorer. This might be partly because the sets of local descriptors, as inputs of CCA, might
be not well characterised by their low-dimensional subspaces. Also, the output of the CCA
for the input of the SVM, is an already compressed form of data learnt in a discriminative
way so that the subsequent SVM does learn properly.

CCA has also been applied to problems of estimation of face depth maps from color
textures [157], Robot localization [170], detection of neural activity in functional MRI [44],
seasonal climate forecasts [166], underwater target classification [152], face recognition by
generalised CCA [174], facial expression recognition by kernel CCA [230], and differenti-
ating presence of a real face from that of its photograph [132].

3.6.8 Constrained Mutual Subspace Method

A method for further improvement of discrimination power of CCA has been proposed
in [45]. In the method called Constrained Mutual Subspace Method (CMSM), a constrained
subspace is defined as that on which the entire class population exhibits small variance.
It has been shown that the sets of inter-classes have smaller canonical correlations than
those of intr-classes in the constrained subspace, thus facilitating better classification. The
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constrained subspace D is spanned by Nd eigenvectors d of the matrix G =
∑C

i=1 PiPT
i

s.t.
Gd = λd

where C is the number of training classes, Pi is a basis matrix of the original i-th class data
and eigenvector d corresponds to the Nd smallest eigenvalues. The optimal dimension Nd

of the constrained subspace is set experimentally. The subspace Pi is projected onto D
and the orthogonal components of the projected subspace, normalised to unit length, are
obtained as inputs for computing canonical correlations by MSM [207].

Their success has encouraged us to develop an optimal discriminative transformation
which ensures that the transformed image sets are class-wise optimally separated by CCA.
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CHAPTER 4

Locally Linear Discriminant Analysis
for Recognizing Multi-modally
Distributed Classes with a Single
Model Image

In light of our success in MPEG-7 (Moving Picture Expert Group) standard and general
interest in non-linear discriminant analysis, this chapter presents a novel method of non-
linear discriminant analysis for the object recognition task with a single-per-class sample,
i.e. a Single-to-Single Matching task. Linear Discriminant Analysis (LDA) learns the op-
timal Bayesian discriminant function under the equal-class covariance assumption, which
enables convenient generalisation across different object classes. That is, it can learn covari-
ance structures from an independent prototype set of multiple-images-per-class and apply
them to a new set of a single-image-per-class. However, a single linear model would be
insufficient to capture complex non-linear manifolds of the data set. Here we propose a
method called ”Locally Linear Discriminant Analysis (LLDA)” for a non-linear classifica-
tion problem. Note that the proposed method embodies the conventional LDA as a special
case.

The key novel idea of the proposed method is to maximise the separability of classes
locally while promoting consistency between the local representations of a single object
class. The method assumes that global nonlinear data structures are locally linear and
local structures can be linearly aligned. Input vectors are projected into each local fea-
ture space by linear transformations found to yield locally linearly transformed classes
that maximise between-class covariance while minimising within-class covariance in the
aligned output space. The learnt model can then be applied to recognition of any new
class which has a model image in one local cluster and a query image in one of the other
clusters. Compared with conventional Generalised Discriminant Analysis (GDA) [8], our
method is highly time efficient and avoids overfitting owing to its linear base structures.
A novel gradient-based learning algorithm is proposed for finding the optimal set of local
linear bases. Experiments have been done for synthetic data and for pose-invariant face
recognition with a single model image.
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4.1 Discriminant Analysis for Non-linear Problems

The effectiveness of pattern classification methods can seriously be compromised by var-
ious factors which often affect sensory information on an object. Frequently observations
from a single object class are multi-modally distributed and samples of objects from differ-
ent classes in the original data space are more closely located to each other than to those of
the same class. The data set of face images taken from a certain number of viewing angles
is a typical example of such problems. It is because the change in appearance of face im-
ages due to pose changes is usually larger than that due to identities of faces. Generally,
the face manifold is known to be continuous with respect to continuous pose changes [52].
The proposed method for multi-modally distributed face classes may be useful generally,
as a continuous pose set can be divided into many subsets of multi-modal distributions.

Linear Discriminant Analysis (LDA) [47, 9, 226] is a powerful method for face recog-
nition yielding an effective representation that linearly transforms the original data space
into a low dimensional feature space where the data is as well separated as possible on
the assumption that the data classes are gaussian with equal co-variance structure. How-
ever, the method fails to solve non-linear problems, as illustrated in Figure 4.1 (a), be-
cause LDA only considers a single linear transformation in a global coordinate system.
The transformed face classes are still multi-modally distributed. The multiple LDA sys-
tem [88, 180, 151] which adopts several independent local transformations attempts to
overcome the shortcomings of LDA but it fails to learn any global data structure, as shown
in Figure 4.1 (b). In the LDA mixture model [88, 180], it is assumed that single class ob-
jects are distributed normally with an identity covariance matrix structure. It then just
focuses on maximising the discriminability of the local structures and it does not make
any effort to achieve consistency in the local representations of any single object class. In
the upper picture of Figure 4.1 (b), the two data sets C11 and C12 corresponding to the
different modes of a class are unfortunately positioned in different directions of the corre-
sponding local components, u11 and u21, thus having different representations in a global
coordinates as illustrated below. Classes are mixed up in the transformed space. The view-
based method for face recognition proposed by Pentland [151] would exhibit the same dif-
ficulty in these circumstances. Following their idea, we could divide images into distinct
pose groups and then train LDA separately for each group, which is similar to using the
LDA mixture. Because these LDA bases do not encode any relations of the different pose
groups, it is not guaranteed that this ’view-based LDA’ would yield a consistent represen-
tation of different pose images of a single identity. In many conventional face recognition
systems [88, 91, 9, 226, 151] which adopt a linear machine such as LDA or LDA mixture
model, as many gallery samples as possible are required to capture all the modes of class
distributions. However, it is often difficult to obtain various mode (or pose) images of one
person.

Support vector machine (SVM) based on kernels has been successfully applied for non-
linear classification problems such as face detection [188, 148]. This is, however, inefficient
for multi-class recognition and inappropriate when a single sample per class is available to
build a class model. By design generalised discriminant analysis (GDA) [8, 124, 139, 211] is
suitable for multi-class face recognition problems where the original data is mapped into
a high-dimensional feature space via a kernel function. The GDA representation learnt
from training face classes of various pose images can be exploited to achieve pose robust
representation of novel face classes. Recognition with a single model image of the novel
classes is thus facilitated. However, GDA generally suffers from the drawback of high
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Figure 4.1: Comparison of LDA, LDA mixture and LLDA for the non-linear classification
problem. Only LLDA guarantees that the multi-modally distributed face classes in the
input space are transformed into the class-wise single-modal distributions in the output
space. Each upper plot shows the simulated data distributions and the components
found by LDA, LDA mixture and LLDA. In the lower graphs the transformed class dis-
tributions in the global output coordinate system are drawn. The data are generated
by C11 = {X ∼ N(21.6, 2), Y ∼ N(21.6, 1)}, C12 = {X ∼ N(7.5, 2), Y ∼ N(7.5, 0.8)},
C21 = {X ∼ N(26, 2), Y ∼ N(16, 2)}, and C22 = {X ∼ N(8, 2), Y ∼ N(16, 1.2)}, where
N(a, b) is a normal variable with the mean a and standard deviation b. 200 data points
are drawn for each mode. Cij is the j-th cluster of the i-th class, uij is the j-th com-
ponent of the i-th cluster and ui denotes the i-th component of the output coordinate
system.

computational cost in classification and overfitting. In applications such as classification
of large data sets on the Internet or video, computational complexity is particularly im-
portant. The global structure of nonlinear manifolds was represented by a locally linear
structure in [159, 65]. These methods perform unsupervised learning for locally linear
dimensionality reduction but not a supervised learning for discrimination.

4.2 Locally Linear Discriminant Analysis (LLDA)

In this study, several locally linear transformations are concurrently sought so that the
class structures manifest by the locally transformed data are well separated in the output
space. The proposed method is called ”Locally Linear Discriminant Analysis (LLDA)”.
The underlying idea of this approach is that global nonlinear data structures are locally
linear and local structures can be linearly aligned. Single-class training objects, even if
multi-modally distributed, are transformed into a cluster that is as small as possible with
maximum distance to the different class training objects, by a set of locally linear functions,
as illustrated in Figure 4.1 (c). The linear functions learnt from training face classes of
various pose images can be efficiently generalised to novel classes. Even when a single
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Figure 4.2: LLDA Representation. (a) Locally discriminative and aligned LLDA bases yield sim-
ilar representations of posed face images. uij denotes the j-th component of the i-th
cluster. (b) Face-image distributions in the first three dimensions of PCA, view-based
LDA and LLDA. Whereas LDA and view-based LDA have shuffled class samples, LLDA
achieves class-distinctive distributions. Classes are marked with different symbols.

model image per class is provided, it is much easier to recognize a novel view image in the
aligned output space.

The method advocated maximises the separability of classes locally while promoting
consistency between the multiple local representations of single class objects. Compared
with the conventional nonlinear methods based on kernels, the proposed method is much
more computationally efficient because it only involves linear transformations. By virtue
of its linear base structure, it also reduces overfitting normally exhibited by conventional
non-linear methods. The transformation functions (or bases) learned from the face images
of two views are visualised in Figure 4.2 (a). The functions can be exploited as the bases
of a low dimensional subspace for robust face recognition. The basis functions of each
cluster are specific to a particular facial pose. We note two interesting points in this Fig-
ure. Firstly the bases of each cluster are similar to those of classical LDA and this ensures
that face images of different individuals in the same pose are discriminative. Secondly,
the corresponding components of the two clusters, for example, uf1 and ur1 are aligned.
They are characterised by a certain rotation and scaling with similar intensity variation. In
consequence, face images of the same individual in different poses have quasi-invariant
representation as shown in Figure 4.2 (a) and (b). For conciseness, only four face classes
are plotted in the subspaces of Principal Component Analysis (PCA) [187], view-based
LDA (or LDA mixture) and LLDA in Figure 4.2 (b). Each class has the four samples of
two poses and two time sessions. While LDA and view-based LDA have shuffled class
samples, LLDA achieves class-distinctive distributions of samples.

The remainder of this chapter is organized as follows: The proposed LLDA method
is formulated in Section 4.3 and a solution of the optimization problem involved is pre-
sented in Section 4.4. Section 4.5 further simplifies the proposed method by replacing the
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Gaussian mixture model with K-means clustering. Section 4.6 is devoted to the analysis of
computational complexity. Section 4.7.1 presents the results of experiments performed to
demonstrate the beneficial properties of the proposed method on synthetic data. In Sec-
tion 4.7.2, the method is applied to the problem of face recognition. Summary is given in
Section 4.8.

4.3 LLDA Formulation

The proposed method, LLDA is applicable to multi-class nonlinear classification problems
by using a set of locally linear transformations. Consider a data set X = {x1,x2, ...,xM} of
N-dimensional vectors of face images of multiple poses and C classes {X1, ...,Xc, ...,XC}.
The input vectors are clustered into K subsets denoted by k, k = 1, ..., K and each sub-
set k represents a cluster to which a different transformation function is applied. As the
multi-modality of the face data distribution is typically caused by the variety of poses, the
clusters may correspond to facial poses. Note that each pose set is assumed to contain data
of every class. Clusters are obtained by K-means clustering, Gaussian mixture modelling
or pose labels (if available) of the input vectors. The number of clusters K is chosen to
maximise an objective function defined on the training set. Because K is usually a small
positive integer, we can make the best choice of K empirically. It is also pertinent to select
K as the number of pose sets, if it is known. However, general model order selection for
a high dimensional data set remains an open problem. The basic LLDA approach draws
on the notion of ’soft clustering’, in which each data point belongs to each of the clusters
with a posterior probability P (k|x). The algorithm that is combined with ’hard’ K-means
clustering will be discussed in Section 4.5. We define the locally linear transformation
Uk = [uk1,uk2, ...,ukN ], k = 1, ..., K such that

yi =
K∑

k=1

P (k|xi)UT
k (xi − µk), (4.1)

where N is the dimension of the transformed space. The mean vector of the k-th cluster µk

is described by

µk =

(
M∑

i=1

P (k|xi)xi

)
/

(
M∑

i=1

P (k|xi)

)
. (4.2)

The locally linear transformation matrices Uk are concurrently found so as to maximise
the criterion function, J . Two objective functions are considered,

J1 = log(|B̃|/|W̃|), and J2 = (1− α)|B̃| − α|̇W̃|, (4.3)

where B̃ and W̃ are the between-class and within-class scatter matrices in the locally lin-
ear transformed feature space respectively. The constant α takes values from the interval
[0 1]. The objective functions maximise the between-class scatter while minimising the
within-class scatter in the locally transformed feature space. One of the differences be-
tween the two defined objective functions is manifest in the efficiency of ”learning”. The
log objective function J1 has the benefit of not requiring a free parameter α but it is more
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costly computationally. The function J2 can efficiently be optimised iteratively, once α is
selected. This is exemplified in the subsequent section. In terms of performance, the two
approaches are similar, as reported in the experimental section 4.7.1. The global mean m̃
of all the transformed samples is

m̃ =
1
M

M∑

i=1

yi =
1
M

M∑

i=1

K∑

k=1

P (k|xi)UT
k (xi − µk), (4.4)

where M is the total number of the samples. By substituting for µi from equation (4.2), we
get m̃ =

−→
0 . The sample mean for class c which consists of Mc samples is given by

m̃c =
1

Mc

∑

x∈Xc

y =
K∑

k=1

UT
k mck, (4.5)

where mck = 1
Mc

∑
x∈Xc

P (k|x)(x− µk).

The term mck denotes the sample mean of a class c in the k-th cluster. Because the
transformation is defined with respect to the original cluster mean µk, the total mean m̃k

of the transformed data in every cluster becomes zero. Using equations (4.4) and (4.5), the
transformed between-class scatter matrix is given as:

B̃ =
C∑

c=1

Mc(m̃c − m̃)(m̃c − m̃)T

=
C∑

c=1

Mc

(
K∑

k=1

UT
k mck

)(
K∑

k=1

UT
k mck

)T

(4.6)

=
K∑

k=1

UT
k BkUk +

K−1∑

i=1

K∑

j=i+1

UT
i BijUj +




K−1∑

i=1

K∑

j=i+1

UT
i BijUj




T

where

Bk =
C∑

c=1

McmckmT
ck, and Bij =

C∑

c=1

McmcimT
cj .

The between-class scatter matrix consists of the scatter matrices associated with the re-
spective clusters and the correlation matrix of the data samples belonging to two discrete
clusters. The correlation matrix encodes the relations of the two local structures for align-
ment. Similarly, the within-class scatter is defined by

W̃ =
C∑

c=1

∑

x∈Xc

(y − m̃c)(y − m̃c)T (4.7)

=
K∑

k=1

UT
k WkUk +

K−1∑

i=1

K∑

j=i+1

UT
i WijUj +




K−1∑

i=1

K∑

j=i+1

UT
i WijUj




T

,
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Wk =
C∑

c=1

∑

x∈Xc

(P (k|x)(x− µk)−mck) (P (k|x)(x− µk)−mck)
T

Wij =
C∑

c=1

∑

x∈Xc

(P (i|x)(x− µi)−mci)
(
P (j|x)(x− µj)−mcj

)T
.

Matrix Wk describes a local cluster and Wij is the cross-term of two local clusters.

Relations to classical LDA and LDA mixture model. Please note that the defined
criterion with K = 1 is identical with that of the conventional LDA. Moreover, the pro-
posed algorithm without the cross terms Bij and Wij would adhere to the same concept
as that of the LDA mixture model by focusing just on the local separability. In this circum-
stance, clusters are treated independently of each other, thus not requiring alignment of
the local representations. Any subset of classes (except only one class) is allowed in clus-
ters whereas every class is assumed to be presented in each cluster (pose) for LLDA. In
general, data may have heterogeneous class distributions and local structures making our
assumption in LLDA invalid. Interesting follow-up study is found in [29] where this issue
is handled by locating local discriminant analysers at their optimal places.

4.4 Gradient-based Solution for LLDA

In this section, we provide an efficient iterative optimisation method based on a gradient
learning algorithm for an optimal set of locally linear transformation functions. While
it is hard to find good parameters of a kernel function for new data in the conventional
GDA, the proposed learning has only parameters which reduce or eliminate overfitting.
The discriminant based on such a piecewise linear structure has the benefit of optimising
a convex function with respect to the set of basis vectors of the local coordinates, yielding
a unique maximum.

The method is based on a one-basis vector solution for uk1, k = 1, ...,K. Other methods
based on incremental one-basis at a time solution can be found in [75, 147, 228] for discrim-
inant or independent component analysis criteria. The proposed gradient method yields
a global maximum solution by virtue of the criterion function’s being 2nd-order convex
with respect to all the variables uk1, k = 1, ..., K. We need to run the one-basis algorithm
several times to obtain a multidimensional solution Uk = [uk1,uk2, ...,ukN ], k = 1, ...,K.
The vector orthogonalization is performed to prevent different vectors from converging to
the same maxima in every iteration. We seek the vectors u which maximise the criterion
function under the constraint of their being unit norm:

Max J1 or J2,

for ||ukn|| = 1, k = 1, ...,K and n = 1, ..., N. (4.8)

This constrained optimization problem is solved by the method of projection on the con-
straint set [75]. A vector normalization imposing a unit norm is executed after every up-
date of the vector. The learning rules are as follows:
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Take the following steps with an index n starting from 1 to N for ukn, k = 1, ..., K.

1. Randomly initialize K unit vectors ukn.

2. Calculate the gradient of the objective function with respect to the variables ukn by

∂J1

∂ukn
=

(
2B̃−1Bk − 2W̃−1Wk

)
ukn +

K∑

i=1,i 6=k

(
2B̃−1Bki − 2W̃−1Wki

)
uin, or

∂J2

∂ukn
= (2(1− α)Bk − 2αWk)ukn +

K∑

i=1,i 6=k

(2(1− α)Bki − 2αWki)uin. (4.9)

3. Update with an appropriate step size η as

∆ukn ← η
∂J

∂ukn
. (4.10)

4. Carry out the deflationary orthogonalization by

ukn ← ukn −
n−1∑

i=1

(
uT

knuki

)
uki. (4.11)

5. Normalize the vectors ukn by

ukn ← ukn/||ukn||. (4.12)

Repeat the processes 2 ∼ 5 until the algorithm converges to a stable point, set n := n + 1
and then go to step 1.

Note that the two objective functions have different costs in learning process. When
calculating the gradients of J2 in (4.9), all the matrices, here scalar values, are previously
given but the two matrices B̃−1,W̃−1 in the learning of J1 should be iteratively updated.
For the synthetic data example given in Figure 4.1, the optimization of J1 takes about 15
times longer than that of J2. While the learning of J1 has a benefit of avoiding a free para-
meter α, J2 has a simpler optimization cost when the parameter α is fixed. By changing α,
one can control the importance of the variance of the between-class to that of the within-
class data distributions. Orthogonalization (4.11) ensures that the proposed discriminant
is defined by orthonormal basis vectors in each local coordinate system. The orthonor-
malisation of the bases yields more robust performance in the presence of estimation error
(please refer to [147, 228] for the details). The benefits of orthonormal bases in discrimi-
nant analysis over classical LDA have also been explained in previous studies. Although
we do not provide a proof of convergence or uniqueness of the gradient-based iterative
learning method, its convergence to a global maximum can be expected by virtue of the
criterion’s being a 2nd-order convex function with respect to a basis vector, ukn, of each
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Figure 4.3: Convex optimization in LLDA learning. The proposed gradient-based learning is
performed for the data distribution shown in Figure 4.1, where K is set to 2 and step
size η is fixed to 0.1. (a) Value of the criterion J2 (left) as a function of orientation
of u11,u21 with α = 0.1. The distributions of the two classes C1 = C11

⋃
C12, C2 =

C21

⋃
C22 on the first major component u1, are drawn (right) as a series while J2 is

maximised. (b) Convergence graphs of J2 with α = 0.1, 0.5 and J1.

local coordinate system, and the joint set of the basis vectors ukn, k = 1, ..., K, as explained
in [115, 114]. Figure 4.3 shows the convergence characteristics of the learning process for
the synthetic data presented in Figure 4.1. The constant α was explored in steps of 0.1 for
the best classification rate of the training data. The value of J2 according to the angles of
basis vectors has a unique global maximum. It is also noted that the gradient optimization
method of the objective function quickly converges regardless of constant α. The learning
which deploys the objective function J1 also stably approaches a unique maximum.

Lagrangian Method for Constrained Optimization. A solution to the constrained
optimization problem can also be obtained by using the method of Lagrangian multipliers
as

L = (1− α)|B̃| − α|W̃| −
K∑

k=1

Λk(UT
k Uk − I), (4.13)
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where I is the identity matrix and the diagonal matrix of eigen-values is

Λk =




λk1 0
. . .

0 λkN




The third term in (4.13) represents the constraints that the local transformations have or-
thonormal bases. The gradient of the Lagrangian function with respect to the basis vectors
is

∂L

∂ukn
= (2(1− α)Bk − 2αWk − 2λknI)ukn +

K∑

i=1,i 6=k

(2(1− α)Bki − 2αWki)uin = 0

(4.14)
The solution can be found by numerical optimization of the Lagrangian function. How-
ever, in practice, a numerical optimization can only be used in low dimensional data
spaces. As a reference, we used the numerical optimization ”solve” function in Matlab
to solve the two-dimensional problem shown in Figure 4.1. The constraint optimization
took 600 times longer than the gradient-based of J2. The two proposed methods of gradi-
ent based learning are much favoured for their efficiency.

4.5 LLDA with K-means Clustering

Let us revisit the basic model derived in Section 4.3 by considering the special case in-
volving a discrete posterior probability. K-means clustering divides a data set into disjoint
subsets. If the data point x belongs to the k∗-th cluster, P (k∗|x) = 1 and P (k|x) = 0 for all
the other k’s. The mean vector of the k-th cluster µk in (4.2) can be rendered by

µk =

(∑
x

P (k|x)x

)
/

(∑
x

P (k|x)

)
=

(∑

x∈k

x

)
/M ′

k, (4.15)

where M ′
k is the sample number of the cluster k. The defined transformation in (4.1) be-

comes
y = UT

k (x− µk) for x ∈ k. (4.16)

The definition of the global mean (4.4) and the class mean (4.5) changes as follows:

m̃ =
1
M

K∑

k=1

UT
k

∑

x∈k

(x− µk) =
−→
0 , m̃c =

K∑

k=1

UT
k mck, (4.17)

where
mck =

1
Mc

∑

x∈Xc
T

k

(x− µk).
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The transformed between-class matrix (4.6) and the within-class scatter matrix (4.7) can
similarly be expressed by changing the notation from P (k|x) to x ∈ k. The learning algo-
rithm in Section 4.4 finds the optimal set of locally linear transformation Uk, k = 1, ..., K.

When a new pattern xtest is presented, it is first assigned to one of the clusters by

xtest ∈ k∗ = min
argk

||xtest − µk|| (4.18)

and transformed by using the corresponding function

ytest = UT
k∗(xtest − µk∗). (4.19)

4.6 Computational Complexity

The complexity of the algorithms depends on the computational costs associated with ex-
tracting the features and with matching.

Feature extraction. For the linear subspace methods such as PCA and LDA, the cost of
feature extraction is determined by the dimensionality N of the input vector, x, and the
number of components of the subspace S. The cost of extracting features using linear
methods is roughly proportional to N × S. In nonlinear subspace methods like the GDA,
the n-th component of the projection of vector x is computed as

yn =
M∑

i=1

αnik(xi,x), (4.20)

where M is the total number of training patterns, αni is a real weight and k denotes a ker-
nel function. The cost of extracting features of the GDA is about N ×S×M . The proposed
method, LLDA has a similar cost with that of PCA or LDA depending on the preceding
clustering algorithm. When a hard clustering such as K-means is applied, the cost of ex-
tracting features is N × (S +K), where the additional term N ×K is for assigning a cluster
to the input. When a soft clustering is applied, the cost is multiplied by the number of
clusters, i.e., N × S ×K. Note that usually K ¿ M .

Matching. When the data points are represented as the S dimensional feature vectors and
C gallery samples are given for the C class categories, the matching cost for recognition is
C × S . This applies to all, the linear, nonlinear and proposed subspace methods.

4.7 Experiments
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4.7.1 Results on Synthetic Data

Two sets of 2-dimensional synthetic data, i.e. x ∈ R2, underwent experiment. The distrib-
ution of c-th class data was generated as Gaussian mixtures by

p(x|c) =
K∑

k=1

1
K
N (x|µck,Σck)

where K is the number of clusters and µck,Σck are the mean and covariance matrix of k-
th cluster data of c-th class. 200 data points were drawn from each Gaussian mode. Set
1 has three classes which have two distinct modes while Set 2 has two classes with three
distinct modes, as shown in Figure 4.4. Conventional LDA, mixture of LDA, and GDA
with the radial basis function (RBF) as a kernel are compared with LLDA in terms of clas-
sification error. Euclidean distance(E.D.), normalized correlation(N.C.) and Mahalanobis
distance(M.D.) were used as similarity functions for the nearest neighbor (N.N.) classifica-
tion. It is noted that all the transformed data points were compared with the sample mean
of each class in (4.5).

