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Abstract—We present a novel method of nonlinear discriminant analysis involving a set of locally linear transformations called “Locally

Linear Discriminant Analysis (LLDA).” The underlying idea is that global nonlinear data structures are locally linear and local structures

can be linearly aligned. Input vectors are projected into each local feature space by linear transformations found to yield locally linearly

transformed classes thatmaximize the between-class covariancewhileminimizing thewithin-class covariance. In face recognition, linear

discriminant analysis (LDA) has been widely adopted owing to its efficiency, but it does not capture nonlinear manifolds of faces which

exhibit pose variations. Conventional nonlinear classificationmethods based on kernels such as generalized discriminant analysis (GDA)

and support vectormachine (SVM) have been developed to overcome the shortcomings of the linearmethod, but they have the drawback

of high computational cost of classification and overfitting. Our method is for multiclass nonlinear discrimination and it is computationally

highly efficient as compared to GDA. The method does not suffer from overfitting by virtue of the linear base structure of the solution. A

novel gradient-based learning algorithm is proposed for finding the optimal set of local linear bases. The optimization does not exhibit a

local-maxima problem. The transformation functions facilitate robust face recognition in a low-dimensional subspace, under pose

variations, using a single model image. The classification results are given for both synthetic and real face data.

Index Terms—Linear discriminant analysis, generalized discriminant analysis, support vector machine, dimensionality reduction, face

recognition, feature extraction, pose invariance, subspace representation.
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1 INTRODUCTION

THE effectiveness of pattern classification methods can be
seriously compromised by various factors which often

affect sensory information about an object. Frequently,
observations from a single object class are multimodally
distributed and samples of objects from different classes in
the original data space are more closely located to each other
than to those of the same class. The data set of face images
taken from a certain number of different viewing angles is a
typical example of such problems. It is because the
appearance change of face images due to pose changes is
usually larger than that caused by different identities. The
face manifold is generally known to be continuous with
respect to continuous pose changes, as shown in [23].
Althoughwepropose amethod formultimodally distributed
face classes, the method to be developed may be useful
generally, as a continuous pose set can be divided into many
subsets of multimodal distributions.

Linear Discriminant Analysis (LDA) [8], [20], [21] is a
powerful method for face recognition yielding an effective
representation that linearly transforms theoriginaldata space
into a low-dimensional feature spacewhere thedata is aswell
separated as possible under the assumption that the data

classes are Gaussian with equal covariance structure. How-
ever, the method fails to solve nonlinear problems, as
illustrated in Fig. 1a, because LDA only considers a single
linear transformation in a global coordinate system. The
multiple linear system [7], [16], [25], which adopts several
independent local transformations, attempts to overcome the
shortcomings of LDA, but it fails to learn any global data
structure, as showninFig. 1b. In theLDAmixturemodel [7], it
is assumed that single class objects are distributed normally
with an identity covariancematrix structure. It just focuses on
maximizing the discriminability of the local structures and it
does not make any effort to achieve consistency of the local
representations for any single object class. In the upper image
of Fig. 1b, the two data setsC11 andC12 corresponding to the
differentmodalities of a class are unfortunately positioned in
different directions of the corresponding local components,
u11 and u21, therefore, having different representations in a
global coordinates as illustrated below. The view-based
method for face recognition proposed by Pentland et al. [25]
would experience the same difficulty in these circumstances.
Following their idea, we could divide images into different
pose groups and then train LDA separately for each group.
However, because these LDA bases do not encode any
relationships of thedifferent pose groups, it is not guaranteed
that this “view-based LDA” would yield a consistent
representation of different pose images of a single identity.
In many conventional face recognition systems [7], [18], [20],
[21], [25] which adopt a linear machine such as the LDA or
LDAmixturemodel, asmany gallery samples as possible are
required so as to capture all the modes of the class
distributions.