In the LLDA method, the number of clusters, K, was selected to maximise the value of
the objective function. For the example of the data of Set 1, the peak values of J1 changed
with K as follows: -7.14, 2.97, 0.85 for K = 1, 2, 3 respectively, so the number K = 2 was
chosen. This is much simpler than the parameter selection of RBF as a kernel function
in GDA, because the standard deviation of RBF is hard to initialize and it is a real (non-
integer) value. The axes of LDA, LDA mixture, LLDA are drawn in Figure 4.4. Table 4.1
shows the average number of classification errors with their standard deviation and the
relative costs of feature extraction. It is apparent that the proposed discriminant can well
solve the non-linear classification problem on which the conventional linear methods fail
and it is much more profitable than GDA in terms of computational efficiency. The feature
extraction complexity of the proposed method is about 1/270 of that of GDA in this exam-
ple. Although the GDA was slightly more accurate, it is noted that the kernel parameter
of RBF in GDA was exhaustively searched to find the best performance for the given data.
In contrast, the proposed algorithm based on the log objective function has only a small
integer K to be adjusted and the learning process is also much faster. Note that addition-
ally, when the class distributions have a single mode, LLDA with K = 1 yields a successful
separation by behaving like the conventional LDA. LLDA with K = 1 is identical with the
conventional LDA, with the exception of the orthonormal constraint imposed on the axes
by LLDA.

4.7.2 View-invariant Face Recognition with One Sample Image

The proposed algorithm has been validated on the problem of free-pose face recognition in
the scenario when only a single frontal image of each class is available as a gallery image.

In our experiments, the proposed algorithm, LLDA, is compared with PCA, LDA and
GDA as the benchmark subspace methods that have been successfully applied to face
recognition in the past and FaceIt(v.5.0), the commercial face recognition system from Iden-
tix. FaceIt ranked top overall in the Face Recognition Vendor Test 2000 and 2002 [154, 13].

Database: We used the XM2VTS data set annotated with pose labels of the face. The face
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Figure 4.4: Simulated data distributions and the components found. Colors (or symbols)
indicate different classes. Black solid lines represent the first major components and
gray dashed lines the second components. (a) For Set 1. (b) For Set 2.

E.D. N.C. M.D. Cost
Set1 (400 samples/class)

LDA 266±115 266±115 81±61 1
LDA mixture 254±27 255±23 169±45 1+ω

GDA 4.3±1.1 4.3±1.1 4.4±0.5 270
LLDA J1 + km 7.6±3.5 7.6±3.5 7±3.4 1+ω
LLDA J2 + km 7.6±3.5 8±3.6 7.3±3.7 1+ω

LLDA J1 + GMM 7.6±3.5 8±3.6 7.3±3.7 2+ω
Lagran. J2 7.6±3.2 8±2.6 7.3±2.8 1+ω

Set2 (600 samples/class)
LDA 308±129 308±129 207±272 1

LDA mixture 205±1.4 205±1.4 206±7 1+ω
GDA 4±1.4 4±1.4 4±0 278

LLDA J1 + km 9.5±3.5 9.5±3.5 7.5±3.5 1+ω
LLDA J2 + km 8±1.4 8±1.4 7±2.8 1+ω

Table 4.1: Classification Results (number of errors). ω indicates the computational cost of
deciding to which cluster a new pattern belongs. It is usually less than 1. ’LLDA J1 +km’
is the LLDA of the objective function J1 with K-means clustering algorithm. ’LLDA J1 +
GMM’ indicates the LLDA of the objective function J1 with Gaussian mixture modelling.
’Lagrangian J2’ denotes a numerical solution of the Lagrangian formulation.

database consists of 2950 facial images of 295 persons with 5 pose variations and 2 differ-
ent time sessions which have 5 months time elapse. The data set consists of 5 pose groups
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Figure 4.5: Normalized data samples. The leftmost image is given as the gallery image and
other rotated face images are used as testing images.

(F,R,L,U,D) which are captured in frontal view, about ±30 horizontal rotations and ±20
vertical rotations. The two images of a pose group ’F’ captured at different times are de-
noted by F1 and F2. This may be the largest public database that contains images of faces
taken from different viewpoints. The images were normalized to 46*56 pixel resolution
with a fixed eye position and some normalized data samples are shown in Figure 4.5. The
face set is partitioned into the three subsets: 1250 images of 125 persons, 450 images of
45 persons and 1250 face images of 125 persons for the training(Tr), evaluation(Ev) and
test(Te) respectively. Please note that the three sets have different face identities. For the
test of the commercial FaceIt system, the original images were applied to the system with
the manual eye positions.

Protocol and Setting: The training set is utilised to learn the subspace representation of
the conventional PCA/LDA/GDA methods and LLDA with K-means. For efficiency of
learning, all of the algorithms were applied to the first 80 (λ80/λ1 = 0.004) eigenfeatures of
the face images. Figure 4.6 shows the plots of eigenvalues and J1 of LLDA as a function of
dimensionality. The evaluation set is used to adjust the kernel parameter of GDA(an RBF
kernel with an adjustable width) and the dimensionality of the output vectors for all meth-
ods. The parameters are properly quantized and all combinations of the discrete values
of the quantized parameters are examined to get the best recognition rate on the evalu-
ation set. In LLDA, the number of clusters corresponded to the number of pose groups
and K-means algorithm was applied. The log objective function J1 was utilised to learn
the set of transformation functions and the learning rate was controlled to achieve faster
convergence. The learning typically took 2 or 3 minutes in Pentium IV 2GHz PC.

In the test the frontal face images of the test set, which are the leftmost images in Fig-
ure 4.5, are registered as a gallery and all the other images of the test set are exploited as
queries. All the test images are projected into the learned subspace and Nearest-Neighbor
based classification is performed based on the projection coefficients. % recognition rates
are measured. In LLDA, test face images were assigned to one of the clusters by equation
(4.18) and projected onto the corresponding subspace by (4.19).

Results : Table 4.2 presents the recognition rates on the evaluation and test set and Fig-
ure 4.7 shows the performance curves of the test set as a function of dimensionality. The
recognition rate of the evaluation and test set was much enhanced by the proposed algo-
rithm. FaceIt exhibited the best recognition performance for the frontal images F2 but quite
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Figure 4.6: (a) Eigenvalues of the face data. (b) Plot of J1 as a function of dimensionality.

low recognition rates for the rotated faces especially those involving up/down rotations.
More results showing the effects of the elapsed time and the size of test population are
given in Figure 4.8.

In LLDA, the number of clusters was chosen as the number of pose groups as pre-
viously mentioned by assuming that the multi-modality of the face class distributions is
caused by different poses. In each cluster, classes are assumed to be linearly separable.
Although this assumption may not be true, as other factors such as time lapse can make a
class distribute multi-modally and not linearly separable, we found that LLDA performed
much better than LDA/GDA/FaceIt. A performance degradation as a function of time
was observed for all methods but a relative performance gain exhibited by LLDA was still
preserved as shown in Figure 4.8. As mentioned above, the results of the test set were ob-
tained by using the output dimensionality found to be the best for the evaluation set. The
establishment of a proper evaluation set is important because the test results are sensitive
to the output dimensionality, as shown in Figure 4.7. This may be because pose variation
is so large that the methods find only few meaningful axes. We can see that the evaluation
set used proved adequate to solving this peaking problem as the recognition results on the
test set using the best dimensionality indicated by the evaluation set in Table 4.2 agreed
with the best results of the graph in Figure 4.7. GDA had the tendency highly to overfit on
the training set so that a separate evaluation set was needed to suppress this behaviour.

Regarding the complexity of the feature extraction, PCA, LDA and the LLDA are roughly
identical and GDA about 40 times worse than the linear methods. Please note that the com-
plexity of GDA depends on the size of the training set. The proposed method is not expen-
sive in terms of computational costs and provides more robust and accurate performance
for all the dimensionalities than other methods.

4.8 Summary

A novel non-linear discriminant analysis method has been proposed for a challenging task,
a non-linear classification problem with a single model image. Object classes, for e.g. face
images exhibiting large pose variations, often have nonlinear manifolds (or multi-modal
distributions) and are not linearly separable. In addition, it is required to learn relations
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PCA LDA GDA LLDA FaceIt
Ev Te Ev Te Ev Te Ev Te Ev Te

R1 13 4 55 43 66 49 66 56 73 64
L1 8 8 55 45 77 57 73 64 66 52
U1 28 16 53 43 73 52 71 66 46 36
D1 33 29 68 55 84 66 75 60 37 24
F2 75 70 73 63 82 71 75 66 95 83
R2 8 3 42 22 46 29 40 35 46 36
L2 4 4 33 27 44 36 48 47 46 30
U2 17 15 28 28 35 35 40 44 24 23
D2 20 10 31 32 42 32 35 40 33 9

Avg. 23 18 49 40 61 47 58 53 51 39

Table 4.2: Face Recognition Rates (%).
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Figure 4.7: The test performance curves (in %) as a function of dimensionality.

between pose groups to recognize a novel view face image for given a single-model face
image. The highly non-linear manifolds of data and the minimal training information
make this task extremely challenging. In the view-invariant face recognition task with
a single model image, the proposed method considerably outperformed all comparative
methods: conventional PCA, LDA, LDA mixture, GDA methods and a commercial face
recognition system. The recognition accuracy of the proposed method was about 70% in
the best scenario. Although this might be not sufficient for a strict security system such
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Figure 4.8: Recognition rates under aging for different sizes of test population. (a) Recogni-
tion rates on the test set consisting of 125 identities . (b) Recognition rates on the test
set consisting of randomly chosen 50 identities.

as an automatic access control, this could still facilitate the retrieval task which does not
have to get the correct images at the first rank all the time. Note that the proposed method
guarantees the winning performance of the LDA-based method in the MPEG-7 protocol as
it embodies the LDA as a special case. In addition to its improved accuracy, the proposed
method does not suffer from the local-maxima problem and stably converges to a global
maximum point and is computationally highly efficient as compared with the conventional
non-linear discriminant analysis based on the kernel approach.

For further accuracy improvement, one may exploit more priors on object classes. For
example, in view-invariant face recognition, more elaborate regularization using dense
facial feature correspondences is expected to promote face class structures that are better
separated; similarly to the results of [56]. Correspondence solving, however, is difficult
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itself and errors in correspondences seriously degrade the performance of the subsequent
recognition methods, as shown in [15]. It may be worth seeking an iterative algorithm of
the two steps, the proposed solution and the correspondence-solving so that they help each
other. Collecting more representative training samples, i.e. increasing the prototype set
here, could be an another way to boost accuracy of the method. As observed in Figure 4.8,
greater accuracy could be obtained with more training classes. As it is rash to assume that
all sufficient training sets are given initially, and it is time-consuming to learn whenever a
new set of training data is given, an efficient update method is required. This is explained
in the next chapter.
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Incremental Linear Discriminant
Analysis Using Sufficient Spanning
Set Approximations

A new incremental (or on-line) learning solution for Linear Discriminant Analysis (LDA) is
proposed in this chapter. It is often beneficial to learn the LDA bases from a large training
set. We have observed that a larger training set delivers better retrieval accuracy by LDA.
A complete set of training data may not be practically available initially. The execution
of the batch-computation, whenever new training data is presented, is too expensive in
terms of both time and space. An efficient update algorithm of LDA is greatly needed to
accumulate the information conveyed by new data so that the method’s future accuracy is
enhanced.

We apply the concept of the sufficient spanning set approximation in each update step,
i.e. for the between-class scatter, the total scatter and projected data matrices. The al-
gorithm yields a more general and efficient solution for incremental LDA than previous
attempts. It also significantly reduces the computational complexity while providing a
solution which closely agrees with the batch LDA result. We show two applications of in-
cremental LDA: Firstly, the method is applied to semi-supervised learning by integrating it
into an EM framework. Secondly, we apply it to the task of merging large databases which
were collected during MPEG-7 standardization for face image retrieval (i.e. the Single-
to-Single Matching task). Note that the proposed framework for on-line learning is also
shown useful for recognition tasks with image sets and videos in Chapter 9.

5.1 Drawbacks of Existing Methods

A number of incremental versions of LDA have been suggested which can be applied to
on-line learning tasks [68, 120, 149, 219]. Ye et al. [219] proposed an incremental version
of LDA which can include only a single new data point in each time step. A further lim-
itation is the computational complexity of the method when the number of classes C is
large, as the method involves an eigendecomposition of C × C-dimensional scatter ma-
trices. Pang et al. [149] introduced a scheme for updating the between-class and within-
class scatter matrices. However, no incremental method is used for the subsequent LDA
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Batch-mode computed Components

Updated Discriminant Components

UpdatedNewExisting

Interclass Components

Intraclass Components
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U

Figure 5.1: On-line update of an LDA basis. The basis computed by the new incremental LDA
algorithm (top right) closely agrees with that computed by batch LDA (bottom right).
Shown for each scatter matrix ST,i and SB,i are the first three principal components,
which are combined by merging eigenspaces.

steps, i.e. eigenanalysis of the scatter matrices, which remains computationally expen-
sive. Gradient-based incremental learning of a modified LDA was proposed by Hiraoka et
al. [68]. Limitations of the method are that it includes only a single new data point at each
time step and that it requires the setting of a learning rate. To circumvent the difficulty
of incrementally updating the product of scatter matrices, Yan et al. [208] used a modified
criterion by computing the difference of the between-class and within-class scatter matri-
ces. This may lead, however, to regularization problems of the two scatter matrices. Lin
et al. [120] dealt with the online update of discriminative models for the purpose of object
tracking. As their task is binary classification, the discriminative model and the update
method are limited to the two-class case.

Inspiration for incremental LDA can be drawn from work on incremental Principal
Component Analysis (PCA). Numerous algorithms have been developed to update the
eigenbasis as more data samples arrive. Most methods assume, however, a zero mean in
updating the eigenbasis except [59, 169] where the update of the mean is handled correctly.
The dimension of the eigenproblem can be reduced by using the sufficient spanning set (a
reduced set of basis vectors spanning the space of most data variation). As the computation
of the eigenproblem is cubic in the subspace dimension of the respective scatter matrix, this
update scheme is highly efficient.

It is also worth noting the existence of efficient algorithms for kernel PCA and LDA [26,
178]. While studying the incremental learning of such non-linear models is worthwhile,
when considering retrieval from large data sets, the computational cost of feature extrac-
tion of new samples is as demanding as updating the models [80, 99, 134]. Note also that
the LDA method in [178] assumes a small number of classes for the update, similar to [219].

5.2 Overview of the Proposed Method

This study proposes a new solution for incremental LDA, which is accurate as well as
efficient in both time and memory. The benefit of the proposed algorithm over other LDA
update algorithms [120, 219] lies in its ability efficiently to handle large data sets with many
classes. This is particularly important for the face image retrieval task, where hundreds of
face classes have to be merged. An example of an LDA basis of face images is shown
in Figure 5.1. The result obtained with the incremental algorithm closely agrees with the
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batch LDA solution. Note that previous studies have not shown close agreement between
incremental and batch LDA solutions [178, 219].

In the proposed method an LDA criterion which is equivalent to the Fisher criterion,
namely maximising the ratio of the between-class and the total scatter matrix, is used to
keep the discriminative information during the update. First the principal components
of the two scatter matrices are efficiently updated and then the discriminant components
are efficiently computed from these two sets of principal components. The concept of
sufficient spanning sets is applied in each step, making the eigenproblem computation
efficient.The algorithm is also memory efficient as it only needs to store the two sets of
principal components to avoid losing discriminatory data.

The remainder of this chapter is structured as follows: Section 5.3 presents the new in-
cremental LDA algorithm. In section 5.4 we show how it can be applied to semi-supervised
learning within an EM-framework. We discuss the application to other discriminant mod-
els in section 5.5. Experimental results for the task of merging face databases are presented
in section 5.6. Summary is presented in section 5.7.

5.3 Incremental LDA

As noted by Fukunaga [47], there are equivalent variants of Fisher’s criterion used to
find the projection matrix U to maximise class separability of the data set:

max
arg U

UTSBU
UTSWU

= max
arg U

UTSTU
UTSWU

= max
arg U

UTSBU
UTSTU

, (5.1)

where
SB = ΣC

i=1ni(mi − µ)(mi − µ)T (5.2)

is the between-class scatter matrix,

SW = ΣC
i=1Σx∈Ci(x−mi)(x−mi)T (5.3)

is the within-class scatter matrix,

ST = Σall x(x− µ)(x− µ)T = SB + SW (5.4)

the total scatter matrix, C the total number of classes, ni the sample number of class i, mi

the mean of class i, and µ the global mean. The algorithm in this paper uses the third
criterion in equation 5.1 and separately updates the principal components as the minimal
sufficient spanning sets1 of SB and ST . The scatter matrix approximation with a small
number of principal components (corresponding to significant eigenvalues) allows an ef-
ficient update of the discriminant components. The ST matrix rather than SW is used to
avoid losing discriminatory data during the update. If we only kept track of the significant
principal components of SB and SW , any discriminatory information contained in the null

1It is defined as a minimal set of basis vectors spanning the space of most data variation.
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(a) (b)

(c)

Figure 5.2: Concept of sufficient spanning sets of the total scatter matrix (a), the between-class
scatter matrix (b) and the projected matrix (c). The union set of the principal compo-
nents P1,P2 or Q1,Q2 of the two data sets and the mean difference vector µ1 − µ2

can span the respective total or between-class scatter data space (left and middle).
The dimension for the component m1i −m2i should not be removed (cross=incorrect)
from the sufficient set of the between-class scatter data but retained in the set (cir-
cle=correct) (middle). The projection and orthogonalization of the original components
Q31,Q32 yields the principal components of the projected data up to rotation (right).
See the corresponding sections for detailed explanations.

space of SW would be lost (note that any component in the null space maximises the LDA
criterion). However, as ST = SB + SW and both SB and SW are positive semi-definite,
vectors in the null space of ST are also in the null space of SB , and are thus ignored in the
update.

The three steps of the algorithm are: (1) Update the total scatter matrix ST , (2) Update
the between-class scatter matrix SB and (3) from these compute the discriminant compo-
nents U. These steps are explained in more detail in the following sections.

5.3.1 Updating the total scatter matrix

The total scatter matrix is approximated with a set of orthogonal vectors that span the
subspace occupied by the data and represent it with sufficient accuracy. The eigenspace
merging algorithm of Hall et al. [59] can be used with the slight modifications ([59] consid-
ered merging covariances) in order incrementally to compute the principal components of

56



CHAPTER 5 §5.3

the total scatter matrix: Given two sets of data represented by eigenspace models

{µi,Mi,Pi,Λi}i=1,2, (5.5)

where µi is the mean, Mi the number of samples, Pi the matrix of eigenvectors and Λi the
eigenvalue matrix of the i-th data set, the combined eigenspace model {µ3,M3,P3,Λ3}
is computed. Generally only a subset of dT,i eigenvectors have significant eigenvalues
and thus only these are stored in Λi and the corresponding eigenvectors in Pi. We wish
to compute the eigenvectors and eigenvalues of the new eigenspace model that satisfy
ST,3 ' P3Λ3PT

3 . The eigenvector matrix P3 can be represented by a sufficient spanning
set (see below for discussion) and a rotation matrix as

P3 = ΦR = h([P1,P2,µ1 − µ2])R, (5.6)

where Φ is the orthonormal column matrix spanning the combined scatter matrix, R is a
rotation matrix, and h is an orthonormalization function (e.g. QR decomposition).

Using the sufficient spanning set, the eigenproblem is converted into a smaller eigen-
problem as

ST,3 = P3Λ3PT
3 ⇒ ΦTST,3Φ = RΛ3RT . (5.7)

By computing the eigendecomposition on the r.h.s. one obtains Λ3 and R as the respec-
tive eigenvalue and eigenvector matrices. After removing nonsignificant components in
R according to the eigenvalues in Λ3, the minimal sufficient spanning set is obtained as
P3 = ΦR. Note the matrix ΦTST,3Φ has the reduced size dT,1 +dT,2 +1 and the dimension
of the approximated combined total scatter matrix is dT,3 ≤ dT,1 + dT,2 +1, where dT,1, dT,2

are the number of the eigenvectors in P1 and P2 respectively. Thus the eigenanalysis here
only takes O((dT,1+dT,2+1)3) computations, whereas the eigenanalysis in batch mode (on
the l.h.s. of (5.7)) requires O(min(N, M3)3), where N is the dimension of the input data 2.
See Section 5.3.4 for a more detailed discussion of the time and space complexity.

Discussion. We conclude this section by giving more insight into the sufficient spanning
set concept. Generally, given a data matrix A, the sufficient spanning set Φ can be defined
as any set of vectors s.t.

B = ΦTA, A′ = ΦB = ΦΦTA ' A. (5.8)

That is, the reconstruction A′ of the data matrix by the sufficient spanning set should ap-
proximate the original data matrix. Let A ' PΛPT where P,Λ are the eigenvector and
eigenvalue matrix corresponding to most energy. Then PR where R is an arbitrary rota-

2When N À M , the batch mode complexity can effectively be O(M3) as follows: ST = YYT , where
Y = [...,xi − µ, ...]. SVD of Y s.t. Y = UΣVT yields the eigenspace model of ST by U and ΣΣT as the
eigenvector and eigenvalue matrix respectively. YT Y = VΣT ΣVT as UT U = I. That is, by SVD of the
low-dimensional matrix YT Y, the eigenvector matrix is efficiently obtained as YVΣ−1 and the eigenvalue
matrix as ΣT Σ. This greatly reduces the complexity when obtaining the eigenspace model of a small new data
set in batch mode prior to combining.
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tion matrix can be a sufficient spanning set:

A′ = ΦΦTA ' PΛPT ' A (5.9)

as RRT = PTP = I. This also applies to the sufficient spanning set in equation (5.6).

As visualised in Figure 5.2 (a), the union of the two principal components and the mean
difference vector can span all data points of the combined set in the three-dimensional
space. The principal components of the combined set are found by rotating this sufficient
spanning set.

Note that this use of the sufficient spanning set is only possible in the case of merging
generative models where the scatter matrix of the union set is represented as the sum of
the scatter matrices of the two sets explicitly as

ST,3 = ST,1 + ST,2 + M1M2/M3 · (µ1 − µ2)(µ1 − µ2)
T , (5.10)

where {ST,i}i=1,2 are the scatter matrices of the first two sets. The method can therefore
not be used directly to merge the discriminant components of LDA models.

5.3.2 Updating the between-class scatter matrix

In the update of the total scatter matrix, a set of new vectors is added to a set of existing
vectors. The between-class scatter matrix, however, is the scatter matrix of the class mean
vectors, see equation (5.12). Not only is a set of new class means added, but the existing
class means also change when new samples belong to existing classes. Interestingly, the
proposed update can be interpreted as simultaneous incremental (adding new data points)
and decremental (removing existing data points) learning (see below).

The principal components of the combined between-class scatter matrix can be effi-
ciently computed from the two sets of between-class data, represented by

{µi,Mi,Qi,∆i, nij , αij |j = 1, ..., Ci}i=1,2, (5.11)

where µi is the mean vector of the data set i, Mi is the total number of samples in each
set, Qi are the eigenvector matrices, ∆i are the eigenvalue matrices of SB,i, nij the num-
ber of samples in class j of set i, and Ci the number of classes in set i. The αij are
the coefficient vectors of the j-th class mean vector mij of set i with respect to the sub-
space spanned by Qi, i.e. mij ' µi + Qiαij . The task is to compute the eigenmodel
{µ3,M3,Q3,∆3, n3j , α3j |j = 1, ..., C3} for the combined between-class scatter matrix. To
obtain the sufficient spanning set for efficient eigen-computation, the combined between-
class scatter matrix is represented by the sum of the between-class scatter matrices of the
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first two data sets, similar to (5.10). The between-class scatter matrix SB,i is rendered as

SB,i =
Ci∑

j=1

nij(mij − µi)(mij − µi)
T (5.12)

=
Ci∑

j=1

nijmijmT
ij −Miµiµ

T
i . (5.13)

The combined between-class scatter matrix can further be written w.r.t. the original between-
class scatter matrices and an auxiliary matrix A as

SB,3 = SB,1 + SB,2 + A + M1M2/M3 · (µ1 − µ2)(µ1 − µ2)
T , (5.14)

where
A =

∑

k∈s

−n1kn2k

n1k + n2k
(m2k −m1k)(m2k −m1k)T . (5.15)

The set s = {k|k = 1, ..., c} contains the indices of the common classes of both data sets. The
matrix A needs to be computed only when the two sets have common classes, otherwise
it is simply set to zero. If we assume that each between-class scatter matrix is represented
by the first few eigenvectors such that SB,1 ' Q1∆1QT

1 , SB,2 ' Q2∆2QT
2 , the sufficient

spanning set for the combined between-class scatter matrix can be similarly set as

Ψ = h([Q1,Q2, µ1 − µ2]), (5.16)

where the function h is the orthonormalization function used in section 5.3.1. Note that
the matrix A is negative semi-definite and does not add any more dimensions to Ψ. As
illustrated in Figure 5.2 (b), the sufficient spanning set can be a union set of the two eigen-
components and the mean difference vector. The negative semi-definite matrix A can con-
ceptually be seen as the scatter matrix of the components to be removed from the combined
data. When ignoring the scale factors, the decremental elements are m2i −m1i. This de-
creases the data variance along the direction of m2i − m1i but the respective dimension
should not be removed from the sufficient spanning set. The resulting variance reduction
along this direction is taken into account when removing eigencomponents with nonsignif-
icant eigenvalues in the subsequent eigenanalysis.

Let dB,i and N be the dimension of Qi and input vectors, respectively. Whereas the
eigenanalysis of the combined between-class scatter in batch mode 3 requires O(min(N, C3)3),
the proposed incremental scheme requires only O((dB,1 +dB,2 +1)3) computation for solv-
ing

SB,3 = ΨR∆3RTΨT ⇒ ΨTSB,3Ψ = R∆3RT , (5.17)

where R is a rotation matrix. Finally, the eigenvectors of the combined between-class
scatter matrix, which are memorized for the next update, are obtained by Q3 = ΨR after
the components having zero eigenvalues in R are removed, i.e. dB,3 ≤ dB,1 + dB,2 + 1. All

3The batch solution of the between-class scatter matrix can be computed using the low-dimensional matrix
similarly to the total scatter matrix when N À C. Note SB,i = YYT , Y = [...,

√
nij(mij − µi), ...].
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Algorithm 1. Incremental LDA (ILDA)

Input: The total and between-class eigenmodels of an ex-
isting data set, {P1, ...}, {Q1, ...} and a new data set
Output: Updated LDA components U

1. Compute {P2, ...}, {Q2, ...} from the new data set in batch
mode.

2. Update the total scatter matrix for {P3, ...}:
Compute ST,3 by (5.10) and {ST,i}i=1,2 ' PiΛiPT

i .
Set Φ by (5.6) and compute the principal components R of
ΦTST,3Φ. P3 = ΦR.

3. Update the between-class scatter for {Q3, ...}:
Obtain SB,3 from (5.14), {SB,i}i=1,2 ' Qi∆iQT

i and mij '
µi + Qiαij .
Set Ψ by (5.16) and eigendecompose ΨTSB,3Ψ for the eigen-
vector matrix R. Q3 = ΨR.

4. Update the discriminant components:
Compute Z = P3Λ

−1/2
3 and Ω = h([ZTQ3]).

Eigendecompose ΩTZTQ3∆3QT
3 ZΩ for the eigenvector

matrix R. U = ZΩR.

Table 5.1: Pseudocode of Incremental LDA.

remaining parameters of the updated model are obtained as follows: µ3 is the global mean
updated in Section 5.3.1, M3 = M1 + M2, n3j = n1j + n2j ,α3j = QT

3 (m3j − µ3), where
m3j = (n1jm1j + n2jm2j)/n3j .

5.3.3 Updating discriminant components

After updating the principal components of the total scatter matrix and the between-
class scatter matrix, the discriminative components are found using the updated total
data {µ3, M3,P3,Λ3} and the updated between-class data {µ3,M3,Q3,∆3, n3j ,α3j |j =
1, ..., C3} using the new sufficient spanning set. Let Z = P3Λ

−1/2
3 , then ZTST,3Z = I. As

the denominator of the LDA criterion is the identity matrix in the projected space, the opti-
mization problem is to find the components that maximise ZTSB,3Z s.t. WTZTSB,3ZW =
Λ and the final LDA components are obtained by U = ZW. This eigenproblem of the
projected data can be solved using the sufficient spanning set defined by

Ω = h([ZTQ3]). (5.18)

See Figure 5.2 (c). The original components are projected and orthogonalized to construct
the sufficient spanning set. The principal components of the projected data can be found by
rotating the sufficient spanning set. By this sufficient spanning set, the eigenvalue problem
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Batch LDA Inc LDA
time O(NM2

3 O(d3
T,3 + d3

B,3

+min(N, M3)3) +NdT,3dB,3)
space O(NM3 + NC3) O(NdT,3 + NdB,3)

Table 5.2: Comparison of time and space complexity. The savings of incremental LDA are
significant as usually M3 À dT,3 ≥ dB,3. N is the data dimension and M3, C3 are the
total number of data points and classes, respectively, dT,i, dB,i are the dimensions of
the total and between-class scatter subspaces.

changes into a smaller dimensional eigenvalue problem by

ZTSB,3Z = ΩRΛRTΩT ⇒ ΩTZTSB,3ZΩ = RΛRT . (5.19)

The final discriminant component is given as

ZW = ZΩR. (5.20)

This eigenproblem takes O(d3) time, where d is the dimension of Ω, which is equivalent
to dB,3, the dimension of Q3. Note that in LDA, dT,3, the dimension of P3 is usually larger
than dB,3 and therefore the use of the sufficient spanning set further reduces the time com-
plexity of the eigenanalysis: O(d3

T,3) → O(d3
B,3). The pseudocode of the complete incre-

mental LDA algorithm is given in Table 5.1.

5.3.4 Time and space complexity

So far we have mainly considered the computational complexity of solving the eigen-
problem for merging two data sets. Table 5.2 provides a comparison of the batch and
the proposed incremental LDA in total time complexity (considering the necessary matrix
products e.g. those in (5.7)) and space complexity, when the additional set is relatively
small compared to the existing set, i.e. M2 ¿ M1. The computational saving of the incre-
mental solution compared to the batch version is large as normally M3 À dT,3 ≥ dB,3. Both
time and space complexity of the proposed incremental LDA are independent of the size
of the total sample set and the total number of classes. The important observation from
the face data base merging experiments (see Table 5.3) is that the intermediate dimensions
dT,3 and dB,3 do not increase significantly when new data is successively added.

A more detailed analysis of the total complexity of the method summarized in Table
5.2 is as follows: Clearly, Batch LDA has a space complexity of O(NM3 + NC3) and a time
complexity of O(NM2

3 + min(N, M3)3).
In the proposed incremental LDA, for the update of the principal components of the to-

tal scatter matrix, we only need to keep track of the data associated with {µ3,M3,P3,Λ3}
taking O(NdT,3) space. The total process can be partitioned into the merging and the eigen-
problem of the new data set. Note that the computation cost of the orthonormalization
in (5.6) and the necessary matrix products in (5.7) can be efficiently reduced by exploiting
the orthogonality of the eigenvectors [59]. This cost is bounded by O(NdT,1dT,2) and the
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eigendecomposition takes O(d3
T,3). The eigenanalysis of the new data set is computed in

O(NM2
2 + min(N,M2)3).

Similarly only {µ3,M3,Q3,∆3, n3j , α3j |j = 1, ..., C3} is required to be stored for the
update of the between-class scatter matrix, taking O(NdB,3). The computational complex-
ity of this update is O(NdB,1dB,2 + d3

B,3), and O(NC2
2 + min(N, C2)3) for the merging and

the eigenanalysis of the new set.
The final LDA components are computed only from the two sets of data above in time

O(NdT,3dB,3).

5.4 Semi-supervised incremental learning

This section deals with the LDA update when the class labels of new samples are not
given. Unlike incremental learning of generative models [59, 169], discriminative models
such as LDA, require the class labels of additional samples for the model update. The pro-
posed incremental LDA can be incorporated into a semi-supervised learning algorithm
so that the LDA update can be computed efficiently without the class labels of the ad-
ditional data set being known. For an overview of semi-supervised learning, including
an explanation of the role of unlabeled data, see [237]. Although graph-based methods
have been widely adopted for semi-supervised learning [237], the classic mixture model
has long been recognized as a natural approach to modelling unlabelled data. A mixture
model makes predictions for arbitrary new test points and typically has a relatively small
number of parameters. Additionally mixture models are compatible with the proposed
incremental LDA model assuming multiple Gaussian-distributed classes [47]. Here, clas-
sic EM-type learning is employed to generate the probabilistic labels of the new samples.
Running EM in the updated LDA subspaces allows for more accurate estimation of the
class labels. We iterate the E-step and M-step with all data vectors projected into the LDA
subspaces (similarly to [205]), which are incrementally updated in an intermediate step.
The class posterior probabilities of the new samples are set to the probabilistic labels.

Incremental LDA with EM. The proposed EM algorithm employs a generative model
with the most recent LDA transformation U by

P (UTx|Θ) =
C∑

k=1

P (UTx|Ck; Θk)P (Ck|Θk), (5.21)

where class Ck, k = 1, ..., C is parameterized by Θk, k = 1, ..., C, and x is a sample of the
initial labeled set L and the new unlabeled set U . The E-step and M-step are iterated to
estimate the MAP model over the projected samples UTx of the labeled and unlabeled
sets. The proposed incremental LDA is performed every few iterations on the data sets
{xj , yj |xj ∈ L} and {xj , y

′
jk|xj ∈ U , k = 1, ..., C}, where yj is the class label and y′jk is the

probabilistic class label given as the class posterior probability

y′jk = P (Ck|UTxj). (5.22)
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We set

m2i =

∑
j xjy

′
ji∑

j y′ji
, n2i =

M2∑

j=1

y′ji. (5.23)

for the update of the between-class scatter matrix. All other steps for incremental LDA are
identical to the description in Section 5.3 as they are independent of class label information.

Discussion. Using a common covariance matrix Θk for all class models rather than C class
covariance matrices is more consistent with the assumption of LDA [47] and can addition-
ally save space and computation time during the M-step. The common covariance matrix
can conveniently be updated by UT (ST,3−SB,3)U/M3, where ST,3,SB,3 are the combined
total and between-class scatter matrices, which are kept track of in the incremental LDA
as the associated first few eigenvector and eigenvalue matrices. The other parameters of Θ
are also obtained from the output of the incremental LDA algorithm.

So far it is assumed that the new data points are in one of the existing classes, but this
may not always be the case. Samples with new class labels can be screened out so that the
LDA update is not biased to those samples by

y′jk = P (Ck|UTxj) · P (C|UTxj), (5.24)

where P (C|UTxj) denotes a probability of a hyper class. We can set this probability as
close to zero for samples with new class labels.

5.5 Incrementally updating LDA-like discriminant models

The proposed algorithm is general and can be applied to other incremental learning
problems that seek to find discriminative components by maximising the ratio of two co-
variance or correlation matrices [6, 184, 145]. The method of using the sufficient spanning
set for the three steps, the component analysis of the two matrices in the numerator and
the denominator, respectively, and for the discriminant component computations, allows
for efficient incremental learning. Note that the number of input vectors for the numerator
matrices in the methods [184, 145] is often as large as those for the denominator matrices.
In these cases the proposed incremental algorithm is still efficient, whereas the incremen-
tal LDA algorithm by Ye et al. [219] is no longer suitable as it assumes that the number of
input vectors for the scatter matrix in the numerator, i.e. the number of classes, is small.

5.6 Experimental results

The algorithm was applied to the task of face image retrieval from a large database. All
experiments were performed on a 3 GHz Pentium 4 PC with 1GB RAM.
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LDA update M3 [# images] C3 [# classes] dT,3 [dim(St,3)] dB,3 [dim(Sb,3)]
1[first] – 10[final] 465–2315 93–463 158–147 85–85

Table 5.3: Efficient LDA update. Despite the large increase in the number of images and classes,
the number of required principal components, dT,3 and dB,3, remains small during the
update process implying that computation time remains low.
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Figure 5.3: Database merging experiments for the MPEG+XM2VTS data set. The solution
of incremental LDA closely agrees to the batch solution while requiring much lower
computation time. (a) Retrieval inaccuracy, ANMRR is 0 when all ground truth images
are ranked on top, and 1 when none of the ground truth images are ranked among the
first m images. (b) Computational cost.

5.6.1 Database and protocol

In the experiments we followed the protocols of evaluating face descriptors for MPEG-
7 standardization [99]. Many MPEG-7 proposals, including the winning method, have
adopted LDA features as their descriptors [80, 99]. A descriptor vector is extracted with-
out knowledge of the test subject’s identity, i.e. its statistical basis should be generated
from images of subjects other than those in the test set. As it is necessary to learn the LDA
basis from a very large training set, which may not be available initially, the proposed algo-
rithm can be used to successively update the LDA basis as more data becomes available.
An experimental face database was obtained consisting of the version 1 MPEG data set
(635 persons, 5 images per person), the Altkom database (80 persons, 15 images per per-
son), the XM2VTS database (295 persons, 5 images per person), and the BANCA database
(52 persons, 10 images per person). The version 1 MPEG data set itself consists of several
public face sets (e.g. AR, ORL). All 6370 images in the database were normalized to 46×56
pixels using manually labeled eye positions. The images for the experiments were strictly
divided into training and test sets. All basis vectors were extracted from the training set.
All test images were used as query images to retrieve other images of the corresponding
persons (called ground truth images) in the test data set. As a measure of retrieval per-
formance, we used the average normalized modified retrieval rate (ANMRR) [134]. The
ANMRR is 0 when images of the same person (ground truth labeled) are ranked on top,
and it is 1 when all images are ranked outside the first m images (m = 2NG, where NG is
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the number of ground truth images in the test data set).

5.6.2 Results

The training set was further partitioned into an initial training set and several new sets
which are added successively for re-training. We used the combined set of MPEG and
XM2VTS database (the total number of classes is 930) for the experiment where the new
sets contain the images of new classes. We also performed the experiments for the Altkom
and BANCA database separately where the additional sets contain new images of the ex-
isting classes of the initial training set. The proposed incremental LDA yielded nearly the
same solution as batch LDA for both scenarios. The basis images of LDA of the incremental
and batch versions are compared in Figure 5.1. The accuracy of the incremental solution
can be seen in Figure 5.3 (a). Incremental LDA yields essentially the same accuracy as
batch LDA, provided enough components are stored of the total and between-class scatter
matrices. This is an accuracy vs. speed trade-off: using fewer components is clearly ben-
eficial in terms of computational cost. The subspace dimensions for incremental learning
were chosen from the eigenvalue plots by setting a fixed threshold on the variance of each
component (similar results were obtained by choosing the first components that contain a
specified fraction of the total variance)4. Table 5.3 shows the number of components se-
lected during the experiment using the MPEG+XM2VTS data set. Even if the total number
of images or classes increases, the number of components does not increase significantly,
thus saving time and space (See section 5.3.4). The computational costs of the batch and
the incremental version are compared in Figure 5.3 (b). Whereas the computational cost of
the batch version increases significantly as data is successively added, the cost of the incre-
mental solution remains low. Note that the cost of incremental LDA is comparable to that
of incremental PCA while giving a much higher retrieval accuracy, as shown in Figure 5.3
(a). Incremental PCA did not significantly increase retrieval accuracy.

Figure 5.4 shows the result of comparing the proposed semi-supervised incremental
LDA solution with the LDA solution when the correct class labels are provided. For this
experiment the projection of all data points into the LDA subspace was performed once
with the most recent LDA components before the EM iteration, and the incremental LDA
with the probabilistic labels was carried out after EM converged, typically after ten iter-
ations. The solution boosted the retrieval accuracy even without the class labels and its
incremental solution yielding the same solution as the batch version. The cost of semi-
supervised LDA is slightly higher than that of incremental LDA, but still far lower than
any batch-mode computation.

5.7 Summary

The proposed incremental LDA method allows highly efficient learning to adapt to new
data sets in a face image retrieval task (i.e. Single-to-Single matching problem), where
thousands of face classes are merged in training. The solution exploits the low-rank matrix
approximation. That face images are well confined to low-dimensional subspaces makes

4Note that accuracy of LDA is dependent on dimensionality of intermediate components (total scatter
matrix) and final components (discriminant components). These dimensions of ILDA were set to be the same
as those of batch LDA.
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Figure 5.4: Performance of semi-supervised incremental LDA. Semi-supervised incremental
LDA decreases the error rate without the class labels of new training data being avail-
able, while being as time-efficient as incremental LDA with given labels. (a) Retrieval
inaccuracy (ANMRR), (b) computational costs for the Altkom database. Similar results
were obtained for the BANCA database.

this approximation effective. When provided the sufficient components spanning most
energy of the data space, our method yields an accurate LDA solution. In the experiments
on 11,845 face images, the solution closely agreed with the batch LDA result with far lower
complexity in both time and space. Compared with previous attempts, this is a more gen-
eral approach. We provided a conceptual comparison with related methods, arguing why
none of them is suited to the on-line learning problem with a large number classes. Ow-
ing to its generality, the incremental LDA algorithm could be incorporated into a classic
semi-supervised learning framework and to many other problems in which LDA-like dis-
criminant components are required.

Directions for future research include the extension to the non-linear case, adaptive
learning with a time-decaying function and using temporal information for more efficient
semi-supervised learning. In particular, further studies in semi-supervised learning would
be very interesting. The proposed semi-supervised incremental learning method may be
useful for gradual pattern changes in steps. An ideal update method should be robust
about outliers in a set of new samples and should exploit discriminative information at
maximum in semi-supervised fashion. The concept of Active Learning may be also useful
for robust update while minimising user intervention in the update. In the recognition task
involving image sets, time-efficient learning is important over a large volume of image sets,
which may be increasing over time. This will be addressed in Chapter 9.
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CHAPTER 6

Discriminant Analysis of Image Set
Classes Using Canonical Correlations

This chapter addresses object recognition problems with image sets (or ensembles). The
image sets may be collected not only from video but also sparse and unordered observa-
tions representing variations in an object’s appearance. A key matter in robust recognition
is how to represent and match image sets, i.e. Set-to-Set Matching. Rather than conven-
tional probability density based set-matching and ad-hoc assembly methods, the proposed
method is based on a subspace-based set similarity, which facilitates robust set classifica-
tion about pattern variations.

The benefits of using Canonical Correlation Analysis (CCA) as an image ensemble sim-
ilarity is demonstrated and a novel discriminant analysis method of image sets based on
CCA is proposed. We develop an optimal linear discriminant function which transforms
input images so that the transformed image sets are best separated class-wise in terms
of canonical correlations. The optimal transformation is found by a novel iterative opti-
mization. An alternative and simpler method for discriminant analysis of image sets is
also proposed by a classic method called orthogonal subspace method (OSM) [145]. To
our knowledge, the close relationship of the orthogonal subspace method and canonical
correlations has not been explored before. The proposed two methods are evaluated on
various object recognition problems using face image sets with arbitrary motion captured
under different illuminations and image sets of five hundred general objects taken at dif-
ferent views. The methods are also applied to object category recognition using ETH-80
database [117]. The proposed methods are shown to outperform the state-of-the-art meth-
ods not only in accuracy but also in time-efficiency. Note that the proposed discriminant
analysis of image sets is readily plugged into the task of Video-to-Video Matching for ac-
tion classification in the following chapters.

The chapter is organized as follows. Canonical Correlation Analysis is explained for
image-set similarity in Section 6.1. Section 6.2 highlights the problem of discriminant
analysis over sets and presents a novel optimal solution. In Section 6.3, the orthogonal
subspace method is explained and related both to the proposed method and the prior art.
The experimental results and their discussion are presented in Section 6.4 and the sum-
mary in Section 6.5.
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(a) Two sets (top and bottom) contain images of a 3D object taken from different viewpoints but
with a certain overlap in their views.

(b) Two face image sets (top and bottom) collected from videos taken under different illumination
settings. Face patterns of the two sets vary in both lighting and pose.

Figure 6.1: Examples of image sets. The sets contain different pattern variations caused by
different views and lighting.

6.1 Canonical Correlation Analysis as Image-Ensemble Similar-

ity

The objective of this work is to classify an unknown set of images (or generally vectors)
to one of the training classes, each also represented by image sets. The set of images may
represent a variation in an object’s appearance, for e.g. caused by object or camera view-
point change, deformations, lighting variations, as shown in Figure 6.1.

When two sets contain images of an object taken from different viewpoints (but with a
certain overlap in views) as shown in Figure 6.1 (a), statistical characteristics such as mean
or variances of the two sets differ significantly. If each set was modelled by a probabil-
ity density function and matched with that of the other set by for e.g. Kullback-Leibler
Divergence (KLD) [27, 167], the two sets would return a low-similarity despite the same
object contained. Due to the difficulty of parameter estimation under limited training data
(typically a small number of images is in each set), the probabilistic density-based meth-
ods easily fail. Rather, a less constrained (i.e. more flexible) matching is needed to absorb
large intra-class variations of image sets. Of course, there is a compromise issue between
minimising intra-class variation and maximising inter-class variation for optimal classifi-
cation.

Canonical Correlation Analysis, which is a classical method of inspecting linear rela-
tions between two random variables [71, 79, 51, 11], can yield flexible and yet descrip-
tive set matching. A manifold of each image set can be effectively captured by a low-
dimensional subspace and measuring angles between two low-dimensional subspaces
gives an affine-invariant matching.

As explained in Chapter 3, canonical correlations, which are cosines of principal angles
0 ≤ θ1 ≤ . . . ≤ θd ≤ (π/2) between any two d-dimensional linear subspaces L1 and L2 are
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Figure 6.2: Conceptual illustration of canonical correlations. Two sets are represented as lin-
ear subspaces which are planes here. The principal components of the subspaces are
P1, P2. Canonical vectors (u, v) on the planes are found to yield maximum correlation.

uniquely defined as:
cos θi = max

ui∈L1

max
vi∈L2

uT
i vi (6.1)

subject to uT
i ui = vT

i vi = 1, uT
i uj = vT

i vj = 0, i 6= j.
There are many equivalent ways to solve this problem. The Singular Value Decompo-

sition (SVD) solution [11] is as follows: Assume that P1 ∈ RN×d and P2 ∈ RN×d (N À d)
form unitary orthogonal bases (eigenvectors in our study) for two linear subspaces,L1 and
L2. Let the SVD of PT

1 P2 ∈ Rd×d be

PT
1 P2 = Q12ΛQT

21 s.t. Λ = diag(σ1, ..., σd) (6.2)

where QT
12Q12 = QT

21Q21 = Q12QT
12 = Q21QT

21 = Id. Canonical correlations are the
singular values and the associated canonical vectors, whose correlations are defined as
canonical correlations, are given by

U = P1Q12 = [u1, ...,ud], V = P2Q21 = [v1, ...,vd] (6.3)

Canonical vectors are orthonormal in each subspace and Q12,Q21 can be seen as rotation
matrices of P1,P2. An equivalence between the SVD solution and the previous method
called MSM [207] is given in Appendix C. The complexity of SVD of a d × d dimensional
matrix is very low. The concept is represented in Figure 6.2.

Affine invariance of CCA.
A set of object images is generally well confined to a low-dimensional subspace which

retains most of the energy of the set. See Figure 6.3 for the principal components of the
sets shown in Figure 6.1. The first few components mainly correspond to view changes or
illumination changes of the objects in the image sets. The canonical vectors computed from
the pairwise image sets are visualised in Figure 6.3. Note that the canonical vectors well
capture the mutual information (for e.g. a particular view and illumination of the objects)
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(a) (b)

Figure 6.3: Principal components vs. canonical vectors. (a) The first 5 principal components
computed from the four image sets shown in Figure 6.1. The principal components
of the different image sets are significantly different. (b) The first 5 canonical vectors
of the four image sets, which are computed for each pair of the two image sets of the
same object. Every pair of canonical vectors (each column) U,V well captures the
common modes (views and illuminations) of the two sets containing the same object.
The pairwise canonical vectors are quite similar. The canonical vectors of different
dimensions u1, ...u5 and v1, ...,v5 represent different pattern variations e.g. in pose or
lighting.

between the pairwise sets yielding high correlations. Canonical vectors are very much
pairwise alike despite the data changes across the sets. Intuitively, the first pair of canonical
correlation tells us how close are the closest vectors from two subspaces. Similarly, the
higher canonical correlations tell us about the proximity of vectors of the two subspaces in
other dimensions (perpendicular to the previous ones) of the embedding space. Note that
the vectors are represented by any linear combinations of basis vectors of the subspaces.

A key function in using CCA in matching high-dimensional vector sets is its affine in-
variance, which allows great flexibility and yet keeps sufficient discriminative information
(See Chapter 3 for the proof on the affine-invariance of CCA). As observed above, images
are well-constrained to lie on low-dimensional subspaces. The CCA effectively places a
uniform prior over the subspaces and provides invariant matching of the image sets to the
pattern variations subject to the subspaces. Note that the canonical vectors obtained were
visually similar in each pair despite the large changes of pose and illuminations across the
sets in Figure 6.3.

On the other hand, the canonical vectors computed from the sets of two distinct classes
are not alike as shown in Figure 6.4 (b). Although the two sets were captured under the
same lighting condition, CCA returned low correlations. Again, the canonical vectors in
Figure 6.4 (a) computed from the two images sets of the same person are closely similar.
The inter-/intra-class examples show that the canonical correlations can be good discrim-
inative features for classification.

6.2 Discriminant analysis for Canonical Correlation analysis (DCC)

As shown above, the canonical correlation could be a promising measure of image-set
similarity for object recognition. It helps a robust object recognition solution to variations
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(a) (b)

Figure 6.4: Canonical Vectors of Same Class and Different Classes. The first 3 pairs (top
and bottom rows) of canonical vectors for a comparison of two linear subspaces cor-
responding to the same (a) and different individuals (b). In the former case, the most
similar modes of pattern variation, represented by canonical vectors, are closely similar
in spite of different illumination conditions used in data acquisition. On the other hand,
the canonical vectors in the latter case are clearly dissimilar despite the sequences
captured in the same environment.

in observation data. Note, however, that the classical canonical correlation analysis does
not exploit image set class information and thus is not optimal in view of classification. In
this section, the discriminant analysis method is developed with the canonical correlation
measure for optimal set classification. The optimal discriminant function is learnt so that
the transformed image sets are best separated by CCA.