Support vector machine (SVM) based on kernels has been
successfully applied for nonlinear classification problems
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suchas facedetection [29], [30].However, this is inefficient for
multiclass recognition and inappropriate when a single
sample per class is available to build a classmodel. Although
generalized discriminant analysis (GDA) [2], [14], [22], [31] is
suitable formulticlass face recognitionproblemswhereby the
original data is mapped into a high-dimensional feature
space via a kernel function, it generally has the drawback of
high-computational cost in classification and overfitting. In
applications such as classification of large data sets on the
Internet or video, the computational complexity is particu-
larly important. The global structure of nonlinear manifolds
was represented by a locally linear structure in [5], [11]. These
methods perform unsupervised learning for locally linear
dimensionality reduction, but not a supervised learning for
discrimination.

In this paper, several locally linear transformations are
concurrently sought so that the class structures manifest by
the locally transformed data are well separated in the output
space. The proposed method is called “Locally Linear
Discriminant Analysis (LLDA).” A preliminary study of the
method was reported in [19]. The underlying idea of the
proposed approach is that global nonlinear data structures
are locally linear and local structures can be linearly aligned.
Single class objects, even if multimodally distributed, are
transformed into a cluster that is as small as possible, with a
maximum distance to the different class objects, by a set of
locally linear functions, as illustrated in Fig. 1c. If images of a
faceclass indifferentposeshavesimilar representations in the
trained global subspace, it ismuch easier to recognize a novel
view image even when a single model image is provided.

The advocated method maximizes the separability of
classes locally while promoting consistency between the
multiple local representations of single class objects. Com-
pared with the conventional nonlinear methods based on
kernels, the proposedmethod ismuchmore computationally
efficient because it only involves linear transformations. By

virtue of its linear base structure, the proposed method also
reduces overfitting normally exhibited by conventional non-
linear methods. The transformation functions learned from
the face imagesof twodifferentviewsarevisualized inFig. 2a.
The functions can be exploited as the bases of a low-
dimensional subspace for robust face recognition. The basis
functionsof each cluster are specific to aparticular facial pose.
We note two interesting points in this figure compared with
the LDA basis images, which are separately trained for
different pose groups, view-based LDA. First, the bases of
each cluster are similar to those of classical LDA and this
ensuresthat face imagesofdifferent identitiesat thesamepose
arediscriminative. Second, the corresponding components of
the twodifferent clusters, for example,uk1 andul1, are aligned
to each other. They are characterized by a certain rotation and
scaling with similar intensity variation. In consequence, face
images of the same identity at different poses have quasi-
invariant representation, as shown in Figs. 2a and 2b. For
conciseness, only four face classes areplotted in the subspaces
of Principal Component Analysis (PCA) [24], view-based
LDA, and LLDA in Fig. 2b. Each class has the four samples of
two different poses and two different time sessions.

The paper is organized as follows: The next section
briefly reviews the conventional methods for linear and
nonlinear discriminant analysis. The proposed LLDA
method is formulated in Section 3 and a solution of the
optimization problem involved is presented in Section 4.
Section 5 further simplies the proposed method by
replacing the Gaussian mixture model with the case that
combines K-means clustering. Section 6 is devoted to the
analysis of the computational complexity. Section 7.1
presents the results of experiments performed to demon-
strate the beneficial properties of the proposed method on
synthetic data. In Section 7.2, the method is applied to face
recognition problem. Conclusions are drawn in Section 8.
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Fig. 1. (a) LDA, (b) LDA mixture, and (c) LLDA for the nonlinear classification problem: Each upper image shows the simulated data distributions
and the components found. In the lower images, the transformed class distributions in the global ouput coordinate system are drawn. The
data is generated by C11 ¼ fX � Nð21:6; 2Þ; Y � Nð21:6; 1Þg, C12 ¼ fX � Nð7:5; 2Þ; Y � Nð7:5; 0:8Þg, C21 ¼ fX � Nð26; 2Þ; Y � Nð16; 2Þg, and
C22 ¼ X � Nð8; 2Þ; Y � Nð16; 1:2Þ, where Nða; bÞ is a normal variable. Two hundred data points with mean a and standard deviation b are drawn
for each mode. Cij is the jth cluster of the ith class, uij is the jth component of the ith cluster, and ui denotes the ith component of the output
coordinate system.