6.2.1 Nonparametric Discriminant Analysis

As explained in Chapter 3, the nonparametric discriminant analysis developed in Nearest
Neighbor sense [20] defines the two scatter matrices as

B =
1
M

M∑

i=1

wi(∆B
i )(∆B

i )T , W =
1
M

M∑

i=1

(∆W
i )(∆W

i )T (6.4)

where ∆B
i = xi − xB

i , ∆W
i = xi − xW

i , xB = {x′ ∈ Cc | ‖x′ − x‖ ≤ ‖z − x‖, ∀z ∈ Cc} and
xW = {x′ ∈ Cc | ‖x′−x‖ ≤ ‖z−x‖,∀z ∈ Cc}. wi is a sample weight in order to deemphasise
samples away from class boundaries. The magnitude of a data vector is often normalized
so that |x| = 1. As trace(AB) = trace(BA) for any matrix A, B and |x| = 1, trace(W)
in (6.4) equals 1

M trace(
∑

i 2(1 − xT
i xW

i )). The problem of minimising trace(W) can be
changed into the maximisation of trace(W′) and similarly the maximisation of trace(B)
into the minimisation of trace(B′), where

B′ =
∑

i

xT
i xB

i , W′ =
∑

i

xT
i xW

i (6.5)

and xB
i ,xW

i indicate the closest between-class and within-class vectors of a given vector xi.
Note the weight wi is omitted for simplicity and the total number of training sets M does
not change the direction of the desired components. We now see the optimization problem
of classical NDA defined by correlations of individual pairwise vectors.
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Rather than dealing with correlations of every pair of vectors, in the proposed method
we exploit canonical correlations of pairwise vector sets.

6.2.2 Problem Formulation

Assume m sets of vectors are given as {X1, ...,Xm}, where Xi describes a data matrix of
the i-th set containing observation vectors (or images) in its columns. Each set belongs to
one of object classes denoted by Ci. A d-dimensional linear subspace of the i-th set is repre-
sented by an orthonormal basis matrix Pi ∈ RN×d s.t. XiXT

i ' PiΛiPT
i , where Λi,Pi are

the eigenvalue and eigenvector matrices of the d largest eigenvalues respectively and N
denotes the vector dimension. We define a transformation matrix T = [t1, ..., tn] ∈ RN×n,
where n ≤ N, |ti| = 1 s.t. T : Xi → Yi = TTXi. The matrix T transforms images so
that the transformed image sets are class-wise more discriminative using canonical corre-
lations.

Representation. Orthonormal basis matrices of the subspaces of the transformed data are
obtained from the previous matrix factorization of XiXT

i :

YiYT
i = (TTXi)(TTXi)T ' (TTPi)Λi(TTPi)T (6.6)

Except when T is an orthogonal matrix, TTPi is not generally an orthonormal basis ma-
trix. Note that canonical correlations are only defined for orthonormal basis matrices of
subspaces. Any orthonormal components of TTPi now defined by TTP′

i can represent
an orthonormal basis matrix of the transformed data. See Section 6.2.3 for details.

Set Similarity. The similarity of any two transformed data sets represented by TTP′
i,

TTP′
j is defined as the sum of canonical correlations by

Fij = max
Qij ,Qji

tr(Mij), (6.7)

Mij = QT
ijP

′T
i TTTP′

jQji or TTP′
jQjiQT

ijP
′T
i T, (6.8)

as tr(AB) = tr(BA) for any matrix A,B. Qij ,Qji are the rotation matrices similarly defined
in the SVD solution of canonical correlations (6.2) with the two transformed subspaces.

Discriminant Function. The discriminative function (or matrix) T is found to maximise
the similarities of any pairs of within-class sets while minimising the similarities of pair-
wise sets of different classes. Matrix T is defined with the objective function J by

T = arg max
T

J = arg max
T

∑m
i=1

∑
k∈Wi

Fik∑m
i=1

∑
l∈Bi

Fil
(6.9)

where the indices are defined as Wi = {j |Xj ∈ Ci} and Bi = {j |Xj /∈ Ci}. That is,
the two index sets Wi, Bi denote, respectively, the within-class and between-class sets for
a given set of class i, by analogy to [20]. See Figure 6.5 for conceptual illustration of the
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Figure 6.5: Conceptual illustration of the proposed method. Here are drawn the three sets
represented by the basis vector matrices Pi, i = 1, ..., 3. We assume that the two
sets P1,P2 are within-class sets and the third one is coming from the other class.
Canonical vectors PiQij , i = 1, ..., 3, j 6= i are equivalent to basis vectors Pi in this
simple drawing where each set occupies a one-dimensional space. Basis vectors are
projected on the discriminative subspace by T and normalized such that |TT P′| =
1. Then, the principal angle of within-class sets, θ becomes zero and the angles of
between-class sets, φ1, φ2 are maximised.

problem indicated. In the discriminative subspace represented by T, canonical correlations
of within-class sets are to be maximised and canonical correlations of between-class sets
minimised.

6.2.3 Iterative Learning

The optimization problem of T involves the variables Q,P′ as well as T. As the other
variables are not explicitly represented by T, a closed form solution for T is hard to find.
We propose an iterative optimization algorithm. Specifically, we compute an optimal so-
lution for one of the three variables at a time by fixing the other two and repeating this for
a certain number of iterations. Thus the proposed iterative optimization is comprised of
the three main steps: normalization of P, optimization of matrices Q, and T. Each step is
explained below:

Normalization. The matrix Pi is normalized to P′
i for a fixed T so that the columns

of TTP′
i are orthonormal. QR-decomposition of TTPi is performed s.t. TTPi = Φi∆i,

where Φi ∈ RN×d is the orthonormal matrix composed by the first d columns and ∆i ∈
Rd×d is the d × d invertible upper-triangular matrix. From (6.6), Yi = TTPi

√
Λi =

Φi∆i

√
Λi. As ∆i

√
Λi is still an upper-triangular matrix, Φi can represent an orthonor-

mal basis matrix of the transformed data Yi. As ∆i is invertible,

Φi = TT (Pi∆−1
i ) → P′

i = Pi∆−1
i . (6.10)

Computation of rotation matrices Q. Rotation matrices Qij for every i, j are obtained for
a fixed T and P′

i. The correlation matrix Mij defined in the left of (6.8) can conveniently
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be used for the optimization of Qij , as it has Qij outside of the matrix product. Let the
SVD of P′T

i TTTP′
j be

P′T
i TTTP′

j = QijΛQT
ji (6.11)

where Λ is a singular matrix and Qij ,Qji are orthogonal rotation matrices. Note that the
matrices which are Singular-Value decomposed have only d2 elements.

Computation of T. The optimal discriminant transformation matrix T is computed for
given P′

i and Qij by using the definition of Mij in the right of (6.8) and (6.9). With T being
on the outside of the matrix product Mij , it is convenient to solve for. The discriminative
function is found by

T = max
argT

tr(TTSbT)/tr(TTSwT) (6.12)

Sb =
m∑

i=1

∑

l∈Bi

(P′
lQli −P′

iQil)(P′
lQli −P′

iQil)T ,

Sw =
m∑

i=1

∑

k∈Wi

(P′
kQki −P′

iQik)(P′
kQki −P′

iQik)T .

where Bi = {j |Xj /∈ Ci} and Wi = {j |Xj ∈ Ci}. Note that no loss of generality is incurred
from (6.9) as

AT B = I− 1/2 · (A−B)T (A−B),

where A = TTP′
iQij , B = TTP′

jQji. The solution {ti}n
i=1 is obtained by solving the

following generalised eigenvalue problem: Sbt = λSwt. When Sw is non singular, the op-
timal T is computed by eigen-decomposition of (Sw)−1Sb. Note also that the proposed
learning can avoid a singular case of Sw by pre-applying PCA to data in a way similar
to that of the Fisherface method [9] and it can be speeded up by using a small number
of nearest neighboring sets in Bi,Wi much as in [20]. Canonical correlation analysis for
multiple sets [192] is also noteworthy here with regard to fast learning. It may be speeded
up by reformulating the between-class and within-class scatter matrices in (6.12) by the
canonical correlation analysis of multiple sets, thus avoiding the computation of the rota-
tion matrices of every pair of image sets in the iterations.

With the identity matrix I ∈ RN×N as the initial value of T, the algorithm is iterated
until it converges to a stable point. A Pseudo-code for the learning is given in Algorithm
1. Once T maximising the canonical correlations of within-class sets and minimising those
of between-class sets in the training data is found, a comparison of any two novel sets
is achieved by transforming them by T, and then computing canonical correlations (See
(6.7)).

6.2.4 Discussion of Convergence

Although we do not provide a proof of convergence or uniqueness of the proposed op-
timization process, its convergence to a global maximum was confirmed experimentally.
See Figure 6.6 for examples of the iterative learning. Each example is for the learning us-
ing a different training data set. The value of the objective function J for all cases becomes
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Algorithm 1. Discriminant-analysis of Canonical Correlations (DCC)

Input: All Pi ∈ RN×d Output: T ∈ RN×n

1. T ← IN

2. Do iterate the following:
3. For all i, do QR-decomposition: TT Pi = Φi∆i → P′i = Pi∆−1

i

4. For every pair i, j, do SVD: P′Ti TTT P′j = QijΛQT
ji

5. Compute Sb =
∑m

i=1

∑
l∈Bi

(P′lQli −P′iQil)(P′lQli −P′iQil)T ,
Sw =

∑m
i=1

∑
k∈Wi

(P′kQki −P′iQik)(P′kQki −P′iQik)T .
6. Compute eigenvectors {ti}N

i=1 of (Sw)−1Sb, T ← [t1, ..., tN ]
7.End
8.T ← [t1, ..., tn]

Table 6.1: Proposed iterative algorithm for finding T, which maximises class separation in terms
of canonical correlations.

stable after first few iterations, starting with the initial value T = I. This fast and stable
convergence is highly efficient in keeping the learning cost low. Furthermore, as shown at
bottom right in Figure 6.6, it was observed that the proposed algorithm converged to the
same point irrespective of the initial value of T. These results are indicative of the defined
criterion’s being a quadratic convex function with respect to the joint set of variables as
well as each individual variable as argued in [115, 114].

For all experiments in Section 6.4, the number of iterations was fixed at 5. The proposed
learning took about 50 seconds for the face experiments on a Pentium IV PC using non-
optimized Matlab code, while the OSM/CMSM methods took around 5 seconds. Note the
learning is performed once in an off-liner manner. On-line matching by the three recog-
nition methods is time-efficient. See the experimental section for more information about
the time complexity of the methods.

6.3 Orthogonal Subspace Method (OSM)

Orthogonality of two subspaces means that any vector of one subspace is orthogonal to
any vector of the other subspace [145]. This requirement is equivalent to that of each basis
vector of one subspace being orthogonal to each basis vector of the other. Recalling that
canonical correlations are defined as maximal correlations between any two vectors of two
subspaces as given in (6.1), it is very clear that canonical correlations of any two orthogonal
subspaces are zeros. Measuring canonical correlations (or principal angles) of class specific
orthogonal subspaces might thus be a basis for classifying image sets.

Let us assume that the subspaces of the between-class sets Bi = {j|Xj /∈ Ci} of a given
data set Xi are orthogonal to the subspace of the set Xi. If the subspaces are orthogonal,
all canonical correlations of those subspaces would also be zero as

Pi
TPl∈Bi = O ∈ Rd×d → trace(QT

ilPi
TPlQli) = 0 (6.13)

where O is a zero matrix and Pi is a basis matrix of the set Xi. The classical orthogonal
subspace method (OSM) [145] has been developed as a method designed to obtain class-
specific orthogonal subspaces. The OSM finds the common projection for all classes, which
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Figure 6.6: Convergence characteristics of the optimization. The cost of J of a given training
set is shown as a function of the number of iterations.The bottom right shows the
convergence to a unique maximum with different random initials of T.

is represented by the matrix P0. In the space projected by P0, it computes subspaces, each
of which maximally represents one class while minimally representing all the other classes.
The details are explained in the following paragraph. Classification of a new image set is
achieved by computing a subspace for the new set in the projected space by P0 and then
by measuring canonical correlations between the subspace and the class orthogonal sub-
spaces.

Denote the correlation matrices of the C classes by C1, ...CC and the respective a priori
probabilities by π1, ..., πC [145]. Then matrix C0 =

∑C
i=1 πiCi is the correlation matrix of

the mixture of all the classes. Matrix C0 can be diagonalized by BC0BT = Λ. Denoting
P0 = Λ−1/2B, we have P0C0PT

0 = I. Then,

π1P0C1PT
0 + ...πCP0CCPT

0 = I

This means that matrices πiP0CiPT
0 and Σj 6=iπ

jP0CjPT
0 have the same eigenvectors but

the eigenvalues λi
k of πiP0CiPT

0 and λi
k of Σj 6=iπ

jP0CjPT
0 are related by λi

k = 1−λi
k. That

is, in the space rotated by matrix P0, the most important basis vectors of class i, which are
the eigenvectors of πiP0CiPT

0 corresponding to largest eigenvalues, are at the same time
the least significant basis vectors for the ensemble of the rest of the classes. Let Pi be such
an eigenvector matrix so that

πiPi
TP0CiPT

0 Pi = Λi

Then,
Σj 6=iπ

jPi
TP0CjPT

0 Pi = I−Λi

Since every matrix πjP0CjPT
0 for all j 6= i is positive semidefinite, πjPi

TP0CjPT
0 Pi
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should be a diagonal matrix having smaller elements than 1 − λi. If we let Pj denote the
eigenvectors of j-th class by πjP0CjPT

0 ≈ PjΛjPj
T , the matrix Pi

TPjΛjPj
TPi now has

small diagonal elements. Pi
TPj has, accordingly, small elements. In the ideal case when

πiP0CiPT
0 has the eigenvalues which are exactly equal to one, the matrix Pi

TPj would
be a zero matrix for all j 6= i. The two subspaces defined by Pi,Pj are called orthogonal
subspaces. That is, every column of Pi is perpendicular to every column of Pj .

Note that the OSM method does not exploit the concept of multiple sets in a single
class (or within-class sets). The method assumes that all data vectors of a single class i are
represented by a single set Pi. From the above, the matrix P0 could represent an alter-
native discriminative transformation by which the canonical correlations of between-class
sets are minimised. Note that the matrix P0 is a square matrix.

Comparison with the iterative Solution, DCC. Note that the orthogonality of subspaces
is a restrictive condition, at least when the number of classes is large. It is often the case that
the subspaces of OSM represented by Pi and Pl∈Bi

are correlated. If Pi
TPl has non-zero

values, canonical correlations could be much greater than zero as

qT
ilPi

TPlqli À 0 (6.14)

where q is a column of the rotation matrix Q in the definition of canonical correlations.
Generally, the problem of minimising correlations of basis matrices Pi

TPl in OSM is not
equivalent to the proposed problem formulation where the canonical correlations qT

ilPi
TPlqli

are minimised. That is, OSM tries orthogonalizatin for all axes of subspaces with equal im-
portance but DCC does this for canonical axes with different importance, revealed by the
canonical correlation analysis. Moreover, the orthogonal subspace method does not ex-
plicitly attempt to maximise canonical correlations of the within-class sets. It combines all
examples of a class together. However, the OSM method is simpler in terms of learning
and computationally economical as it does not require iterations in learning like DCC. It
is shown that this simpler method also improves the simple canonical correlation method
effectively in the experiments.

Comparison with Constrained Mutual Subspace Method (CMSM) It is worth noting that
the previous method CMSM [45][144] can be seen to be closely related to the orthogonal
subspace method. For the details of CMSM, refer to Section 3.6.8. CMSM finds the con-
strained subspace where the total projection operators have small variances. Each class is
represented by a subspace which maximally represents the class data variances. The class
subspace is then projected into the constrained subspace. The projected data subspace
compromises the maximum representation of each class and the minimum representation
of a mixture of all the other classes. This is similar in concept to the orthogonal subspace
method explained above. Both methods try to minimise the correlation of between-class
subspaces defined by Pi

TPl∈Bi . However, dimensionality of the constrained subspace of
CMSM should be optimised for each application. If dimensionality is too low, the con-
strained subspace will be a null space. In the opposite case, the constrained subspace sim-
ply retains all the energy of the original data and thus can not play a role as a discriminant
function. This dependence of CMSM on the parameter (dimensionality) selection makes
it empirical. By contrast, there is no need to choose any subspace from the discriminative
space represented by the matrix P0 in the orthogonal subspace method. A full dimension
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(a)

(b)

Figure 6.7: Example images of the face data sets. (a) Frames of a typical face video sequence
with automatic face detection (b) Face prototypes of the 7 illumination settings

of the matrix can simply be adopted. Note the proposed optimal solution, DCC, also ex-
hibited insensitivity to dimensionality, thus practically, as well as theoretically appealing
(See the experimental section).

6.4 Experimental Results and Discussion

The proposed method (the code is available at http://mi.eng.cam.ac.uk/∼tkk22) is evalu-
ated on various object or object category recognition problems: using face image sets with
arbitrary motion captured under different illuminations, image sets of five hundred gen-
eral objects taken at different views and the 8 general object categories, each of which has
several different objects. The task of all of the experiments is to classify an unknown set of
vectors to one of the training classes, each also represented by vector sets.

6.4.1 Database of Face Image Sets

We have collected a database called the Cambridge-Toshiba Face Video Database with 100
individuals of varying age and ethnicity and equally represented genders. For each person,
14 (7 illuminations × two recordings) video sequences of the person in arbitrary motion
were collected. Each sequence was recorded in a different illumination setting for 10s at
10fps and at 320×240 pixel resolution. See Figure 6.7 for samples from an original image
sequence and seven different lightings. Following automatic localization using a cascaded
face detector [193] and cropping to a uniform scale of 20×20 pixels, images of faces were
histogram equalized. See Appendix A for more details on the data set. Note that face
localization was performed automatically on the images of uncontrolled quality. Thus it
was not as accurate as any conventional face registration with either manual or automatic
eye positions performed on high-quality face images. Our experimental conditions are
closer to those given for typical surveillance systems.

6.4.2 Comparative Methods and Parameter Setting

We compared the performance of :

• KL-Divergence algorithm (KLD) [167] as a representative probability density-based
method,
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• Simple assembly methods such as Hausdorff Distance (d(S1, S2) = minx1∈S1 maxx2∈S2 d(x1, x2))
and k-Nearest Neighbours (kNN) (in the sense of minx1∈S1 minx2∈S2 d(x1, x2)) [33] of
images transformed by (i) PCA, and (ii) LDA [9] subspaces, which are estimated from
training data similarly to [162],

• Nearest Neighbour (NN) by FaceIt (v.5.0), the commercial face recognition system
from Identix, which ranked top overall in the Face Recognition Vendor Test 2000 and
2002 [154, 13],

• Mutual Subspace Method (MSM) [207], which is equivalent to a simple aggregation
of canonical correlations (See Appendix C),

• Constrained MSM (CMSM) [45, 144] used in a state-of-the-art commercial system
called FacePass [186] (See Section 3.6.8),

• Orthogonal Subspace Method (OSM) [145],

• and the proposed iterative discriminative learning, DCC.

To compare algorithms, important parameters of each method were adjusted and those
optimal in terms of test identification rates were selected. In KLD, 96% of data energy was
explained by the principal subspace of training data used [167]. In kNN methods, the
dimension of PCA subspace was chosen to be 150, which represents more than 98% of
training data energy (Note that removing the first 3 components improved accuracy in the
face recognition experiment as similarly observed in [9]). The best dimension of LDA sub-
space was also found to be around 150. The number of nearest neighbors used was chosen
from one to ten. In MSM/CMSM/OSM/DCC, the dimension of the linear subspace of
each image set represented 98% of data energy of the set, which was around 10. PCA was
performed for computing the subspace of each set in the MSM/CMSM/DCC methods.

Dimension Selection of the Discriminative Subspaces in CMSM/OSM/DCC. As shown
in Figure 6.8 (a), CMSM exhibited a high peaking in the the relationship between accu-
racy and dimensionality of the constrained subspace, whereas the proposed method, DCC,
provided constant identification rates regardless of dimensionality of T beyond a certain
point. The best dimension of the constrained subspace of CMSM was found to be at around
360 and was fixed. For DCC, we fixed the dimension at 150 for all experiments (the full
dimension can also be conveniently exploited without any feature selection). The full di-
mension was also used for the matrix P0 in OSM. Note that the proposed methods DCC
and OSM do not require any elaborate feature selection and this behaviour of DCC/OSM is
highly attractive from the practical point of view, compared with CMSM. Without feature
selection, the accuracy of CMSM in the full space drops dramatically to the level equiva-
lent to that of MSM, which is a simple aggregation of canonical correlations without any
discriminative transformation.

Number of Canonical Correlations. Figure 6.8 (b) shows the accuracy of DCC, MSM,
CMSM and OSM according to the number of canonical correlations used. This parameter
does not affect the accuracy of the methods as much as the dimension of the discriminative
subspace, as shown in Figure 6.8 (a). Overall, the methods DCC, CMSM and OSM were
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(a) (b)

Figure 6.8: (a) The effect of the dimensionality of the discriminative subspace on the proposed
iterative method (DCC) and CMSM. The accuracy of CMSM at 400 is equivalent to
that of MSM, a simple aggregation of canonical correlations. (b) The effect of the
number of canonical correlations on DCC/MSM/CMSM/OSM.

shown to be less sensitive to this parameter than MSM as they exploit their own discrim-
inative transformations. More precisely, DCC and OSM showed desirably stable curves
over this parameter whereas CMSM exhibited more or less fluctuating performance. For
simplicity, the number of canonical correlations was fixed at the same (i.e. set as the di-
mension of linear subspaces of image sets) for all methods, MSM, CMSM, OSM and DCC.

6.4.3 Face-Recognition Experiments

Training of all algorithms was performed with data sequences acquired in a single illu-
mination setting and testing with a single other setting. We used 18 randomly selected
training/test combinations of the sequences for reporting identification rates. The perfor-
mance of the evaluated recognition algorithms is shown in Figure 6.9 and Table 6.2. The
18 experiments were divided into two parts according to the degree of difference between
the training and the test data of the experiments, which was measured by KL-Divergence
between the training and test data. Figure 6.9 shows the cumulative recognition rates for
the averaged results of all 18 experiments and Table 6.2 shows the results separately for
the first (easier) and the second parts (more difficult) of the experiments.

In this experiment, all training samples of a class were drawn from a single video se-
quence of arbitrary head movement, so they were randomly divided into two sets for the
within-class sets in the proposed learning. Note that the proposed method with this ran-
dom partition still worked well regardless of the number of partitions as exemplified in
Table 6.3. The test recognition rates changed by less than 1% in all of the various trials of
random partitioning. This may be because no explicit discriminatory information is con-
tained in the randomly partitioned intra-class sets. Rather, DCC is mostly concerned with
achieving the maximum possible separation of inter-class sets as are CMSM/OSM. In this
case, the numerator in the objective function (6.9) may just help finding the meaningful so-
lution that minimises the denominator. Table 1 shows the averaged accuracy of 18 random
trials of the 18 experiments. If samples of a class can be partitioned according to the data
semantics, the concept of within-class sets would be more useful and realistic, which is the
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Figure 6.9: Cumulative recognition plot for the MSM/kNN-LDA/CMSM/OSM/DCC methods.

KLD HD-PCA 1NN-PCA 10NN-PCA FaceIt S/W
1st half 0.49±0.14 0.60±0.07 0.95±0.03 0.96±0.03 0.90±0.09
2nd half 0.24±0.13 0.47±0.09 0.71±0.20 0.71±0.21 0.86±0.05

10NN-LDA MSM CMSM OSM DCC
1st half 0.98±0.01 0.94±0.03 0.98±0.01 0.98±0.01 0.98±0.01
2nd half 0.87±0.07 0.91±0.02 0.93±0.06 0.94±0.06 0.95±0.04

Table 6.2: Evaluation results. The mean and standard deviation of recognition rates of different
methods. The results are shown separately for the first (easier) and the second parts
(more difficult) of the experiments.

Number of partitions 2 3 4
exp. 1 93.19±0.46 92.86±0.78 92.75±0.77
exp. 2 95.93±0.53 95.60±0.00 95.71±0.35

Table 6.3: Example results for random partitioning. The mean and standard deviation (%)of
recognition rates of 10 random trials for two example experiments.

case in the following experiments.
In Table 6.2, most of the methods generally had lower recognition rates for the exper-

iments with larger KL-Divergence between the training and test data. The KLD method
achieved by far the worst recognition rate. Considering that the illumination conditions
varied across data and that the face motion was largely unconstrained, the distribution of
within-class face patterns was very broad, making this result unsurprising. In the meth-
ods of non-parametric sample-based matching, the Hausdorff-Distance (HD) measure pro-
vided far poorer results than the k-Nearest Neighbors (kNN) methods defined in the PCA
subspace. 10NN-PCA yielded the best accuracy of the sample-based methods defined in
the PCA subspace, which is on average worse than MSM by 8.6%. Its performance greatly
varied across the experiments. Note that MSM showed robust performance with a large
margin over the kNN-PCA method under the different experimental conditions. The im-
provement of MSM over both KLD and HD/kNN-PCA methods was very impressive. The
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benefits of using canonical correlations over both classical approaches for set classification,
which have been explained throughout the previous sections, were confirmed.

The commercial face recognition software FaceIt (v.5.0) yielded a performance between
those of kNN-PCA and kNN-LDA methods on average. Although the NN method using
FaceIt is based on individual sample matching, it delivered more robust performance for
the data changes (the difference in accuracy between the first and the second halves is not
as large as those of kNN-PCA/LDA methods). This is reasonable, considering that FaceIt
was trained independently of the training images used for other methods.

Table 6.2 also gives a comparison of the methods combined with discriminative learn-
ing. kNN-LDA yielded a big improvement over kNN-PCA but the accuracy of the method
again greatly varied across the experiments. Note that 10NN-LDA outperformed MSM for
similar conditions between the training and test sets, but it became noticeably inferior as
the conditions changed. It delivered similar accuracy to MSM on average, which is also
shown in Figure 6.9. The proposed methods DCC and OSM and CMSM constantly pro-
vided a significant improvement over both MSM and kNN-LDA methods as shown in
Table 6.2 as well as in Figure 6.9.

Note that CMSM/OSM may be regarded as simply measuring correlation between sub-
spaces defined by the basis matrix P, which is different from the canonical correlations
defined by PQ. In spite of this difference, the accuracy of CMSM/OSM was impressive
in this experiment. As explained above, when an ideal solution of CMSM/OSM is avail-
able and Q only provides a rotation within the subspace, the solution of CMSM/OSM
can be close to that of the proposed optimal solution DCC. However, if class subspaces
cannot be made orthogonal to each other, then the direct optimization of canonical corre-
lations offered by DCC is preferred. Note that the DCC method was better than those of
CMSM/OSM for the second half of the experiments in Table 6.2. The differences in the
three methods are apparent from the associated similarity matrices of the training data.
We trained the three methods using both training and test sets of the worst experimental
case for the methods (See the last two of Figure 6.7 (b)), and compared their similarity
matrices of the total class data with that of MSM, as shown in Figure 6.10. Both OSM and
CMSM considerably improved the ability of class discrimination over MSM, but they were
inferior to the optimal achieved by DCC for the given data. As discussed above, both of
the proposed methods, DCC, and OSM are preferable to CMSM as they do not involve
the selection of dimensionality of the discriminative subspaces. While the best dimension
for CMSM had to be identified with reference to the test results, the full dimension of the
discriminative space can simply be adopted for any new test data in the DCC and OSM
methods.

We designed another face experiment with more face image sets in the Cambridge-
Toshiba face video database. The database involves two sets of videos acquired at differ-
ent times, each of which consists of seven different illumination sequences for each person.
We used one-time set for training and the other set for testing, thus producing more vari-
ations between the training and testing (See Figure 6.11 for an example of the two sets
acquired in the same illumination at different times). Note the training and testing sets
in the previous experimental setting were drawn from the same time set. In this experi-
ment using a single illumination set for training, the full 49 combinations of the lighting
settings were exploited. We also increased the number of image sets per class for training.
We randomly drew a combination of illumination sequences for training and used all 7
illumination sequences for testing. 10-fold cross validation was performed for these ex-
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Figure 6.10: Similarity matrices for MSM/CMSM/OSM/DCC methods. Two graphs (for top-view
and 3D-diagonal-view) are shown for each method. The diagonal and off-diagonal
values in the DCC matrix can be much better distinguished.

Figure 6.11: Example of the two time sets (top and bottom) of a person acquired in a single
lighting setting. They contain significant variations in pose and expression.

periments. Figure 6.12 shows the mean and standard deviations of recognition rates of all
experiments. The proposed method DCC significantly outperformed OSM/CMSM meth-
ods when the test sets differed greatly from the training sets. These results are consistent
with those of the methods in the 2nd part of the experiment in Table 6.2 (but the difference
is much clearer here). Overall, all three methods improved their accuracy by using more
image sets in training.

Matching complexity. The complexity of the methods based on canonical correlations
(MSM/ CMSM/OSM/DCC), O(d3), is much lower than that of the sample-based matching
methods (kNN-PCA/LDA), O(m2n), where d is the subspace dimension of each set, m is
the number of samples of each set and n is the dimensionality of feature vectors, since
d ¿ m,n. In the face experiments, the unit matching time of comparing the two image
sets which contain about 100 images is 0.004 for the canonical correlations based method
and 1.1 seconds for the kNN method.
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Figure 6.12: Recognition rates of the CMSM/OSM/DCC methods when using a single, double
and triple image sets in training.

6.4.4 Experiment on Large Scale General Object Database

The ALOI database [50] with 500 general object categories taken from different viewing
angles provides another experimental data set for the proposed method (See Figure 6.13 for
some examples). Object images were segmented from the simple background and scaled to
20×20 pixel size. A training set and five test sets were set up with different viewing angles
of the objects as shown in Figure 6.14 (a) and (b). Note that the pose of all the images in the
test sets differed by at least 5 degree from every sample of the training set. The methods of
MSM, kNN-LDA and CMSM were compared with the proposed methods DCC and OSM
in terms of identification rate. The parameters were selected in the same way as in the face
recognition experiment. The dimension of the linear subspace of each image set was fixed
at 5, representing more than 98% data energy in MSM/CMSM/OSM/DCC methods. The
best number of nearest neighbors in the kNN-LDA method was found to be five.

Judging from Figure 6.15 and Figure 6.16, kNN-LDA yielded better accuracy than MSM
in all the cases. This contrasted with the findings in the face recognition experiment. This
may have been caused by the somewhat artificial experimental setting. The nearest neigh-
bours of the training and test set differed only slightly due to the five degree pose differ-
ence. Please note that the two sets had no changes in lighting and had accurate localization
of the objects as well. Further note that the accuracy of MSM could be improved by us-
ing only the first canonical correlation, as with the results shown in Figure 6.8 (b). Here
again, CMSM, OSM and the proposed method DCC were substantially superior to MSM.
Overall, the accuracy of CMSM/OSM was similar to that of kNN-LDA method, as shown
in Figure 6.16. The proposed iterative method, DCC, constantly outperformed all the oth-
ers including OSM/CMSM as well as kNN-LDA. Please note this experiment involved a
larger number of classes, as compared with the face experiments. Furthermore, the set of
images of the training class had quite different pose distributions from those of the test set.
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(a)

(b)

Figure 6.13: Example images of the ALOI Database. (a) Each object has 72 images taken at
every five degree views in the round. (b) Examples of six different objects.

6.4.5 Object Category Recognition using ETH80 database

An interesting experiment of object category recognition was performed using the public
ETH80 data base. As shown in Figure 6.17, there are 8 categories which contain 10 objects
each, with 41 images of different views. More details of the data base can be found in [117].
We randomly partitioned 10 objects into two sets of five objects for training and testing.
In Experiment 1, we used all 41 view images of objects. In Experiment 2, we used all
41 views for training but a random subset of 15 view images for testing. 10-fold cross-
validation was carried out for both experiments. Parameters such as the dimension of the
linear subspaces, the number of principal angles and nearest neighbors were selected as in
the previous experiment. The dimension of the constrained subspace of CMSM was also
best optimised.

From Table 6.4, it is worth noting that the accuracy of kNN-PCA method is similar
(but slightly inferior) to that of the PCA method reported in [117]. Note that we used only
5 objects per category, in contrast to [117] where 9 objects were used for training. The
recognition rates for individual object categories also showed similar behavior to those
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(a)

(b)

Figure 6.14: ALOI experiment. (a) The training set consists of 18 images taken at 10 degree
intervals. (b) Two test sets are shown. Each test set contains 9 images at 10 degree
intervals, different from the training set.
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Figure 6.15: Identification rates for the 5 different test sets. The object viewing angles of the
test sets differ from those of the training set to a varying extent.

of [117].
As shown in Table 6.4, the kNN methods were much inferior to the those based on

canonical correlation. The sample-based matching method was highly sensitive to the
variations in different objects of the same categories, failing in object categorisation. The
methods using canonical correlations provided much more accurate results. The proposed
method (DCC) delivered the best accuracy of all tested methods. The improvement of DCC
over CMSM/OSM was greater in the second experiment where only a subset of images of
objects was involved in the testing. Note that this makes the testing set very different from
the training set. The major principal components of the image sets are highly sensitive to
the variations in pose. The accuracy of CMSM/OSM methods was considerably decreased
in the presence of this variation, while the DCC method maintained almost the same accu-
racy.
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Figure 6.16: Cumulative recognition rates of the MSM/kNN-LDA/CMSM/OSM/DCC methods
for the ALOI experiment.

(a)

(b)

Figure 6.17: Object category database (ETH80) contains (a) 8 object categories and (b) 10
objects for each category.

kNN-PCA kNN-LDA MSM CMSM OSM DCC
exp.1 0.762±0.21 0.752±0.17 0.865±0.13 0.897±0.10 0.905±0.09 0.917±0.09
exp.2 - - - 0.852±0.21 0.865±0.18 0.912±0.13

Table 6.4: Evaluation results of object categorisation. The mean recognition rate and its stan-
dard deviation for all experiments.

6.5 Summary

This study has addressed the question of how to exploit set-information for robust object
recognition. Any assembly algorithms which combine individual sample matches in ad-
hoc manner were shown to be very poor.

We demonstrated that the canonical correlation is a robust similarity measure of image
sets, yielding much higher recognition rates than the traditional probability density-based
set-similarity e.g. Kullback Leibler-Divergence (KLD), which is sensitive to simple trans-
formations of input data. On the other hand, object images are well-constrained to low-
dimensional subspaces and Canonical Correlation Analysis is affine invariant, effectively
placing a uniform prior over the subspaces. CCA provides robust matching of the image
sets about the pattern variations on the subspaces. The canonical-correlation based meth-
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ods were shown to be highly time-efficient in matching, thus offering an attractive tool for
a large-scale recognition task.

A novel discriminative learning framework has been proposed for set classification
based on canonical correlations. The novel iterative learning yields the optimal discrim-
inant transformation. The Orthogonal Subspace Method (OSM) has been also explored
as an alternative method of improving set-classification by canonical correlations. The
proposed methods have been evaluated for various object and object category recogni-
tion problems. The new techniques enable discriminative learning over sets, and exhibit
an impressive set classification accuracy. They significantly outperformed the probability
density based methods, the classical assembly methods based on PCA/LDA or a commer-
cial face recognition software (which was the top in the Face Recognition Vendor Test 2000
and 2002 [154, 13]), and the simple aggregation method of canonical correlations. While
OSM/CMSM delivered comparable accuracy to the optimal method DCC in particular
cases, they generally lagged behind the method DCC. Compared with the prior-art CMSM
method, both of the proposed methods, OSM and DCC, had a benefit in feature selection.

Further necessary studies could be conducted in theory and mathematics. First of all,
the proposed image-set similarity is not a metric. By making it a metric or distance func-
tion, the method could more conveniently be plugged into other studies without losing
generality. Secondly, the proposed iterative learning for DCC should receive closer ex-
amination on convergence either by proofs or through more extensive experiment with
real-data sets which include outliers.

Interesting research directions include non-linear extension, which would allow us to
capture discriminatory information of image sets contained in higher-order statistics. It
may also prove beneficial to make the proposed learning more time-efficient so as to be
incrementally updated for new training sets. See Chapter 9 for these extensions. Despite
its success in image-set based object recognition, CCA is still insufficient for Video-to-Video
matching for action/gesture classification. CCA simply takes a video as a set of images not
encoding temporal (ordering) information. This will be dealt with in the next chapters.
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Tensor Canonical Correlation
Analysis for Action Classification

In this chapter, we introduce a new method, namely Tensor Canonical Correlation Analy-
sis (TCCA) which extends classical Canonical Correlation Analysis (CCA) to multidimen-
sional data arrays (also called tensors) for Video-to-Video Matching. The proposed exten-
sion is seen as the aggregation of many different sub-CCAs, including the conventional
CCA of two image sets as a part. The proposed method inherits the benefits of CCA,
robustness about intra-class variation by affine-invariance and considers full space-time
information for action classification. Compared with state-of-the-art methods for action
classification, this method avoids the difficult problem of explicit motion estimation or
significant meta-parameter setting (for e.g. about space-time interest points) and delivers
maximum discrimination information in all useful aspects of video data.

The derived tensor canonical correlations are combined with a weak discriminative fea-
ture selection and a Nearest Neighbor classifier for action recognition. In addition, we pro-
pose a time-efficient action detection and alignment method based on incremental learning
of subspaces for Tensor CCA when actions are not aligned in the input space-time domain.
In the experiments on the public action data set (KTH) as well as the self-recorded hand
gesture data set, the proposed method showed significantly better accuracy at comparable
detection speed than state-of-the-art action recognition methods.

The discriminant analysis method developed in the previous chapter for Set-to-Set
Matching is readily plugged into the Tensor CCA method for further improving action
classification accuracy, which will be explained in the following chapter.

7.1 Overview of Tensor Canonical Correlation Analysis

In this study, a novel statistical method of pairwise feature extraction from video data
is proposed for human action/gesture categorisation. We extend the classical canonical
correlation analysis [5, 60] (see Section 6.1) -a standard tool for inspecting linear relations
between two sets of vectors- to that of multi-dimensional data arrays (also called high-
order tensors), which is for analysis of the similarity of video data/space-time volumes.
Figure 7.1 illustrates the action classification problem using CCA [5].

The proposed method called Tensor Canonical Correlation Analysis (TCCA) is general
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Figure 7.1: Probabilistic Canonical Correlation Analysis tells how well two random variables
x,y are represented by a common source variable z [5].

and may be applied to many other tasks requiring tensor matching (e.g. a single color im-
age [7] or filter banks applied to a single gray image [210] can also yield a high-order ten-
sor). Harshman has also presented a concept of Canonical Correlation Analysis of multi-
dimensional arrays in his recent work [61](not published as a full paper). Although it was
carried out independently of our work, it describes some common concepts which support
our new ideas. This chapter comprises not only our new TCCA framework but also new
applications of CCA to action classification and efficient action detection algorithms.

This work was encouraged by our previous success [104](See Chapter 6), where Canon-
ical Correlation Analysis (CCA) is adopted to measure the similarity of two image sets for
robust object recognition. Image sets are collected either from a video or multiple still shots
of objects, containing changes in object appearance due to different lighting and pose. Each
image in the two sets is vectorized and classical CCA applied to the two sets of vectors.
Object recognition is performed from canonical correlations, also called principal angles,
where higher canonical correlations indicate higher similarity of two given image sets. The
canonical correlation-based method yielded much higher object recognition rates than the
traditional set-similarity measures based on pdfs e.g. Kullback Leibler-Divergence (KLD)
in [104]. The KLD-based matching is highly subjective to simple transformations of data
(e.g. global intensity changes and variances), which are clearly irrelevant to classification,
resulting in poor generalisation to novel data. Compared with traditional methods, a key
function of CCA is its affine invariance in matching, which allows great flexibility and
yet keeps sufficient discriminative information. The affine-invariance can be explained by
the geometrical interpretation of CCA as the angles between two hyper-planes (or linear
subspaces). Canonical correlations are the cosine of principal angles and smaller angular
planes are thought to be more alike. It is well known that object images are class-wise
well-constrained to lie on hyper-planes or low-dimensional subspaces. This subspace-
based matching effectively gives affine-invariance, i.e. invariant matching of the image
sets to the pattern variations subject to the subspaces. For details, refer to Chapter 6. There
are also ample previous studies demonstrating the advantages of the classical subspace
concept in various visual recognition tasks.

Despite its success, CCA is still insufficient in action/gesture classification tasks as it
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simply represents a video as a set of images not encoding temporal (ordering) informa-
tion. The proposed Tensor Canonical Correlation Analysis (TCCA) has many favorable
characteristics, chief of which are that:

• TCCA of videos yields novel pairwise features reflecting similarity in the joint spatial
and temporal domains of videos.

• The new features are flexible up to affine transformation for possible data variations
in each domain.

• Action is analysed as global space-time volumes, avoiding the challenging problems
of explicit motion estimation.

• The proposed learning-based method does not require any significant tuning para-
meters.

• The tensor CCA method can be partitioned into sub-TCCAs as each canonical corre-
lation explains different aspects of the multi-dimensional data. For example, previ-
ous work on object recognition [104, 200, 207] by CCA tackles a sub-problem of this
study.

The quality of TCCA features is demonstrated in terms of action classification accu-
racy’s being combined with a simple feature selection scheme and Nearest Neighbor (NN)
classification. Additionally, time-efficient detection of a target video is proposed by incre-
mentally learning the space-time subspaces for TCCA. The proposed method significantly
outperformed the state-of-the-art action classification methods in accuracy on the KTH
data set [165] as well as our own hand-gesture data set. The proposed detection method
could also yield economical computations of TCCA for the case where action is not aligned
in the space-time domain, delivering reasonable detection speed compared to the state-of-
the-art method in [168].

The rest of the chapter is organised as follows: Notations are given in Section 7.2 and
the framework and solution for Tensor CCA are given in Section 7.3. Sections 7.4 and 7.5
are devoted to the proposed discriminative feature selection and action detection method
respectively. The results are shown in Section 7.6. We summarise in Section 7.7.

7.2 Notations

7.2.1 Matrix Representation of Canonical Correlation Analysis

The matrix notation of CCA helps explanation of the proposed Tensor CCA. Given two
data sets as matrices X ∈ RN×m1 , Y ∈ RN×m2 , canonical correlations are found by the
pairs of transformations u,v. The random vectors x,y in (3.26) correspond to the rows of
the matrices X,Y assuming N À m1,m2. The standard CCA may be written as

ρ = max
u,v

X′TY′, where X′ = Xu,Y′ = Yv. (7.1)

93



§7.3 CHAPTER 7

Note that the canonical transformations u,v hereinafter are defined to be s.t. XU =
P1Q1,YV = P2Q2, where U,V have u,v in their columns respectively and P,Q are
eigenvector and rotating matrices defined in (6.2) respectively.

7.2.2 Multilinear Algebra

This section briefly introduces basic notation and concepts of multilinear algebra [189, 135],
or higher-order tensors for Tensor CCA. For example, a third-order tensor which has the
three modes of dimensions I, J,K is denoted by A = (A)ijk ∈ RI×J×K . The inner product
of any two tensors is defined as 〈A,B〉 =

∑
i,j,k(A)ijk(B)ijk. The mode-j vectors are the

column vectors of matrix A(j) ∈ RJ×(IK) and the j-mode product of a tensorA by a matrix
U ∈ RJ×N is

(B)ink ∈ RI×N×K = (A×j U)ink = Σj(A)ijkujn (7.2)

The j-mode product in terms of j-mode vector matrices is B(j) = UA(j).

7.3 Tensor Canonical Correlation Analysis

7.3.1 Joint and Single-shared-mode TCCA

Many previous studies e.g. [189, 7, 210] have dealt with tensor data in its original form
to consider multi-dimensional relations of the data and to avoid the curse of dimensionality
when the multi-dimensional data array is simply vectorised. We generalise the canonical
correlation analysis of two sets of vectors into that of two higher-order tensors having
multiple shared modes (or axes).

A single channel video volume is represented as a third-order tensor denoted by A ∈
RI×J×K , which has the three modes, i.e. axes of space (X and Y) and time (T). We assume
that every video volume is of uniform size I × J ×K. Thus third-order tensors can share
any single mode or multiple modes. Note that the canonical transformations are applied
to the modes which are not shared. For e.g. in (7.1), classical CCA applies the canonical
transformations u,v to the modes in Rm1 ,Rm2 respectively, having a shared mode in RN .
The proposed Tensor CCA (TCCA) consists of the different architectures according to the
number of shared modes. Joint-shared-mode TCCA allows any two modes (i.e. a section of
video) to be shared and applies the canonical transformation to the remaining single mode,
while the single-shared-mode TCCA shares any single mode (i.e. a scan line of video) and
applies the canonical transformations to the two remaining modes. See Figure 7.2 for the
concept of the proposed two types of TCCA.

The proposed TCCA for two videos is seen as the aggregation of many different canon-
ical correlation analyses, which are for two sets of XY sections (i.e. images), two sets of XT
or YT sections (in the joint-shared-mode), or sets of X,Y or T scan lines (in the single-shared-
mode) of the videos.

Joint-shared-mode TCCA. Given two tensors X ,Y ∈ RI×J×K , the joint-shared-mode
TCCA consists of three sub-analyses. In each, one pair of canonical directions is found to
maximise the inner product of the output tensors (called canonical objects) by the mode
product of the two data tensors by the pair of the canonical transformations. That is, the
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Figure 7.2: Representation of Tensor CCA. Joint-shared-mode TCCA (top) and single-shared-
mode TCCA (bottom) of two video volumes (X,Y) are defined as the inner product of the
canonical tensors (two middle transparent cuboids in each figure), which are obtained
by finding the respective pairs of canonical transformations (u,v) and canonical objects
(green planes in top or lines in bottom figure).

single pair (for e.g. (uk,vk)) in Φ = {(uk,vk), (uj ,vj), (ui,vi)} is found to maximise the
inner product of the respective canonical objects (e.g. X ×k uk, Y ×k vk) for the IJ, IK and
JK joint-shared-modes respectively. The overall process of TCCA can then be given as the
optimization problem of the canonical transformations Φ to maximise the inner product of
the canonical tensors X ′,Y ′ which are obtained from the three pairs of canonical objects by

ρ = max
Φ
〈X ′,Y ′〉, where (7.3)

(X ′)ijk = (X ×k uk)ij · (X ×j uj)ik · (X ×i ui)jk

(Y ′)ijk = (Y ×k vk)ij · (Y ×j vj)ik · (Y ×i vi)jk
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and 〈, 〉 denotes the inner product of tensors defined in Section 7.2.2. Note the mode prod-
uct of the tensor by the single canonical transformation yields a matrix, a plane as the
canonical object. Similar to classical CCA, multiple tensor canonical correlations ρ1, ..., ρd

are defined by the orthogonal sets of the canonical directions.

Single-shared-mode TCCA. Similarly, the single-shared-mode tensor CCA is defined as
the inner product of the canonical tensors comprising the three canonical objects. The two
pairs of the transformations in

Ψ = [{(u1
j ,v

1
j ), (u

1
k,v

1
k)}, {(u2

i ,v
2
i ), (u

2
k,v

2
k)}, {(u3

i ,v
3
i ), (u

3
j ,v

3
j )}]

are found to maximise the inner product of the resulting canonical objects, by the mode
product of the data tensors by the two pairs of the canonical transformations, for the I, J,K
single-shared-modes. The tensor canonical correlations are

ρ = max
Ψ
〈X ′,Y ′〉, where (7.4)

(X ′)ijk = (X ×j u1
j ×k u1

k)i · (X ×i u2
i ×k u2

k)j · (X ×i u3
i ×j u3

j )k

(Y ′)ijk = (Y ×j v1
j ×k v1

k)i · (Y ×i v2
i ×k v2

k)j · (Y ×i v3
i ×j v3

j )k

The canonical objects here are the vectors and the canonical tensors are given by the outer
product of the three vectors as above.

Note that both joint-shared-mode and single-shared-mode TCCA are natural general-
isations of the standard CCA to high-order tensors. Compared with a recent study [61],
Harshman only considered a single-shared-mode, while we have proposed joint- as well
as single-shared-modes. Our study further gives a general concept of multiple-shared-
modes. Moreover, his work was limited to the third-order tensors having two modes of
the same size and it can easily be extended to our single-shared-mode which considers all
three modes of the same size. A novel alternating solution for the proposed tensor CCA is
given in the next section.

7.3.2 Alternating Solution

A solution for both types of TCCA is proposed in a so-called divide-and-conquer manner.
Each independent process is associated with the respective canonical objects and canonical
transformations and also yields the canonical correlation features as the inner products of
the canonical objects. This is done by performing SVD for CCA [11] a single time (for
the joint-shared-mode TCCA) or several times alternatively (for the single-shared-mode
TCCA). This section is devoted to explaining the solution for the I single-shared-mode for
example. This involves the orthogonal sets of canonical directions {(Uj ,Vj), (Uk,Vk)}
which contain {(uj ,vj ∈ RJ), (uk,vk ∈ RK)} in their columns, yielding the d canonical
correlations (ρ1, ...ρd) where d < min(K, J) for given two data tensors, X ,Y ∈ RI×J×K .
The solution is obtained by alternating the SVD method to maximise

max
Uj ,Vj ,Uk,Vk

〈X ×j Uj ×k Uk, Y ×j Vj ×k Vk〉. (7.5)
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Given a random guess for Uj ,Vj , the input tensors X ,Y are projected as X̃ = X ×j Uj ,
Ỹ = Y×j Vj . The best pair of U∗

k,V
∗
k which maximises 〈X̃ ×k Uk, Ỹ ×k Vk〉 are then found.