2 REVIEW OF CONVENTIONAL LINEAR AND

NONLINEAR DISCRIMINANT METHODS

2.1 Linear Discriminant Analysis

LDA is a class specific method in the sense that it represents

data to make it useful for classification [8]. Let X ¼
fx1;x2; . . . ;xMg be a data set of given N-dimensional vectors

of face images. Each data point belongs to one of C object

classes fX1; . . . ;Xc; . . . ;XCg. The between-class scatter

matrix and the within-class scatter matrix are defined as

B ¼
XC
c¼1

Mcðmc �mÞðmc �mÞT;

W ¼
XC
c¼1

X
x2Xc

ðx�mcÞðx�mcÞT;

where mc denotes the class mean and m is the global mean

of the entire sample. The number of vectors in class Xc is

denoted by Mc. LDA finds a matrix, U, maximizing the

ratio of the determinant of the between-class scatter matrix

to the determinant of the within-class scatter matrix as

Uopt ¼ argmax
U

UTBU
�� ��
UTWU
�� �� ¼ u1;u2; . . . ;uN½ �:

The solution fuiji ¼ 1; 2; . . . ; Ng is a set of generalized

eigenvectors of B and W, i.e., Bui ¼ �iWui. Usually,

PCA is performed first to avoid a singularity of the

within-class scatter matrix commonly encountered in face

recognition [20], [21].

2.2 Generalized Discriminant Analysis

The GDA [2] is a method designed for nonlinear

classification based on a kernel function � which trans-

forms the original space XXXX to a new high-dimensional

feature space ZZZZ : � : X ! ZX ! ZX ! ZX ! Z. The within-class (or total)

scatter and between-class scatter matrix of the nonlinearly

mapped data is

B� ¼
XC
c¼1

Mcm
�
c m�

c

� �T
; W� ¼

XC
c¼1

X
x2Xc

�ðxÞ�ðxÞT;

wherem�
c is the mean of classXc in Z andMc is the number

of samples belonging to Xc. The aim of the GDA is to find

such projection matrix U� that maximizes the ratio

U�
opt ¼ argmax

U�

ðU�ÞTB�U�
�� ��
ðU�ÞTW�U�
�� �� ¼ ½u�

1 ; . . . ;u
�
N �:

The vectors, u�, can be found as the solution of the

generalized eigenvalue problem i.e., B�u�
i ¼ �iW

�u�
i . The

training vectors are supposed to be centered (zeromean, unit

variance) in the feature space ZZZZ. From the theory of

reproducing kernels, any solution u� 2 Z must lie in the

span of all training samples in ZZZZ, i.e.,

u� ¼
XC
c¼1

XMc

i¼1
�ci�ðxciÞ;

where �ci are some real weights and xci is the ith sample of

class c. The solution is obtained by solving

� ¼ ��TKDK��

��TKK��
;

where � ¼ ð�cÞ; c ¼ 1; . . . ; C is a vector of weights with

�c ¼ ð�ciÞ; i ¼ 1; . . . ;Mc. The kernel matrix KðM �MÞ is

composed of the dot products of nonlinearly mapped

data, i.e.,

K ¼ ðKklÞk¼1...;C;l¼1;...;C;

where Kkl ¼ ðkðxki;xljÞÞi¼1;...;Mk;j¼1;...Ml
. The matrix D

ðM �MÞ is a block diagonal matrix such that

D ¼ ðDcÞc¼1;...;C ;

where the cthmatrixDc on thediagonalhasall elementsequal

to1=Mc. Solving the eigenvalueproblemyields the coefficient
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Fig. 2. Representations of LLDA. (a) A flow diagram of LLDA and view-based LDA, where uij denotes the jth component of the ith cluster. (b) Plots
of some face data in the first three dimensions of PCA, view-based LDA, and LLDA. Different classes are marked as different symbols.