Letting
X̃ ← X̃ ×k U∗

k, Ỹ ← Ỹ ×k V∗
k, (7.6)

then the pair of U∗
j ,V

∗
j are found to maximise 〈X̃ ×j Uj , Ỹ ×j Vj〉. Let

X̃ ← X̃ ×j U∗
j , Ỹ ← Ỹ ×j V∗

j . (7.7)

and repeat the procedures (7.6) and (7.7) until convergence. The solutions for steps (7.6),
(7.7) are obtained as follows:

SVD method for CCA [11] is embedded in the proposed alternating solution. First, the
tensor-to-matrix and the matrix-to-tensor conversion is defined as

A ∈ RI×J×K ⇐⇒ A(ij) ∈ R(IJ)×K (7.8)

where A(ij) is a matrix which has K column vectors in RI×J which are obtained by con-
catenating all elements of the IJ planes of the tensor A into vectors. Let X̃ , Ỹ be X̃(ij)

and Ỹ(ij) respectively. If P1
(ij),P

2
(ij) denote two orthogonal bases matrices of X̃(ij), Ỹ(ij)

respectively, canonical correlations are obtained as singular values of (P1)TP2 by

(P1)TP2 = Q1ΛQT
2 , Λ = diag(ρ1, ...ρK). (7.9)

The mode products in (7.6) are accordingly given by X̃ ×k U∗
k ⇐= G1

(ij), Ỹ ×k V∗
k ⇐=

G2
(ij) where G1

(ij) = P1Q1, G2
(ij) = P2Q2. The mode products in (7.7) are similarly found

by the conversion of X̃ =⇒ X̃(ik), Ỹ =⇒ Ỹ(ik). When it converges, d canonical corre-
lations are obtained from the first d correlations of either (ρ1, ...ρK) or (ρ1, ...ρJ), where
d < min(K,J). The canonical transformations, for e.g. in (7.6), are also obtained by

U∗
k = (X̃T

(ij)X̃(ij))
−1X̃T

(ij)P
1Q1

V∗
k = (ỸT

(ij)Ỹ(ij))
−1ỸT

(ij)P
2Q2

All other component processes of TCCA can be similarly carried out, delivering the
6 × d canonical correlation features in total. The J and K single-shared-mode TCCAs are
performed in the same alternating fashion, while the IJ, IK, JK joint-shared-mode TCCA
by performing the SVD method a single time without iterations.

7.4 Feature Selection for TCCA

TCCA features. By the proposed tensor CCA, we have obtained 6 × d canonical correla-
tion features in total. (Each joint-shared-mode or single-shared-mode has 3 distinct CCA

97



§7.4 CHAPTER 7

processes and each CCA process yields d features). Intuitively, each feature delivers differ-
ent data semantics in explaining the data similarity. For example, the first few canonical
tensors computed by the joint-shared-mode TCCA from the two hand-waving sequences
are visualised in Figure 7.3 (a). Canonical objects of IJ , IK, JK joint-shared-mode are
the XY , XT , Y T planes of the cubes respectively and the canonical tensors are repre-
sented as cubes. The canonical objects (XY planes) of the IJ joint-shared-mode show the
common spatial components of the two hand-waving videos. Note this mode is indepen-
dent of temporal information, e.g. temporal ordering of the video frames by applying the
canonical transformations to the K axis (time axis). Similarly, the canonical objects of the
IK, JK joint-shared-mode reveal the common components of the two videos in the joint
space-time domain, which are independent of J, I axis respectively.

Note from Figure 7.3 (a) that the canonical tensors in each pair are very much alike.
The two input sequences belong to the same action class, i.e. hand waving, and have dif-
ferent backgrounds and lighting conditions. They are of quite distinct poses of individuals
wearing different clothes. However, despite all the differences, the canonical tensors well
capture mutual information of the two inputs yielding high correlations. In the canonical
objects corresponding to XY planes, the arm movement, hand waving, is emphasised as
common information. All other canonical objects (XT, YT planes) are also pairwise similar.
On the other hand, the canonical tensors differ significantly from the paired in Figure 7.3
(b) where the two input sequences are of two action classes (one is hand waving and the
other walking). Although these sequences were captured in the same environment and
posed by the same person, TCCA returns low correlations. The two examples above sug-
gest that the tensor canonical correlations can be good features for class discrimination.

Comparison of joint-shared and single-shared-modes. At this point, it may be worth
comparing the proposed two types of TCCA in terms of flexibility and descriptive powers
of the original data structures. Generally the single-shared-mode is more flexible and thus
preserves less original data structure in matching than the joint-shared-mode. The former
involves the two pairs of free transformations, whereas the latter the single pair. In terms of
classification, the superiority of one type to the other may depend on applications. Good
discriminative features should be well balanced between flexibility and data-descriptive
powers. Importantly, in our experiments for action/gesture classification, we have ob-
served that joint-shared-mode TCCA generally delivers better discriminative features than
the single-shared-mode TCCA. The plane-like canonical objects in the joint-shared-mode
seem to maintain sufficient descriptive information of action classes while giving robust-
ness to data variations within classes (i.e. the flexibility), as shown in Figure 7.3. Our recent
success [104] also supports this observation: the CCA of image sets [104] is identical with
the IJ joint-shared-mode of the Tensor CCA framework in this paper. Nonetheless, the
proposed single-shared-mode TCCA is also important: it helps a more general and unified
TCCA framework. The accuracy of the joint-shared-mode TCCA could be improved by
the single-shared-mode in our experiments. Furthermore, as discussed above, superiority
may depend on applications.

Feature selection. In general, each canonical correlation feature carries a different amount
of discrimination information for video classification, depending on applications. In this
section, the discriminative boosting method is proposed to select useful tensor canonical
correlation features. First, the intra-class and inter-class feature sets (i.e. canonical cor-
relations ρi, i = 1, ..., 6 × d computed from any pair of videos) are generated from the
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(a)

Input video - hwav 1

Input video - hwav 2

TCCA

Canonical Tensors
X

T

Y

(b)

Input video - hwav 1

Input video - walk 1

TCCA

Canonical TensorsX

T

Y

Figure 7.3: Examples of pairwise canonical tensors. This visualises the first few canonical
tensors computed for the pair of input sequences of (a) the same action class and (b)
the two action classes. Canonical objects of IJ , IK, JK joint-shared-mode are the
XY , XT , Y T planes of the cubes respectively. Note the canonical tensors in each pair
are very much alike in (a) although the two hand-waving sequences are of different
environments and poses of individuals wearing different clothes. On the other hand,
the canonical tensors in (b) are greatly dissimilar despite the sequences, being of the
same person in the same environment.

training data comprising of several class examples. We use each tensor CCA feature to
build simple weak classifiers M(ρi) = sign [ρi − C] and aggregate the weak learners us-
ing the AdaBoost algorithm [42]. In an iterative update scheme classifier performance is
optimized on the training data to yield the final strong classifier by

M(ρ) = sign

[
M∑

i=1

wL(i)M(ρL(i))−
1
2

M∑

i=1

wL(i)

]
(7.10)

where w contains the weights and L the list of the selected features. The feature list learnt
by Adaboost is finally exploited to select the features for classification. Nearest Neigh-
bor (NN) classification in terms of sum of canonical correlations chosen is performed to
categorise a new test video.
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Note the feature selection is performed as weak discriminative learning, as the main
purpose of this chapter is to see the quality of tensor canonical correlation features them-
selves. In the next chapter, the combination with the discriminative transformation will be
presented.

7.5 Action Detection by Tensor CCA

The proposed TCCA is time-efficient provided that actions or gestures are aligned in the
space-time domain. Searching non-aligned actions by TCCA in the three-dimensional (X,Y,
and T) input space is, however, still computationally demanding because every possible
position and scale of the input space needs to be scanned. By observing that the joint-
shared-mode TCCA does not require iterations for the solutions and delivers sufficient
discriminative power (See Table 7.1), time-efficient action detection can be done by se-
quentially applying joint-shared-mode TCCA followed by single-shared-mode TCCA. The
joint-shared-mode TCCA can effectively filter out the majority of samples which are far
from a query sample then the single-shared-mode TCCA is applied to only few candidates.
In this section, we mainly explain the method further to speed up the joint-shared-mode
TCCA for action detection by incrementally learning the required subspaces. The follow-
ing section gives a brief introduction of prior art on incremental Principal Component
Analysis [59, 169].

7.5.1 Review on Incremental Principal Component Analysis

An efficient update scheme of eigen-subspaces has been developed in which a new set
of vectors is added to an existing data set. This is useful for applications such as object
tracking and surveillance where training images are accumulated over time. Given two
sets of data represented by eigenspace models {µi,Mi,Pi,Λi}i=1,2, where µi is the mean,
Mi the number of samples, Pi the matrix of eigenvectors and Λi the eigenvalue matrix of
the i-th data set, the combined eigenspace model {µ3, M3,P3,Λ3} is efficiently computed.
The eigenvector matrix P3 is represented by

P3 = ΦR = h([P1,P2,µ1 − µ2])R, (7.11)

where Φ is the orthonormal column matrix spanning the entire combined data space, R is
a rotation matrix, and h is a vector orthonormalization function. Using this representation,
an original eigenproblem for P3,Λ3 is converted into a smaller eigenproblem as

ST,3 = P3Λ3PT
3 ⇒ ΦTST,3Φ = RΛ3R. (7.12)

Note the matrix ΦTST,3Φ has the reduced size dT,1 +dT,2 +1, where dT,1, dT,2 are the num-
ber of the eigenvectors in P1 and P2 respectively. Thus the eigenanalysis here only takes
O((dT,1 + dT,2 + 1)3) computations, whereas the eigenanalysis in the l.h.s. (7.12) requires
O(min(N, M3)3), where N is the dimension of the input data and M3 is the total number
of data points. Usually, N,M3 À dT,1 + dT,2 + 1.
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Figure 7.4: Detection scheme. A query video is searched in a large volume input video. TCCA
between the query and every possible volume of the input video can be speeded-up by
dynamically learning the three subspaces of all the volumes (cuboids) for the IJ, IK, JK
joint-shared-mode TCCA. While moving the initial slices along one axis, subspaces of
every small volume are dynamically computed from those of the initial slices.

7.5.2 Dynamic Subspace Learning for TCCA

The computational complexity of the joint-shared-mode TCCA in (7.9) depends on the
computation of orthogonal basis matrices P1,P2 and the Singular Value Decomposition
(SVD) of (P1)TP2. The total complexity trebles this computation for the IJ, IK, JK joint-
shared-mode. From the theory of [11], the first few eigenvectors corresponding to most
of the data energy, which are obtained by Principal Component Analysis, can be the or-
thogonal basis matrices. If P1 ∈ RN×d,P2 ∈ RN×d where d is a usually small number,
the complexity of the SVD of (P1)TP2 taking O(d3) is relatively negligible. Given the
respective three sets of eigenvectors of a query video, time-efficient detection can be per-
formed by incrementally learning the three sets of eigenvectors, the space-time subspaces
P(ij),P(ik),P(jk) of every possible volume (cuboid) of an input video for the IJ, IK, JK
joint-shared-mode TCCA respectively. See Figure 7.4 for the concept. There are three sep-
arate steps which are carried out in same fashion, each of which is taken to compute one
of P(ij),P(ik),P(jk) of every possible volume of the input video. First, the subspaces of
every cuboid of the initial slices of the input video are learnt, then the subspaces of all
remaining cuboids are incrementally computed while moving the slices along one of the
axes. For example, for the IJ joint-shared-mode TCCA, the subspaces P(ij) of all cuboids
in the initial IJ-slice of the input video are computed. The subspaces of all next cuboids
are then dynamically computed, while pushing the initial cuboids along the K axis to the
end as follows (for simplicity, let the size of the query video and input video be Rm3

,RM3

where M À m) :

The cuboid at k on the K axis,X k is represented by the matrix Xk
(ij) = {xk

(ij), ...,x
k+m−1
(ij) },

where Xk
(ij) is obtained by the tensor-to-matrix conversion defined in (7.8). The scatter ma-

trix Sk = (Xk
(ij))(X

k
(ij))

T is written w.r.t. the scatter matrix of the previous cuboid at k − 1
as

Sk = Sk−1 + (xk+m−1
(ij) )(xk+m−1

(ij) )T − (xk−1
(ij) )(xk−1

(ij) )T . (7.13)

This involves both incremental and decremental learning. A new vector xk+m−1
(ij) is added

and an existing vector xk−1
(ij) is removed from the (k− 1)-th cuboid. The sufficient spanning
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set 1 of the current scatter matrix can be Υ = h([Pk−1
(ij) ,xk+m−1

(ij) ]) where h is a vector orthog-

onalization function and Pk−1
(ij) is the IJ subspace of the previous cuboid. The eigenvectors

of the current scatter matrix can be seen as the product of the sufficient spanning set by an
arbitrary rotation matrix R as Pk

(ij) = ΥR. Therefore the original eigen-problem is reduced
to the much smaller eigenproblem by

Sk = Pk
(ij)Λ

k(Pk
(ij))

T ⇒ ΥTSkΥ = RΛkR. (7.14)

The matrices Λk,R are computed as the eigenvalue and eigenvector matrix of ΥTSkΥ. The
final eigenvectors are obtained as Pk

(ij) = ΥR after removing the components in R corre-

sponding to the least eigenvalues in Λk, keeping the dimension of Pk
(ij) be Rm2×d.

Computational Cost. Similarly, the subspaces P(ik),P(jk) for the IK, JK joint-shared-
mode TCCA are computed by moving the all cuboids of the slices along the I, J axes
respectively. In this way, the total complexity of learning of the three kinds of the sub-
spaces of every cuboid is significantly reduced s.t.

O(M3 ×m3) −→ O(M2 ×m3 + M3 × d3) (7.15)

as M À m À d. O(m3), O(d3) are the complexity for solving eigen-problems in a batch (i.e.
the l.h.s. of (7.14)) and the proposed way (the r.h.s. of (7.14)). Efficient multi-scale search
may be also plausible, merging two or more subspaces of smaller cuboids in a similar way.
This issue is retained as future work.

7.6 Experimental Results

Hand-Gesture Recognition. We acquired Cambridge-Gesture data base 2 consisting of 900
image sequences of 9 hand gesture classes, which are defined by 3 primitive hand shapes
and 3 primitive motions (see Figure B.1). Each class contains 100 image sequences (5 dif-
ferent illuminations×10 arbitrary motions of 2 subjects). Each sequence was recorded in
front of a fixed camera having roughly isolated gestures in space and time. All training
was performed on the data acquired in the single plain illumination setting (the leftmost
in Figure B.1 (b)) while testing was performed on the data acquired in the remaining set-
tings. See Appendix B for more details on the data set.

All video sequences were uniformly resized into 20 × 20 × 20 in our method. The
proposed alternating solution in Section 7.3.2 was applied to obtain the TCCA features of
every pairwise training sequences. The alternating solution stably converged, as shown
in the left of Figure 7.6. Feature selection was performed for the TCCA features based on
the weights and the list of the features learnt from the AdaBoost method in Section 7.4. In
the middle of Figure 7.6, it is shown that about the first 60 features contained most of the
discriminatory information. Of the first 60 features, the number of the selected features is

1The sufficient spanning set is an economical set of bases which can span most data energy, which helps to
obtain a small eigen-problem to solve [59, 169].

2The database is publicly available at ftp://mi.eng.cam.ac.uk/pub/CamGesData. Contact e-mails:
tkk22@cam.ac.uk
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(a)

(b)

Figure 7.5: Hand-Gesture database. (a) 9 gestures generated by 3 primitive shapes and motions.
(b) 5 illumination conditions in the database.
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Figure 7.6: Feature selection. (left) Convergence graph of the alternating solution for TCCA.
(mid) The weights of TCCA features learnt by boosting. (right) The number of TCCA
features chosen for the different shared-modes.

Joint-shared-mode Single-shared-mode Dual-mode
Number of features 01 05 20 - 60 60 60

Accuracy (%) 52 72 76 - 76 52 81

Table 7.1: Accuracy comparison of the joint-shared-mode TCCA and dual-mode TCCA (using
both joint and single-shared mode).

shown for the different shared-mode TCCA in the right of Figure 7.6. The joint-shared-
mode (IJ, IK, JK) contributed more than the single-shared-mode (I, J,K) but both still
kept many features in the selected feature set. From Table 7.1, the best accuracy of the
joint-shared-mode was obtained by 20 - 60 features. This is easily reasoned when look-
ing at the weight curve of the joint-shared-mode in Figure 7.6 where the weights of more
than 20 features are non-significant. Note that the accuracy monotonically increased de-
livering the best accuracy at 60 even without feature selection. The single-shared-mode
alone gave relatively poor accuracy, which is yet significant compared with those of other
methods in Table 7.2. The dual-mode TCCA (using both joint and single-shared mode)
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Figure 7.7: Example of canonical objects. Given two different lighting sequences of the same
hand gesture class (the left two rows), the first three canonical objects of the IJ ,IK,JK
joint-shared-mode are shown on the top, middle, bottom rows respectively.

Methods set1 set2 set3 set4 total
TCCA 81 81 78 86 82±3.5

CCA [104] 63 61 65 69 65±3.2
pLSA [143] 70 57 68 71 66±6.1

MGO/RVM [202] - - - - 44
MGO/SVM [202] - - - - 30

Table 7.2: Hand-gesture recognition accuracy (%) of the four illumination sets.

with the same number of features improved the accuracy of the joint-shared mode by 5%.
NN classification was performed for a new test sequence based on the selected TCCA fea-
tures. Figure 7.7 shows the example of canonical objects computed from the two lighting
sequences of the same hand gesture class. One of each pair of canonical objects only is
shown here, as the other is almost similar.

Table 7.2 shows the recognition rates of the proposed TCCA method, the simple CCA
method [104], Niebles et al.’s method [143] (the probabilistic Latent Semantic Analysis
(pLSA) with the space-time descriptors, which exhibited the best action recognition ac-
curacy among the state-of-the-arts in [143]), Wong et al.’s method (Support Vector Ma-
chine/or Relevance Vector Machine (RVM) with the Motion Gradient Orientation image
(MGO) [202]).The original codes and the best settings of the parameters (e.g. the size para-
meters of the space-time descriptors and the size of the code book) were used in the eval-
uation for the previous works. The two methods of SVM/or RVM on the MGO images
turned out far worse. As observed in [202], using RVM improved the accuracy of SVM
by about 10%. However, both methods often failed to discriminate the gestures, which
have the same motion of the different shapes, as the methods are mainly based on motion
information of gestures. The failure of the SVM/RVM methods in this scenario might be
partly due to small sample size problem. Large difference in illumination conditions of the
train and the test sets might have led the performance degradation of the classifiers. Also,
the holistic representation of videos seemed too rigid to cope with the intra-class varia-
tions in spatial temporal alignment of the gesture sequences. The unsupervised learning
method pLSA with the space-time interest points and the simple CCA method achieved
the second-rank accuracy by more flexible representation or matching: the pLSA method
is based on part-based representation, i.e. distribution of local patterns and CCA provides
affine-invariance in matching. However, note that accuracy of the pLSA method is highly
dependent on good parameter setting (of the space-time descriptors), which is hard in
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Figure 7.8: Confusion matrix of hand gesture recognition.

practice. In the meantime, neither method takes full video information into account: pLSA
does not encode global shape information while CCA temporal information. The proposed
method, TCCA, significantly outperformed all comparative methods. The proposed ten-
sor extension of CCA improved around 17% over the simple CCA method. By matching
both spatial and temporal information with the affine-invariance, the proposed method
is far better at correct identification of the sequences of distinct shapes subject to similar
motion as well as the similar shape sequences having different motions. See Figure 7.8 for
the confusion matrix of our method.

Action Categorisation on KTH Data Set. We followed the experimental protocol of
Niebles et al.’s work [143] on the KTH action data set, which is the largest public action data
base [165]. The data set contains six types (boxing, hand clapping, hand waving, jogging,
running and walking) of human actions performed by 25 subjects in 4 scenarios. The origi-
nal input videos contain actions which are not strictly space-time aligned and are repeated
several times. Leave-one-out cross-validation was performed to test the methods, i.e. for
each run the videos of 24 subjects are exploited for training and the videos of the remain-
ing subject is for testing. Some sample videos are shown in Figure 7.9 with the indication
of the action alignment (or cropping). This space-time alignment of actions was carried
out manually for accuracy comparison but can also be automatically achieved by the pro-
posed detection scheme, as will be shown below. The defined aligned actions contain unit
motions without any repetition. Most competing methods are based on histogram repre-
sentations of the local Space-Time interest points with Support Vector Machine (ST/SVM)
(Dollar et al [32], Schuldt et al. [165]) or pLSA (Niebles et al. [143]). Ke et al. applied
the spatio-temporal volumetric features [85]. As these methods do not exploit any global
space-time shape information, they do not require alignment of actions in nature. These
methods were, therefore, applied to the original unsegmented input videos. For compari-
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Figure 7.9: Example action videos in KTH data set. The bounding boxes indicate the spatial
alignment and the superimposed images of the initial, intermediate and the last frames
of each action show the temporal segmentation of action classes.

son, we quoted the accuracy of the methods reported in [143] and further performed test-
ing of the simple CCA method, the pLSA method [143] and the proposed TCCA method
on the segmented videos. In TCCA method, the aligned video sequences were uniformly
resized to 20 × 20 × 20. See Table 7.3 for accuracy comparison of several methods and
Figure 7.10 for the confusion matrices of our TCCA method and the CCA method. The
pLSA method on the segmented videos reduced the accuracy of the pLSA on the original
input videos by about 10%, maybe due to insufficient number of interest points detected
in the segmented videos. Note the original sequences contain several repetitions of the
actions giving much more fluent local representation. The SVM applied to the same his-
togram representation as that of the pLSA [32] delivered similar accuracy to that of pLSA.
While most of the histogram-based methods delivered accuracy around 60-80%, the pro-
posed TCCA method and the CCA method achieved impressive accuracy at 95% and 89%
respectively. From the good accuracy of the CCA method, one may legitimately presume
that the six different action classes of the KTH data set are quite well discriminative in spa-
tial domain. Most of the histogram-based methods lost the important information in the
global space-time shapes of actions, resulting in ambiguity for spatial variations of the dif-
ferent action classes. As expected, the TCCA method improved the CCA method by using
joint spatial-temporal information, being better particularly in discrimination between the
jogging and running actions, which is clear in the confusion matrices in Figure 7.10.

There have been recent attempts to combine the structural information with the local
information based on the local Space-Time interest points [203, 163]. As shown in the last
row of Table 7.3, they achieved reasonable improvements over the methods based purely
on local information, but were still inferior to the method proposed.

Action Detection on KTH Data Set. Action detection was performed by a training set
consisting of sequences of five persons, not including any tested persons. Every possi-
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Methods (%) Methods (%)
TCCA 95.33 ST/SVM [32] 81.17

CCA [104] 89.50 ST/SVM [165] 71.72
pLSA [143] 81.50 Ke et al. [85] 62.96
pLSA* [143] 68.53

pLSA-ISM [203] 83.92 Savarese et al. [163] 86.83

Table 7.3: Recognition accuracy (%) on the KTH action data set. pLSA* denotes the pLSA
method applied to the segmented videos.
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Figure 7.10: Confusion matrix of CCA (left) and TCCA (right) method for the KTH data set.
The six action classes of the KTH data set are quite well discriminative in spatial
domain by CCA. TCCA improved CCA especially by better discriminating between
the jogging and running actions.

action class box hclp hwav jog run walk
dynamic subspace learning 43.01 35.42 19.27 12.60 5.16 10.70
or batch subspace learning 240.26 245.45 47.62 64.10 19.72 40.34

+ TCCA 9.96 8.43 2.26 3.09 1.14 2.21

Table 7.4: Action detection time (seconds) for the fixed scale and a single query. The detection
speed differs for the size of input volume with respect to the size of query volume.

ble volume in an input video is scanned and is matched with the training sequences by
TCCA. Figure 7.11 shows the detection results for the continuous hand clapping video,
which comprises the three correct unit clapping actions defined. The maximum canonical
correlation value is shown for every frame of the input video. All three correct hand clap-
ping actions are detected at the three highest peaks, with the three intermediate actions at
the three lower peaks. The intermediate actions which exhibited local maxima between
any two correct hand-clapping actions had different initial and end postures from those of
the correct actions.

For the fixed scale search, the detection time of the proposed method is reported in Ta-
ble 7.4 on a Pentium 4 3GHz using non-optimized Matlab code. The incremental subspace
learning much reduced the detection time of the batch computation. The detection speed
differs for the size of input volume with respect to the size of query volume. For exam-
ple, the volume sizes of the input video and the query video for the hand clapping actions
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Figure 7.11: Action detection result. (a) An example input video sequence of continuous hand-
clapping actions. (b) The detection result: all three correct hand-clapping actions are
detected at the highest three peaks, with the three intermediate actions at the three
lower peaks.
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Figure 7.12: Eigenvalue plot. Averaged eigenvalue plot of the three kinds of subspaces of
different actions.
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(pixels) box hclp hwav jog run walk
X 48±8 60±11 68±10 80±20 101±26 71±18
Y 91±10 87±10 92±12 86±12 82±13 84±13
T 32±8 22±6 19±4 11±2 9±1 15±1

Table 7.5: Average volume size of action classes. The mean and the standard deviations along
each axis are shown.

are 120 × 160 × 102 and 92 × 64 × 19 respectively. The dimension of the input video and
query video was reduced by the factors 4.6, 3.2, 1 (for the respective three dimensions). In
the reduced dimension, the size of the query video, m in (7.15) was 20. The dimension of
the subspaces, d in (7.15) were chosen as 5 to reflect most data energy from the eigenvalue
plot in Figure 7.12. If the search area M and the size of the query video m were larger, the
computational saving by the proposed method could be even greater. The speed obtained
seems to be comparable to that of the state-of-the-art [168] and fast enough to be integrated
into a real-time system if provided with a smaller search area either by system setting or by
simple video processing techniques for finding the focus of attention, e.g. by moving area
segmentation.

Figure 7.13 shows some action detection results with the scale variations, which are
obtained by the three steps in each axis. The three steps are the mean, mean plus/minus
the standard deviation of the scales of all actions as given in Table 7.5. The detection
results show the alignment of the best response region in the original input sequences.
Despite the small training samples (of the five persons as mentioned) and the coarse scale
search, the automatic alignment results were very close to the manual settings shown in
Figure 7.9. Note the temporal alignment was as reliable as the spatial localization. The
estimated initial, intermediate and last poses of actions, as shown in the superimposed
images, look similar to those of the manually defined action classes in Figure 7.9. Some
less accurate placement might be caused mostly by the rough three steps in multi-scale
search or by insufficient variation contained in the training sequences. Further studies on
efficient multi-scale search may help more accurate and yet time-efficient action detection.
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Figure 7.13: Automatic action detection result. The bounding boxes indicate the spatial align-
ment and the superimposed images of the initial, intermediate and the last frames of
each action show the temporal segmentation of action classes.
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7.7 Summary

We have proposed a novel method, Tensor Canonical Correlation Analysis (TCCA)
which extracts pairwise flexible and yet descriptive correlation features of videos in the
joint space-time domain. The proposed features combined with NN classifier significantly
improved the accuracy over state-of-the-art action recognition methods. The proposed
method is also practically appealing as it does not require any significant tuning para-
meters. Additionally, the proposed detection method for TCCA could yield time-efficient
action detection or alignment in large volume video inputs.

In spite of the efficient detection method, further speeding up the method is needed.
The computational complexity of the current detection method can still be demanding in
the scenarios which have a much larger search space and/or require multi-scale search in
real time. One may try a hierarchical approach which applies one or several simpler but
less accurate methods to filter out majority of candidates and then our method, with the
benefit of high accuracy. Efficient multi-scale search by merging the space-time subspaces
of TCCA would constitute useful future work.

For further enhancement in accuracy, more class priors may be exploited for the TCCA
method. The proposed method as a general meta-algorithm may be combined with other
methods (e.g. a task-specific representation or segmentation methods) for further improve-
ment. In the next chapter, the raw pixel representation in the TCCA method is replaced
with the Scale-Invariant-Feature-Transform (SIFT) based representation for more robust
gesture classification. In addition, the discriminative transformation will be combined
with the TCCA method.
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CHAPTER 8

Integrating Discriminant Function
and SIFT to Tensor CCA for Gesture
Recognition

In this chapter, we propose a discriminant function for Tensor Canonical Correlation Analy-
sis so that a resulting method is more discriminative for better gesture recognition. In the
previous chapter, the quality of the derived features by TCCA was demonstrated in terms
of action recognition accuracy by being combined with a simple Nearest Neighbor classi-
fier. Since TCCA comprises many sub-CCAs, the discriminant analysis method developed
for CCA in Chapter 6 can be conveniently integrated to the TCCA method. Moreover, the
proposed discriminant analysis is a general learning method so it can be be further im-
proved by a task-specific representation. This is shown by combining the Scale-Invariant-
Feature-Transform (SIFT) into the method for more robust gesture representation. The com-
bined method delivered better accuracy in the experiments using 900 videos of 9 hand
gesture classes.

8.1 TCCA with Discriminant Function

Canonical Correlation Analysis (CCA) was extended to two multidimensional data arrays
in Chapter 7. The method called Tensor Canonical Correlation Analysis has two architec-
tures: the joint-shared and single-shared-modes (See Chapter 7). The method described
here is related to the joint-shared-mode which exploits planes rather than scan vectors of

X

Y

T

Spatiotemporal Volume
XY-planes XT-planes YT-planes

Figure 8.1: Spatiotemporal Data Representation.
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two videos. The TCCA method can be re-interpreted as follows: A gesture video is repre-
sented by firstly decomposing an input video clip (i.e. a spatiotemporal volume) into three
sets of orthogonal planes, namely XY-, YT- and XT-planes, as shown in Figure 8.1. This al-
lows posture information in XY-planes and joint posture/dynamic information in YT and
XT-planes. Three kinds of subspaces are learnt from the three sets of planes (which are
converted into vectors by raster-scanning). Gesture recognition is then done by comparing
these subspaces with the corresponding subspaces from the models by classical Canonical
Correlation Analysis, which measures principal angles between subspaces (See Chapter for
the solution of CCA). By comparing subspaces of an input and a model, robust gesture
recognition can be achieved up to pattern variations on the subspaces. The similarity of
any model Dm and query spatiotemporal data Dq is defined as the weighted sum of the
normalized canonical correlations of the three subspaces by

F(Dm,Dq) = Σ3
k=1w

kN k(Pk
m,Pk

q ) (8.1)

where,
N k(Pk

m,Pk
q ) = (G(Pk

m,Pk
q )−mk)/σk, (8.2)

P1,P2,P3 denotes a matrix containing the first few eigenvectors in its columns of XY-
planes, XT-planes, YT-planes respectively and G(Pm,Pq) sum of the canonical correlations
computed from Pm,Pq. The normalization parameters with index k are mean and stan-
dard deviation of matching scores, i.e. G of all pairwise videos in a validation set for the
corresponding planes.

The discriminative spatiotemporal canonical correlation is defined by applying the dis-
criminative transformation in Chapter learnt from each of the three data domains as

H(Dm,Dq) = Σ3
k=1w

kN k(h(QkTPk
m), h(QkTPk

q )), (8.3)

where h is a vector orthonormalization function and Qk are the discriminative transfor-
mation matrix learnt over the corresponding sets of planes. The discriminative matrix is
found to maximise the canonical correlations of within-class sets and minimises the canon-
ical correlations of between-class sets by analogy to the optimization concept of Linear Dis-
criminant Analysis (LDA) (See Chapter 6 for details). On the transformed space, gesture
video classes are more discriminative in terms of canonical correlations. In this work, this
concept has been validated not only for the spatial domain (XY-subspaces) but also for the
spatiotemporal domains (XT-, YT-subspaces).

Discussion.
The proposed method is a so-called divide-and-conquer approach which partitions orig-

inal input space into the three different data domains, learning the canonical correlations
on each domain, and then aggregating them with proper weights. In this way, the original
data dimension N3, where N is the size of each axis, is reduced into 3×N2 so that the data is
conveniently modelled. As shown in Figure 8.2a-c, each data domain is well-characterised
by the corresponding low-dimensional subspace (e.g. hand shapes in XY-planes, joint spa-
tial and temporal information in YT-, and XT- planes).

The method is, moreover, robust in using mutual (or canonically correlated) compo-
nents of the pairwise subspaces. By finding the mutual components of maximum correla-
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(a) (b) (c)

(d) (e) (f)

Figure 8.2: Principal Components and Canonical Vectors. The first few principal components
of the (a) XY (b) XT (c) YT subspaces of two different illumination sequences of a
gesture class are shown at the top and bottom row respectively. The corresponding
pairwise canonical vectors are visualised in (d) - (f). Despite the different lighting con-
ditions of the two input sequences, the canonical vectors in the pair (top and bottom)
are very much alike, capturing common modes.

tions, which are canonical correlations, some undesirable information for classification can
be filtered out. See Figure 8.2 for the principal components and canonical vectors for the
given two sequences of the same gesture class which were captured under the differing
lighting conditions. Whereas the first few principal components mainly corresponded to
the different lighting conditions (in Figure 8.2a-c), the canonical vectors (in Figure 8.2d-f)
well captured the common modes of the two sequences, being visually the same in each
pair. In other words, the lighting variations across the two sets were removed in the process
of CCA, as it is invariant to any variations on the subspaces. Many previous studies have
shown that lighting variations are often confined to a low-dimensional subspace.

8.2 SIFT Descriptor for Spatiotemporal Volume Data

Edge-based description of each plane of videos can help the method achieve more robust
gesture recognition. In this section we propose a simple and effective SIFT (Scale-Invariant
Feature Transform) [130] representation for a spatiotemporal data by a fixed grid. As ex-
plained, the spatiotemporal volume is broken down into three sets of orthogonal planes
(XY-, YT- and XT-planes) in the method. Along each data domain, there is a finite number
of planes which can be regarded as images. Each of these images is further partitioned into
M × N patches in a predefined fixed grid and the SIFT descriptor is obtained from each
patch (see Figure 8.3a). For each image, the feature descriptor is obtained by concatenating
the SIFT descriptors of several patches in a predefined order. The SIFT representation of
the three sets of planes is directly integrated into the proposed method in Section 8.1 by
replacing the sets of image vectors with the sets of the SIFT descriptors prior to canoni-
cal correlation analysis. The experimental results show that the edge-based representation
generally improves the intensity-based representation in both of the joint space-time do-
main (YT-, XT-planes) and the spatial domain (XY-planes).

SIFT obtained from 3D blocks. This section presents a general 3D extension of SIFT fea-
tures. Traditional classifiers such as Support Vector Machine (SVM)/ Relevance Vector
Machine (RVM) are applied to the video data represented by the 3D SIFT so that they can
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be compared with the proposed method (with SIFT) in the same input space. Given a
spatiotemporal volume representing a gesture sequence, the volume is firstly partitioned
into M × N × T tiny blocks. Within each tiny block, further analysis is conducted along
XY-planes and YT-planes (see Figure 8.3b). For analysis on a certain plane, say XY-planes,
derivatives along X- and Y- dimensions are obtained and accumulated to form several re-
gional orientation histograms (under a 3D Gaussian weighting scheme). For each tiny
block, the resultant orientation histograms of both planes are then concatenated to form
the final SIFT descriptor of dimension 256. The descriptor for the whole spatiotemporal
volume can then be formed by concatenating the SIFT descriptors of all tiny blocks in a
predefined order. The spatiotemporal volume is eventually represented as a single long
concatenated vector.
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Figure 8.3: SIFT Representation. (a) SIFT used in [130]. (b) SIFT from 3D blocks (refer to text).

8.3 Empirical Evaluation

We have performed the new experiments on the Cambridge Hand Gesture Data Set which
was exploited in the previous chapter (See Appendix B for full details). The data set con-
sists of 900 image sequences of 9 gesture classes. Each class has 100 image sequences (5
illuminations× 10 arbitrary motions of 2 subjects). All training was performed on the data
acquired in a single illumination setting while testing was done on the data acquired in the
remaining settings. The 20 sequences in the training set were randomly partitioned into
the 10 sequences for training and the other 10 for the validation.

We compared the accuracy of 9 methods:

• Applying Support Vector Machine (SVM) or Relevance Vector Machine (RVM) on
Motion Gradient Orientation Images [202] (MGO SVM or MGO RVM),

• Applying RVM on the 3D SIFT vectors described in Section 8.2 (3DSIFT RVM),

• Using the canonical correlations (CC) (i.e. the method using G(P1
m,P1

q) in (8.1), spa-
tiotemporal canonical correlations (ST-CC), discriminative ST-CC (ST-DCC),

• Using the canonical correlations of the SIFT descriptors (SIFT CC), spatiotemporal
canonical correlations of the SIFT vectors (SIFT ST-CC), and SIFT ST-CC with the
discriminative transformations (SIFT ST-DCC).
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Figure 8.4: Recognition Accuracy. The identification rates (in percent) of all comparative meth-
ods are shown for the plain lighting set used for training and all the others for testing.

In the proposed method, the weights wk were set up proportionally to the accuracy of
the three subspaces for the validation set and Nearest Neighbor classification (NN) was
conducted with the defined similarity functions.

Figure 8.4 shows the recognition rates of the 9 methods, when the plain lighting set
(the leftmost in Figure B.3) was exploited for training and all the others for testing. The
approaches of using SVM/RVM on the motion gradient orientation images are the worst.
As observed in [202], using RVM improved the accuracy of SVM by about 10% for MGO
images. However, we got much poorer accuracy than in those in the previous study [202].
Both methods often failed to discriminate the gestures which exhibit the same motion of
the different shapes, as the methods are mainly based on motion information of gestures.
A much smaller number of sequences of a single lighting condition (10 sequences per a
single class) used in training is another reason for performance degradation. The accuracy
of the RVM on the 3D-SIFT vectors was also poor. The high dimension of the 3D-SIFT
vectors and small sample size might prevent the classifier from learning properly. We
measured the accuracy of the RVM classifier for the different numbers of blocks in the
3D-SIFT representations (2-2-1,3-3-1,4-4-1,4-4-2 for X-Y-T) and obtained the best accuracy
for the 2-2-1 case, which yields the lowest dimension of the 3D-SIFT vectors (but it is still
huge at 256x4). Canonical correlation-based methods significantly outperformed the pre-
vious approaches. The proposed spatiotemporal canonical correlation method (ST-CC)
improved the simple canonical correlation method by about 15%. The proposed discrim-
inative method (ST-DCC) unexpectedly decreased the accuracy of ST-CC, possibly due to
overfitting of discriminative methods. The train set did not reflect the lighting conditions
in the test set. Note, however, that the discriminative method improved accuracy when
it was applied to the SIFT representations rather than using intensity images (See SIFT
ST-CC and SIFT ST-DCC in Figure 8.4). The proposed three methods using the SIFT rep-
resentations are better than the respective three methods of the intensity images. The best
accuracy was achieved by the SIFT ST-DCC at 85%.

Tables 8.1 and 8.2 show more results on the proposed method, where all 5 experimen-
tal results (corresponding to each illumination set used for training) are averaged. As
shown in Table 8.1, canonical correlations of the XY subspace obtained better accuracy
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CC SIFT CC
(%) XY XT YT ST XY XT YT ST

mean 64.5 40.2 56.2 78.9 70.3 61.8 58.3 80.4
std 1.3 5.9 5.3 2.4 2.1 3.3 4.0 3.2

Table 8.1: Evaluation of the individual subspace.

2-2-1 3-3-1 4-4-1 4-4-2
(%) ST-CC ST-DCC ST-CC ST-DCC ST-CC ST-DCC ST-CC ST-DCC

mean 80.3 80.0 78.9 83.8 80.4 85.1 75.9 83.4
std 1.9 2.5 3.6 2.7 3.2 2.8 2.4 0.7

Table 8.2: Evaluation for different numbers of blocks in the SIFT representation. E.g. 2-2-1
indicates the SIFT representation where X,Y,and T axes are divided into 2,2,1 segments
respectively.

with smaller standard deviations than the other two subspaces, but all three are relatively
good compared with the traditional methods, MGO SVM/RVM and 3DSIFT RVM. Using
the SIFT representation considerably improved the accuracy of the intensity images for
each subspace, whereas the improvement for the joint representation was relatively small.
Table 8.2 shows the accuracy of ST-CC and ST-DCC for the numbers of blocks of the SIFT
representation. The best accuracy was obtained in the case of 4-4-1 for XYT (each num-
ber indicates the number of divisions along one axis). Generally, using the discriminative
transformation improved the accuracy of ST-CC for SIFT representation. Note that accu-
racy of the method is not sensitive to settings in number of the blocks, which is practically
important.

The proposed approach, based on canonical correlations, is also computationally cheap
taking computations O(3×d3), where d is the dimension of each subspace (which was 10),
and thus facilitates efficient gesture recognition in a large data set.

8.3.1 Comparison with SVM with Varying Training Data

Given the importance of Support Vector Machine (SVM) in pattern classification stud-
ies, more comparisons with SVM are shown in this section. The gesture videos are vec-
torised by concatenating all pixels in 3D volumes and are fed into SVM. The plain lighting
set (the leftmost in Figure B.3) was exploited for training and all the others for testing. The
evaluation set was exploited to set up the kernel parameters (RBF kernel) and the thresh-
olds of SVMs. Table 8.3 shows the accuracy of Nearest Neighboring classifier in the sense
of Euclidean Distance (ED) or Normalized Correlation (NC) and SVM with/without His-
togram Equalization (HE) of the input vectors. Figure 8.5 shows confusion matrices of
several methods. The ED/NC, as a similarity between two gesture videos, is far poorer
than the proposed Video-to-Video matching method. Given the limited training data, the
classical vector similarity is inappropriate for classification of the gesture videos due to
its sensitivity to the intra-class variation. The SVM trained on the same input could en-
hance the accuracy of the NN method, but is still far worse than the proposed method. As
shown in Figure 8.6, the SVM sharply dropped its accuracy with less training data while
the proposed TCCA method kept high accuracy. The experiments strongly support that
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(%) ED NC SVM
With HE 0.2278 0.2278 0.2639

Without HE 0.2944 0.2903 0.4125

Table 8.3: Recognition accuracy (%) of NN classifiers and SVM trained on raw-pixel data.
Nearest Neighboring classifier in the sense of Euclidean Distance (ED) and Normalized
Correlations (NC) and SVM with/without Histogram Equalization (HE) are evaluated on
the raw-pixel data.
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Figure 8.5: Comparison of confusion matrices. (left) NN classifier, (middle) SVM, (right) TCCA.
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Figure 8.6: Recognition accuracy (%) of SVM and TCCA for different amount of training
data. SVM sharply dropped its accuracy with less training data while the proposed
TCCA method kept high accuracy.

the proposed Video-to-Video matching is flexible enough to absorb large intra-class vari-
ation of gesture videos so that robust classification performance is achieved even under
small sample size.
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8.4 Summary

The TCCA method reduces input dimension using the three sets of orthogonal planes
and provides robust spatiotemporal volume matching by analysing mutual information
(or canonical correlations) between any two gesture sequences. The discriminant analy-
sis method has been integrated into the Tensor Canonical Correlation Analysis (TCCA)
framework for robust Video-to-Video Matching. The SIFT (Scale-Invariant Feature Trans-
form) [130] based representation combined with the method also improved accuracy. Ex-
periments for the 900 gesture sequences showed that the proposed method much enhanced
the accuracy of the TCCA method, which delivered the best accuracy of many state-of-the-
art methods in Chapter 7, and significantly outperformed the traditional classifiers such
as Support Vector Machine and Relevance Vector Machine learnt in the same input do-
main. The method is also practically attractive as it does not involve significant tuning
parameters and is computationally efficient for given aligned gesture videos.
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CHAPTER 9

On-line Learning for Locally
Orthogonal Subspace Method for
Object Recognition with Image Sets

This chapter presents an integration of several methods and ideas which we have pro-
posed through the dissertation: Orthogonal Subspace Method (OSM) as the Discriminant
Analysis method of images sets in Chapter 6 makes different class subspaces orthogonal
to each other. We have shown that the Canonical Correlation Analysis (CCA) after the
OSM gave a good object recognition solution with image sets. Typically, in the recognition
task involving image sets, efficient learning over a volume of image sets is important. In
this work, we propose incremental learning for the Orthogonal Subspace Method. Owing
to a close relation between the OSM and Linear Discriminant Analysis (LDA), the incre-
mental version of OSM is established similarly to the incremental LDA in Chapter 5. A
non-nonlinear OSM is further developed by a set of local linear models inspired by the Lo-
cally Linear Discriminant Analysis (LLDA) work in Chapter 4. In the experiments using
700 face image sets, the so called Locally Orthogonal Subspace Method outperformed the
OSM in accuracy. The Locally Orthogonal Subspace Method is also amenable to incremen-
tal updating due to its linear base structure.

9.1 Orthogonal Subspace Method

The popularity of the methods of object recognition based on image sets has been in-
creasing because of their greater accuracy and robustness as compared with the conven-
tional approaches exploiting a single image as input [167, 4, 162, 207, 199, 101]. Of those
methods that compare a set to a set, canonical correlation 1 of linear subspaces has at-
tracted much attention with its benefits of robust and computationally efficient matching
when dealing with changing conditions of data acquisition and large volumes of data as
input for decision making [207, 199, 101, 144]. In Chapter 6, the optimal linear discrimi-

1It is also called canonical angle or principal angle.
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nant function is proposed to find the components to maximise the canonical correlations
of the within-class subspaces and minimise the canonical correlations of the between-class
subspaces. However, the iterative optimization in the method is computationally costly,
making incremental update rather difficult. On the other hand, the Orthogonal Subspace
Method(OSM), which was proposed as an alternative discriminative method of image sets
in terms of canonical correlations, does not require iterations, being simpler in learning.
In many cases in the experiment of Chapter 6, this method delivered comparable accuracy
to the optimal iterative solution while greatly outperforming the simple canonical correla-
tion method. We also showed that the OSM is closely related to the existing method, Con-
strained Mutual Subspace Method (CMSM) [144, 46] adopted in a state-of-the-art commer-
cial system called FacePass [186]. Compared with the CMSM, the proposed OSM provides
a more solid theoretical framework with a smaller number of parameters to set empirically,
as discussed in Chapter 6.

The formulation of OSM is briefly given as follows (See Chapter 6 for details): Denote
the correlation matrices of the C classes by Ri, i = 1, ..., C, where Ri = 1/Mi

∑
xxT and Mi

is the number of data vectors in the i-th class. Let wi denote the respective prior probabili-
ties. Then, matrix RT =

∑C
i=1 wiRi is the correlation matrix of the mixture of all the classes.

The total correlation matrix is decomposed s.t. P T
T RT PT = ΛT . Letting Z = PT Λ−1/2

T , we
have ZT RT Z = I . Let the matrix, Ui, be constructed from eigenvectors of the i-th class
having the eigenvalues equal to unity s.t.

wiU
T
i ZT RiZUi = Ii, (9.1)

then ∑

j 6=i

wjU
T
i ZT RjZUi = O and wjU

T
i ZT RjZUi = O, for all j 6= i, (9.2)

where O is a zero matrix since every matrix wjU
T
i ZT RjZUi is positive semi-definite. As-

sume that the j-th class is also represented by the eigenvectors of wjZ
T RjZ having the

eigenvalues equal to one s.t. wjZ
T RjZ ' UjU

T
j . From (9.2), we have wjU

T
i UjU

T
j Ui = O,

i.e. UT
i Uj = O. This is the definition of the mutually orthogonal subspaces where all the

vectors of each subspace are orthogonal to those of the other subspace [145]. NN classifica-
tion is performed in the sense of the canonical correlations of the orthogonalized subspaces
Ui, Uj .

See Table 9.1 for the important notations used throughout the chapter.

9.2 Incremental Orthogonal Subspace Method

In this section, an incremental method of learning orthogonal subspaces is presented. In
practice, the eigenvectors having eigenvalues which are exactly equal to one in (9.1), do
not often exist. Instead, the eigenvectors corresponding to the largest few eigenvalues
can be exploited. Note that in the space projected by matrix Z in Section 9.1, the most
important basis vectors for each class which are the eigenvectors corresponding to the
largest eigenvalues, are at the same time the least significant basis vectors for the ensemble
of the rest of the classes. Thus the classical orthogonal subspaces (9.1) can be generalised
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Notations Descriptions

C, N number of classes, dimension of input data
Mi, MT number of data points of the i-th class and total data
Ri, RT correlation matrix of the i-th class and total data

Ui orthogonal component matrix of i-th class
Pi, Λi eigenvector and eigenvalue matrices of Ri

PT , ΛT eigenvector and eigenvalue matrices of RT

di, dT number of sufficient components of the i-th class and total data
U i

j locally orthogonal component matrix of j-th class to i-th class

Table 9.1: Notations.

into the subspaces spanned by the components Ui s.t.

wiU
T
i ZT RiZUi = ∆i,

∑

j 6=i

wjU
T
i ZT RjZUi = I −∆i, (9.3)

where ∆i is the diagonal matrix corresponding to the largest few eigenvalues. That is, the
generalised orthogonal subspace method seeks the class-specific components which max-
imise the ratio of the variances of the i-th class correlation matrix over the total correlation
matrix.

Similarly to that of the incremental LDA method we proposed in Chapter 5, an incre-
mental OSM solution is proposed by the three steps: update of the principal components
of each class correlation matrix, update of those of the total correlation matrix and the
computation of the orthogonal components only using both updated principal component
sets. The concept of the sufficient spanning set [59] is conveniently exploited in each step
to reduce the dimension of the eigenvalue problems. The proposed method provides the
same solution as the batch-mode OSM with far lower computational cost. When new data
are added to the existing data set, all existing orthogonal subspace models Ui, i = 1, ..., C
(C is the number of classes) are incrementally updated to get new orthogonal subspaces
described by U ′

i as follows. Here we assume the equal prior probabilities for all classes for
simplicity.

1) Update of principal components of class correlation matrix. Let the number of sam-
ples, eigenvector and eigenvalue matrices corresponding to the first few eigenvalues of
the i-th class correlation matrix Ri in the existing data be (Mi, Pi, Λi) respectively. The
set (Mn

i , Pn
i ,Λn

i ) similarly denotes those of the new data. The update is defined as the
functional form by

F1(Mi, Pi, Λi, M
n
i , Pn

i , Λn
i ) = (M ′

i , P
′
i ,Λ

′
i). (9.4)

Note this is applied only to the classes having the new data. As the updated class cor-
relation matrix is R′

i ' Mi
M ′

i
PiΛiP

T
i + Mn

i
M ′

i
Pn

i Λn
i Pn

i
T where M ′

i = Mi + Mn
i , the sufficient

spanning set of R′
i can be given as Υi = H([Pi, Pn

i ]), where H is an orthonormalisation
function of column vectors (e.g. QR decomposition). The function H also eliminates any
zero vectors after the orthonormalisation to further reduce the number of the sufficient
components. The updated principal components can then be written as P ′

i = ΥiQi, where
Qi is a rotation matrix. By this representation, the eigenproblem of the updated class cor-
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relation matrix is changed into a new low dimensional eigenproblem

R′
i ' P ′

iΛ
′
iP

′T
i = ΥiQiΛ′iQ

T
i ΥT

i → ΥT
i (

Mi

M ′
i

PiΛiP
T
i +

Mn
i

M ′
i

Pn
i Λn

i Pn
i

T )Υi ' QiΛ′iQ
T
i .