vectors � that define the projection vectors u� 2 Z. A

projection of a testing vector xtest is computed as

ðu�ÞT�ðxtestÞ ¼
XC
c¼1

XMc

i¼1
�cikðxci;xtestÞ:

3 LOCALLY LINEAR DISCRIMINANT ANALYSIS

(LLDA)

The proposed method, LLDA, is applicable to multiclass
nonlinear classification problems by using a set of locally
linear transformations. Similarly to the notation adopted
in Section 2, consider a data set X ¼ x1;x2; . . . ;xMf g
of N-dimensional vectors of face images and C classes
X1; . . . ;Xc; . . . ;XCf g. The input vectors are clustered into

K subsets denoted by k; k ¼ 1; . . . ; K and each subset k
represents a cluster to which a different transformation
function is applied. A cluster is defined by K-means
clustering or Gaussian mixture modeling of the input
vectors. The number of clusters K is chosen to maximize an
objective function defined on the training set. Because K
usually is a small positive integer, we can make the best
choice ofK empirically. Assuming that the multimodality of
the face data distribution is caused by the different poses, it is
pertinent to selectK as the number of pose groups.However,
generalmodel order selection for a high-dimensional data set
remains an open problem. The basic LLDA approach draws
on the notion of “soft clustering” in which each data point
belongs to each of the clusters with a posterior probability
P ðkjxÞ. The algorithm that is combinedwith “hard”K-means
clustering will be discussed in Section 5.

We define the locally linear transformation Uk ¼
½uk1;uk2; . . . ;ukN �; k ¼ 1; . . . ; K such that

yi ¼
XK
k¼1

P ðkjxiÞUT
k ðxi � ��kÞ; ð3:1Þ

where N is the dimension of the transformed space. The
mean vector of the kth cluster ��k is described by

��k ¼
XM
i¼1

P ðkjxiÞxi

 !
=
XM
i¼1

P ðkjxiÞ
 !

: ð3:2Þ

The locally linear transformation matrices Uk are concur-
rently found so as to maximize the criterion function, J .
Two objective functions are considered,

J1 ¼ log ~BB
�� ��= ~WW

�� ��� �
and J2 ¼ ð1� �Þ ~BB

�� ��� � � ~WW
�� ��; ð3:3Þ

where ~BB and ~WW are the between-class and within-class
scatter matrices in the locally linear transformed feature
space, respectively. The constant � takes values from the
interval [0 1]. The objective functions maximize the between-
class scatter while minimizing the within-class scatter in the
locally transformed feature space. One of the differences
between the twodefined objective functions ismanifest in the
efficiency of “learning.” The log objective function J1 has the
benefit ofnot requiringa freeparameter�, but it ismore costly
computationally. The function J2 can efficiently be optimised
iteratively, once � is selected. This is exemplified in the
subsequent section. In terms of their performance, the two
approaches are similar as reported in the experimental
Section 7.1.

The global mean ~mm of all the transformed samples is

~mm ¼ 1

M

XM
i¼1

yi ¼
1

M

XM
i¼1

XK
k¼1

P ðkjxiÞUT
k ðxi � ��kÞ; ð3:4Þ

where M is the total number of the samples. By substituting

for ��k from (3.2), we get ~mm ¼~00. The sample mean for class c

which consists of Mc samples is given by

~mmc ¼
1

Mc

X
x2Xc

y ¼
XK
k¼1

UT
k mck; ð3:5Þ

where

mck ¼
1

Mc

X
x2Xc

P ðkjxÞðx� ��kÞ:

The term mck denotes the sample mean of a class c in the

kthcluster.Because the transformation isdefinedwithrespect

to theclustermean��k, themeanofall transformeddataofeach

cluster becomes zero. Using (3.4) and (3.5), the transformed

between-class scatter matrix is given as:

~BB¼
XC
c¼1

Mc ~mmc � ~mmð Þ ~mmc � ~mmð ÞT

¼
XC
c¼1

Mc

XK
k¼1

UT
k mck

 ! XK
k¼1

UT
k mck

 !T

¼
XK
k¼1

UT
k BkUkþ

XK�1
i¼1

XK
j¼iþ1

UT
i BijUjþ

XK�1
i¼1

XK
j¼iþ1

UT
i BijUj

 !T

;

ð3:6Þ
where

Bk ¼
XC
c¼1

Mcmckm
T
ck and Bij ¼

XC
c¼1

Mcmcim
T
cj:

The between-class scatter matrix consists of the scatter

matrices associated with the respective clusters and the

correlation matrix of the data samples belonging to two

different clusters. The correlation matrix encodes the rela-

tionships of the two local structures. Similarly, the within-

class scatter is defined by

~WW ¼
XC
c¼1

X
x2Xc

ðy� ~mmcÞðy� ~mmcÞT

¼
XK
k¼1

UT
k WkUk þ

XK�1
i¼1

XK
j¼iþ1

UT
i WijUj

þ
XK�1
i¼1

XK
j¼iþ1

UT
i WijUj

 !T

;

ð3:7Þ

where

Wk ¼
XC
c¼1

X
x2Xc

ðP ðkjxÞðx���kÞ�mckÞðP ðkjxÞðx� ��kÞ�mckÞT

Wij ¼
XC
c¼1

X
x2Xc

ðP ðijxÞðx���iÞ�mciÞðP ðjjxÞðx���jÞ�mcjÞT:
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MatrixWk describes a local cluster andWij is the cross-term
of two local clusters. Please note that the proposed algorithm
without the cross termsBij andWijwouldadhere to the same
concept as the LDA mixture model by focusing just on the
local separability.Moreover, the defined criterionwithK ¼ 1

is identical to that of the conventional LDA.

4 GRADIENT-BASED SOLUTION FOR LLDA

In this section, we provide an efficient iterative optimization
methodbasedonagradient learningalgorithm for anoptimal
set of locally linear transformation functions. While it is hard
to find good parameters of a kernel function for new data in
the conventional GDA, the proposed learning only has
parameters which reduce or eliminate overfitting. The
discriminant based on such a piecewise linear structure has
the benefit of optimizing a convex functionwith respect to the
set of basis vectors of the local coordinates, yielding a unique
maximum.

The method is based on a one-basis vector solution for
uk1; k ¼ 1; . . . ; K. Other methods based on incremental one-
basis at a time solution can be found in [1], [33], [34] for
discriminantor independentcomponentanalysiscriteria.The
proposedgradientmethodyields aglobalmaximumsolution
by virtue of the criterion function being second-order convex
with respect to all the variables uk1; k ¼ 1; . . . ; K. We need to
run the one-basis algorithm several times to obtain a multi-
dimensional solution Uk ¼ uk1;uk2; . . . ;ukN½ �, k ¼ 1; . . . ; K.
Thevector orthogonalization isperfomed topreventdifferent
vectors from converging to the same maxima in every
iteration.We seek the vectors uwhichmaximize the criterion
function under the constraint of being unit norm vectors:

Max J1 or J2;

for uknk k ¼ 1; k ¼ 1; . . . ; K and n ¼ 1; . . . ; N:
ð4:1Þ

This constrained optimization problem is solved by the
method of projections on the constraint set [1]. A vector
normalization imposing a unit norm is executed after every
update of the vector. The learning rules are as follows: Do the
following steps with an index n starting from 1 to N for
ukn; k ¼ 1; . . . ; K.