(9.5)
Note that the new eigenvalue problem requires only O(di

3) computations, where di is the
number of columns of Υi. The total computational cost of this stage takes O(Cn × (d3

i +
min(N, Mn

i )3)), where N is the dimension of input space and Cn is the number of classes
in the new data given. The latter term is for computing (Mn

i , Pn
i , Λn

i ) from the new data.

2) Update of principal components of total correlation matrix. The subsequent update is
described as

F2(MT , PT ,ΛT , Mn
i , Pn

i ,Λn
i ) = (M ′

T , P ′
T , Λ′T ) i = 1, ..., Cn, (9.6)

where MT =
∑C

i=1 Mi, PT , ΛT are the first few eigenvector and eigenvalue matrices of the
total correlation matrix of the existing data. Cn represents the class number of the new
data. The updated total correlation matrix is

R′
T '

MT

M ′
T

PT ΛT P T
T +

Mn
T

M ′
T

Cn∑

i=1

Pn
i Λn

i PnT
i (9.7)

where M ′
T = MT + Mn

T , Mn
T =

∑
Mn

i . The sufficient spanning set of R′
T can be given as

ΥT = H([PT , Pn
1 , ..., Pn

Cn ]) (9.8)

and P ′
T = ΥT QT ,where QT is a rotation matrix. Accordingly, the new small dimensional

eigenproblem is obtained by

R′
T ' P ′

T Λ′T P ′T
T → ΥT

T (
MT

M ′
T

PT ΛT P T
T +

Mn
T

M ′
T

Cn∑

i=1

Pn
i Λn

i PnT
i )ΥT ' QT Λ′T QT

T (9.9)

The computation requires O(d3
T ), where d3

T is the sufficient number of components of ΥT .
Note that all Pn

i have already been produced at the previous step.

3) Update of orthogonal components of all classes. The final step only exploits the up-
dated principal components of the previous steps, which is defined as

F3(P ′
i ,Λ

′
i, P ′

T , Λ′T ) = U ′
i , i = 1, ..., C. (9.10)

where U ′
i denotes the updated orthogonal components of the i-th class data. Let Z =

P ′
T Λ′T

−1/2, then, ZT R′
T Z = I . The problem remaining is to find the components which

maximise the variance of the projected data ZT R′
iZ. The sufficient spanning set of the
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projection data can be given by Φi = H(P ′
T

T P ′
i ). As a result the eigenproblem to solve is

ZT R′
iZ = ΦiQi∆iQ

T
i ΦT

i → ΦT
i ZT P ′

iΛ
′
iP

′T
i ZΦi = Qi∆iQ

T
i , (9.11)

where Qi,∆i are a rotation matrix and eigenvalue matrix respectively. The final orthogo-
nal components are given as U ′

i = ΦiQi, i = 1, ..., C. This computation only takes O(di
3),

where di is the number of columns of P ′
i . Note usually di < dT , where dT is the number of

columns of P ′
T .

Batch OSM vs. incremental OSM for time and space complexity. The batch computation
of OSM for the combined data costs O(min(N, M ′

T )3+C×min(N, M ′
i)

3), where the former
term is for the diagonalization of the total correlation matrix and the latter for the projected
data of the C classes (Refer to Section 9.1 for the batch-mode computation). The batch
computation also requires all data vectors or N × N correlation matrices to be kept track
of. By contrast, the proposed incremental solution is much more time-efficient with the
costs of O(Cn×(d3

i +min(N,Mn
i )3)), O(d3

T ) and O(C×di
3) for the three steps respectively.

Note di ¿ M ′
i , dT ¿ M ′

T , Mn
i ¿ M ′

i . The proposed incremental algorithm is also very
economical in space costs, which corresponds to the data (Pi, Λi, PT , ΛT ), i = 1, ..., C.

9.3 Locally Orthogonal Subspace Method (LOSM)

In the generalised orthogonal subspaces (9.3), the prior probabilities of classes wj can bet-
ter be set up to improve the discriminatory powers of the classes with their rival classes.
Rather than equal priors for all classes, higher priors are given to the neighboring classes
of the i-th class by

wj → wi
j

{ ∝ S(Ui, Uj) for j = 1, ..., C, j 6= i,
= 0 for j = i

where S is the canonical correlation function defined in Section 6.1. The i-th class locally or-
thogonal subspace U i

i is then similarly computed as Ui in Section 9.1 by replacing the total
correlation matrix RT with the class-specific total correlation matrix by Ri

T =
∑C

j=1 wi
jRj

and diagonalizing ZT RiZ. The weights wi
j can also be binary-valued in the same concept

s.t. wi
j = 1, if S(Uj , Ui) > thres, wi

j = 0 otherwise. In this way, the local orthogonality of
classes is more emphasised.

Normalization. When a new test set is given, the locally orthogonal components of the
new test set are class-wise extracted with Ri

T for i = 1, ..., C. If we let U i
q as the locally

orthogonal components of the new test set for the i-th model class, NN recognition is
performed with the normalized scores

(S(U i
i , U

i
q)−mi)/σi, (9.12)

where mi, σi are the mean and standard deviation of matching scores of a validation set
with the i-th model class. As each class model exploits a different total correlation matrix,
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the score normalization process is important.

Time-efficient matching. Batch computation of the C locally orthogonal subspaces of a
given new test set is time-consuming, i.e. taking O(C × min(N, Mq)3), where Mq is the
number of vectors in the new test set. This computational cost can be significantly reduced
using the update function F3(Pq, Λq, P

i
T ,Λi

T ) in Section 9.2, where Pq,Λq are the eigenvec-
tor and eigenvalue matrices of the correlation matrix of the new test set and P i

T , Λi
T for the

class specific total correlation matrix respectively. Note that this only requires O(C×d3
q), dq

is the number of columns of Pq. The subsequent canonical correlation matching with C or-
thogonal subspace models is not computationally expensive as it costs O(C × d3) (Refer to
Section 6.1), where d is the dimension of the orthogonal subspaces.

Incremental update of LOSM. The computational cost of the incremental locally OSM is
increased by that of the update of the components of the C class-specific total correlation
matrices, but it is still much cheaper than the batch OSM. Firstly, the principal components
of class correlation matrices are updated by F1 in the previous section. The update of the
principal components of the weighted total correlation matrices defined s.t.

F ′2(MT , P i
T , Λi

T , wi
j ,M

n
j , Pn

j ,Λn
j ) = (M ′

T , P i ′
T ,Λi ′

T ) i = 1, ..., C, j = 1, ..., Cn. (9.13)

is achieved as follows. The updated weighted total correlation matrix is given as

Ri ′
T =

MT

M ′
T

P i
T Λi

T P i T
T +

Mn
T

M ′
T

Cn∑

j=1

wi
jP

n
j Λn

j PnT
j . (9.14)

Regardless of the extra weight terms, the sufficient spanning set of Ri ′
T is similarly given

by Υi
T = H([P i

T , Pn
1 , ..., Pn

Cn ]). Thus the new eigen-problems and the updated components
are similarly given as the second step in Section 9.2. If we assume that the NN recognition
has already been performed for the given new test sets by the scores of S(U i

i , U
i
j), i =

1, ..., C, j = 1, ...Cn, the weights wi
j can be set up proportionally to these scores. The final

locally orthogonal components are also similarly updated by F3, replacing P ′
T ,Λ′T with

P i ′
T , Λi ′

T .

9.4 Evaluation

We used the Cambridge face video database consisting of 100 subjects. For each person, 7
video sequences of the individual in arbitrary motion were collected. Following automatic
localization using a cascaded face detector [193] and cropping to the uniform scale, images
of faces were histogram equalized. Each sequence is then represented by a set of raster-
scanned vectors of the normalized images (See Appendix A).

9.4.1 Accuracy and time complexity of the incremental OSM

The incremental OSM yielded the same solution as the batch-mode OSM for the data merg-
ing scenario, where the 100 sequences of 100 face classes of a single illumination setting
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Figure 9.1: Batch vs. Incremental OSM-1. (a) Example orthogonal components, which are
computed by the incremental and the batch-mode, are very alike. (b) Insensitiveness
of the incremental OSM to the dimensionality of the subspace of the total correlation
matrix. The incremental solution yields the same solution as the batch-mode, just
provided the enough dimensionality of the subspaces.

were initially used for learning the orthogonal subspaces. The sets of the 100 face classes
of other illumination settings were then additionally given for the update. We set the total
number of updates including the initial batch computation at 6 and the number of images
to add at each iteration around 10,000. The dimensionality of the uniformly scaled images
was 2,500 and the number of orthogonal components was around 10, which varies for more
than 99% of the energy from the eigenvalue plot. See Figure 9.1 (a) for the example orthog-
onal component computed by the proposed incremental algorithm and the batch-mode.
Figure 9.1 (b) shows the insensitivity of the incremental OSM to the dimensionality of the
subspace of the total correlation matrix. The incremental OSM yields the same accuracy as
the batch-mode OSM, provided the retained dimensionality of the subspace is sufficient.
The subspace dimensionality was automatically chosen from the eigenvalues plots of the
correlation matrices at each update. Figure 9.2 (a) shows the accuracy improvement of
the incremental OSM according to the number of updates. It efficiently updates the exist-
ing orthogonal subspace models over new evidences contained in the additional data sets,
giving gradual accuracy improvements. The computational costs of the batch OSM and
the incremental OSM are compared in Figure 9.2 (b). Whereas the computational cost of
the batch-mode is largely increased as the data is repeatedly added, the incremental OSM
keeps the cost of the update low.

9.4.2 Accuracy of Locally OSM

Another experiment was designed to compare accuracy of several methods with the locally
orthogonal subspaces. The training of all the algorithms was performed with the data ac-
quired in a single illumination setting and testing with a single other setting. An indepen-
dent illumination set with both training and test sets was exploited for the validation. We
compared the performance of Mutual Subspace Method (MSM) [207] as a gauging method,
where the dimensionality of each subspace is 10 representing more than 99% energy of
the data, CMSM [144] used in a state-of-the-art commercial system FacePass [186], where
the dimension of the constrained subspace was determined to be 360, which yielded the
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Figure 9.2: Batch vs. Incremental OSM-2. (a) Accuracy improvement of the incremental OSM for
the number of updates. (b) Computational costs of the batch and incremental OSM.
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Figure 9.3: Accuracy comparison.

best accuracy for the validation set, canonical correlations of Orthogonal Subspace Method
(OSM), and canonical correlations of the Locally Orthogonal Subspace Method (LOSM),
where the class prior probabilities were set to be binary-valued by a certain threshold.
The threshold typically returned a half of the total classes as the neighboring classes. The
component numbers of the total correlation matrix and the orthogonal subspaces of OSM
and LOSM were 200 and 10 respectively. Figure 9.3 compares the recognition accuracy of
all methods, where the experiment numbers correspond to the combinations of the train-
ing/test lighting sets, which were chosen as the most difficult scenarios for MSM. In Fig-
ure 9.3, the OSM was superior to CMSM and the proposed locally orthogonal subspace
method (LOSM) outperformed all the other methods. Theoretically, the proposed incre-
mental solution of LOSM provides the same solution of the batch computation of LOSM
with slightly greater computational cost than that of the incremental OSM.
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9.5 Summary

We have shown that the methods developed in Chapter 4 and Chapter 5 for the non-linear
and incremental discriminant analysis respectively, could help the recognition task with
image sets or videos. The non-linear and incremental version of the discriminant analy-
sis of image-sets have been similarly developed. In the object-recognition task involving
image sets, developing an efficient learning method for handling increasing volumes of
image sets is important. Image data emanating from environments dramatically changing
from time to time should be continuously accumulated. The proposed incremental solu-
tion of the Orthogonal Subspace Method and the Locally Orthogonal Subspace Method
(as a non-linear model of the OSM) facilitate a highly efficient learning to adapt to new
data sets. The same solution as the batch-computation is obtained with far lower complex-
ity in both time and space. In the recognition experiments using 700 face image sets, the
proposed Locally OSM delivered the best accuracy among competing methods.

Although we have conducted experiments only for the recognition task with image
sets, the proposed methods could be readily extended to the recognition task with videos
for action and gesture classification.
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Conclusion

10.1 Concluding Remarks

This study has proposed methods of Discriminant Analysis (DA) for three visual classifica-
tion tasks; face recognition with a single-per-class image, object recognition by image sets
(or ensembles) and action categorisation in videos. Contributions of this work include not
only obtaining algorithms which outperform those of state-of-the-art methods in each of
the three tasks, but also developing methods for the tasks in a single Discriminant Analysis
framework.

We have followed the MPEG-7 protocol [1, 134] for face image retrieval, i.e. the recog-
nition task with a single-per-class image. Two updates on our existing method which
won the MPEG-7 standard competition [99, 98, 102], have been proposed for non-linear
classification and on-line learning problems. A novel method of non-linear DA has been
proposed for tackling a challenging problem, novel-view face recognition with a single
model image, by aligned local discriminative models. It outperforms conventional Linear Dis-
criminant Analysis (LDA), the LDA mixture model, Kernel Discriminant Analysis (KDA)
and a commercial face recognition system. The method is also computationally efficient
as compared with the KDA. The proposed method for the on-line learning showed close
agreement with the batch LDA with far lower complexity in time and space for experi-
ments using thousands of face classes. Our on-line method guarantees an accurate LDA
solution provided sufficient components spanning most energy of data space.

We have demonstrated that Canonical Correlation Analysis (CCA) yields an image-
set based object recognition solution which has good generalisation over novel data. CCA
yielded much higher recognition rates than traditional probability density based set-similarity
measures, which are highly sensitive to simple transformations of input data [101, 104].
It is well known that images are well confined to lie on low-dimensional subspaces. The
CCA, a subspace-based set-similarity, effectively places a uniform prior over the subspaces
and provides invariant matching up to the pattern variations on the subspaces. We have
proposed a novel method of discriminant analysis of image sets for optimal classification
by CCA. It has been evaluated for various object recognition problems, using face im-
age sets with arbitrary motion captured under different lighting conditions, image sets of
five hundred general objects taken at different views and object category recognition us-
ing the ETH-80 database [117]. We have extended the CCA into high-order tensor data for
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analysing human actions/gestures in videos. Our Tensor CCA method absorbs large intra-
class variation of actions and facilitates robust action recognition under small sample size.
The TCCA method notably outperformed various state-of-the-art action recognition meth-
ods on the largest public action data base (KTH) as well as a self-recorded hand-gesture
data set (See Appendix).

10.2 Observations

Here, we suggest some important observations and insights obtained from the work.

Unsupervised vs. supervised learning for recognition task with a single model im-
age: The recognition task with a single-per-class image is categorised into an unsuper-
vised learning problem (in the sense that class labels are not given), as there is no intra-
class information available from given classes, each of which has just a single image. Natu-
rally, many previous studies have tackled the problem with Principal Component Analysis
(PCA), which is a representative unsupervised learning method [204, 224, 215, 195, 81, 82,
87]. This work has, on the other hand, proposed a supervised learning method (in the sense
that class labels are exploited) using an independent training set which contains proto-
type classes of multiple-per-class samples. We have shown that the Discriminant Analysis
learnt from the prototype classes works very well for novel classes having single-per-class
images, significantly surpassing the PCA-based methods. Achieving good generalisation
of discriminative information across different classes would be an interesting topic for ob-
ject recognition with limited training samples.

Robust gesture recognition under small sample size: The Support Vector Machine
(SVM) [188] has been a state-of-the-art classification method of various applications. In this
dissertation, we have compared our method with various methods based on SVM for ac-
tion and gesture recognition tasks. In particular, we have obtained a notable improvement
over SVM in the gesture recognition experiment where the gesture videos were vector-
ized by concatenating all pixels in 3D volumes and were fed into SVM (See Section 8.3.1).
The accuracy of SVM was far poorer than that of the proposed Tensor CCA method. The
SVM dropped sharply in accuracy with fewer training data, while the proposed TCCA
method retained high accuracy. The comparison supports our argument that the proposed
Video-to-Video matching absorbs large intra-class variation of gesture so that the classi-
fication method yields good generalisation for novel data for robust classification under
small sample size.

Holistic vs. part-based methods for action classification: There has been a popular
line of action-recognition methods which is based on space-time interest points and visual
code words [143, 165, 32, 113]. Although these part-based approaches have yielded good
accuracy mainly due to the high discrimination power of individual parts, they ignore
global structural information. Recently, a few methods have attempted to combine the
structural information with the local information [203, 163]. However, their performance
depends highly on proper setting of the parameters of the space-time interest points and
the code book. A holistic method has, on the other hand, been proposed in this thesis.
The Tensor CCA method directly analyses global space-time volumes without significant
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tuning parameters. Whereas conventional holistic representations are sensitive to simple
transformations of input data, the method is invariant up to affine transformation of the
input data. We have obtained a large accuracy gain over various part-based methods as
well as other holistic methods on the largest public action data set (KTH).

10.3 Limitations

A major limitation of this work is in the requirement of pattern registration in images. Ob-
jects are isolated in images and normalized in position and scale for input of the proposed
methods. Thanks to previous efforts on face detection [193], registration is quite simple
for face images, but not for general object categories. This work has assumed that general
objects are conveniently segmented from simple backgrounds, which is often too strong in
real-world applications.

The proposed action classification method also requires spatiotemporal registration of
actions/gestures. Despite the automatic action detection method for the registration, it is
computationally demanding in the scenarios that require multi-scale search and a large
search space. The method is limited to cases of stationary cameras and recognition of unit
actions to meet the difficulty of the spatiotemporal registration.

Our methods have been mostly applied to holistic raw-pixel representation of images
and videos, which can be sensitive to e.g. cluttered backgrounds, occlusion and geometric
variation of patterns. The methods proposed as a general meta-algorithm may be com-
bined with better representation for further improvement, depending on application. As
an example, we have combined the Scale Invariant Feature Transform (SIFT)-based repre-
sentation with the methods for gesture recognition.

See the summary of each chapter for further limitations and concerns.

10.4 Future Work

Interesting work directions are summarized in the following.

• Automatic registration of objects and actions. As mentioned above, the proposed
methods depend on segmented objects or actions. An efficient registration method
is required. To speed up detection, one may try a hierarchical approach which ap-
plies one or several simpler but less accurate methods to filter out the majority of
candidates and then apply our method with the benefit of high accuracy. For action
detection in videos, efficient multi-scale search by merging the space-time subspaces
of TCCA should be investigated in the future.

• An integrated system for a long-term learning. The human visual system handles
various types of visual data and learns over a long period. A machine that works
well for whatever type of inputs given, must be valuable. Inputs may vary from a
single model image to image sets and videos. Long-term learning with the different
types of visual data would be interesting. For this purpose, further speeding up and
a scalability check of the algorithms are required.

• Semi-supervised and active learning are approaches which can help to minimise
human intervention in incremental learning for model reinforcement [237]. Several
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important issues arise here: time-efficient Semi-Supervised Learning (SSL), SSL for
multiple classes, use of temporal information of video input and temporal/spatial
weighting for robust SSL.

• Co-training with multi-channel data. Videos are comprised of color and sound
channels as well as an intensity channel. Rather than exploiting only intensity in-
formation of videos, co-training with other sources, colors and sounds may help to
boost accuracy. Note the proposed tensor framework is advantageous in this aim as
it can simply add more modes (or dimensions) to the current third-order tensors.
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Cambridge-Toshiba Face Video Data
Set

For the recognition task with image sets, we have collected a database called the Cambridge-
Toshiba Face Video Database with 100 individuals of varying age and ethnicity, and equally
represented gender (See Table A.1 and Figure A.1). For each person, 14 (7 illuminations
× two recordings) video sequences of the person in arbitrary motion were collected. Each
sequence was recorded in a different illumination setting for 10s at 10fps and at 320×240
pixel resolution. See Figure A.2 for some samples of original image sequences. The motion
of the user was not controlled, leading to different motion patterns and poses. As shown
in Figure A.3, two time sets of a subject in the same lighting conditions exhibit significant
variations in pose and expression. See Figure A.4 for seven lighting prototypes. Following
automatic localization using a cascaded face detector [193] and cropping to a uniform scale
of 20×20 pixels, images of faces were histogram equalized. Note that the face localization
was performed automatically on the images of uncontrolled quality. Thus it was not as ac-
curate as any conventional face registration with either manual or automatic eye positions
performed on high-quality face images. Our experimental conditions are closer to those
given for typical surveillance systems. Figure A.5 (a) shows the preprocessing. Note the
typical outliers contained in image sets, which are caused mostly by errors in automatic
localization.

Table A.1: Database. Age distribution for database used in the experiments.
Age 18–25 26–35 36–45 46–55 65+

Percentage 29% 45% 15% 7% 4%

137



§A.0 CHAPTER A

Figure A.1: Examples of Cambridge Face Video Database. The data set contains 100 face
classes with varying age, ethnicity and gender. Each class has about 1400 images
from the 14 image sequences captured under 7 lighting settings.

(a)

(b)

Figure A.2: Raw data. Frames from two typical video sequences from the database used for
evaluation. The motion of the user was not controlled, leading to different motion
patterns and poses.

Figure A.3: Example of the two time settings (top and bottom) of a subject acquired in a
single lighting setting. They contain significant variations in pose and expression.
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Figure A.4: Illumination. 7 illumination settings in the database. Note that in spite of the same
spatial arrangement of light sources for a particular illumination setting, its effect on
the appearance of faces changes significantly due to variations in subject’s height and
their ad lib position relative to the camera.

(a)

(b)

Figure A.5: Data preprocessing. (a) Left to right – typical input frame from a video sequence
of a subject performing unconstrained head motion (320 × 240 pixels), output of the
face detector (72 × 72 pixels) and the final image after resizing to uniform scale and
histogram equalization. (b) Typical outliers – face detector false positives – present in
our data.
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Cambridge Hand Gesture Data set

For evaluating gesture classification algorithms, we acquired a set of Cambridge-Gesture
data base 1, which consists of 900 image sequences of 9 gesture classes which are defined
by 3 primitive hand shapes and 3 primitive motions (see Figure B.1). The target task for
this data set is accordingly to classify different shapes as well as different motions. Each
class contains 100 image sequences (5 different illuminations×10 arbitrary motions of 2
subjects). Each sequence was recorded in front of a fixed camera having roughly isolated
gestures in space and time. Thus fairly large intra-class variation in spatial and temporal
alignment is reflected to the data set. See Figure B.2 for typical sample sequences of the 9
classes and Figure B.3 for 5 illumination prototypes.

Protocol. All training was performed on the data acquired in the single plain illumination
setting (leftmost in Figure B.3) while testing was done on the data acquired in the remain-
ing settings. The 20 sequences in the training set were randomly partitioned into the 10
sequences for training and the other 10 for the validation.

1The database is publicly available at ftp://mi.eng.cam.ac.uk/pub/CamGesData. Contact e-mails:
tkk22@cam.ac.uk

Figure B.1: Hand-Gesture Database. 9 gesture classes are generated by 3 primitive shapes and
motions.
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class1

class2

class3

class4

class5

class6

class7

class8

class9

Flat/Leftward

Flat/Rightward

Flat/Contract

Spread/Leftward

Spread/Rightward

Spread/Contract

V-shape/Leftward

V-shape/Rightward

V-shape/Contract

Figure B.2: Sample sequences of the 9 gesture classes.

Figure B.3: 5 lighting conditions in the database.
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Equivalence of SVD solution to
Mutual Subspace Method

There are many solutions for Canonical Correlation Analysis. Here, we briefly show that
the SVD solution [11] is equivalent to the Mutual Subspace Method [207]. In Mutual Sub-
space Method (MSM), canonical correlations are defined as the eigenvalues of the matrix
P1PT

1 P2PT
2 P1PT

1 ∈ RN×N , where Pi ∈ RN×d is a basis matrix of a data set i. The SVD
solution in (6.2) for computing canonical correlations is symmetric. That is,

QT
12P

T
1 P2Q21 = Λ

QT
21P

T
2 P1Q12 = Λ

By multiplying the above two equations, we obtain

(QT
12P

T
1 P2Q21)(QT

21P
T
2 P1Q12) = Λ2

→ QT
12P

T
1 P2PT

2 P1Q12 = Λ2

→ P1PT
1 P2PT

2 P1PT
1 = P1Q12Λ2QT

12P
T
1

as Q12QT
12 = Q21QT

21 = I. P1Q12 and Λ2 are the eigenvector matrix and eigenvalue
matrix respectively of the matrix P1PT

1 P2PT
2 P1PT

1 . That is, the canonical correlations of
MSM simply assume the square value of the canonical correlations of the SVD solution.
Please note that the dimension of the matrix PT

1 P2 ∈ Rd×d is relatively low compared with
that of P1PT

1 P2PT
2 P1PT

1 ∈ RN×N .
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