1. Randomly initialize K unit vectors ukn.
2. Calculate the gradient of the objective function with

respect to the variables uk by

@J1
@ukn

¼ 2~BB�1Bk � 2 ~WW�1Wk

� �
ukn

þ
XK

i¼1;i 6¼k
2~BB�1Bki � 2 ~WW�1Wki

� �
uin or

@J2
@ukn

¼ 2ð1� �ÞBk � 2�Wkð Þukn

þ
XK

i¼1;i 6¼k
2ð1� �ÞBki � 2�Wkið Þuin:

ð4:2Þ

3. Update with an appropriate stepsize � as

�ukn  �
@J

@ukn
: ð4:3Þ

4. Carry out the deflationary orthogonalization by

ukn  ukn �
Xn�1
i¼1

uT
knuki

� �
uki: ð4:4Þ

5. Normalize the vectors ukn by

ukn  ukn= uknk k: ð4:5Þ

Repeat processes 2 through 5 until the algorithm converges

to a stable point, set n :¼ nþ 1, and then go to Step 1.
Note that the two objective functions have different

learning costs. When calculating the gradients of J2 in (4.2),

all the matrices are previously given but the two matrices
~BB�1; ~WW�1, here scalar values in the one-basis solution, in the

learning of J1 should be iteratively updated. For the synthetic

data example given in Fig. 1, the optimization of J1 takes

about 15 times longer than that of J2. While the learning of J1
has a benefit of avoiding a free parameter �, J2 has a simpler

optimization costwhen the parameter� is fixed. By changing

�, one can control the importance of the variance of the

between-class to that of the within-class data distributions.

The orthogonalization (4.4) ensures that the proposed

discriminant is defined by orthonormal basis vectors in each

local coordinate system. The orthonormalization of the bases

yieldsmore robust performance in the presence of estimation

error (please refer to [33], [34] for the details). The benefits of

orthonormal bases in discriminant analysis over the classical

LDA have also been explained in these studies. Although we

do not provide a proof of convergence or uniqueness of the

gradient-based iterative learning method, its convergence to

a global maximum can be expected by virtue of the criterion

being a second-order convex function with respect to a basis

vector,ukn, of each local coordinate system, and the joint set of

the basis vectors ukn; k ¼ 1; . . . ; K, as explained in [3], [17].

Fig. 3 shows the convergence characteristics of the learning

process for the synthetic datapresented inFig. 1. The constant

�was explored in steps of 0.1 and 0.1 was found tomaximize

the value of J2. The value ofJ2 according to the angles of basis

vectors has a unique globalmaximum. It is also noted that the

gradient optimization method of the objective function

quickly converges regardless of constant �. The learning

using the objective function J1 also stably approaches a

unique maximum.
A solution to the constrained optimization problem can

also be obtained by using the method of Lagrangian multi-

pliers as

L ¼ ð1� �Þ ~BB
�� ��� � ~WW

�� ���XK
k¼1

�kðUT
k Uk � IÞ; ð4:6Þ

where I is the identity matrix and the diagonal matrix of

eigen values is

�k ¼
�k1

O
. .
. O

�kN

� �
:

The gradient of the Lagrangian function with respect to the

basis vectors is
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@L

@ukn
¼ 2ð1� �ÞBk � 2�Wk � 2�knIð Þukn

þ
XK

i¼1;i 6¼k
2ð1� �ÞBki � 2�Wkið Þuin ¼ 0:

ð4:7Þ

The solution can be found by numerical optimization of the
Lagrangian function. However, in practice, a numerical
optimization can only be used in low-dimensional data
spaces. As a reference, we utilized the numerical optimiza-
tion “solve” function in Matlab to solve the two-dimen-

sional problem shown in Fig. 1. The constraint optimization
took 600 times longer than the gradient-based optimization
of J2. The two proposed methods of gradient-based
learning are much favored for their efficiency.

5 LLDA WITH K-MEANS CLUSTERING

Let us revisit the basic model derived in Section 3 by
considering the special case involving a discrete posterior
probability. K-means clustering divides a data set into
disjoint subsets. If the data point x belongs to the k�th

cluster, P ðk � jxÞ ¼ 1 and P ðkjxÞ ¼ 0 for all the other ks. The
mean vector of the kth cluster ��k in (3.2) can be rewritten by

��k ¼
X
x

P ðkjxÞx
 !

=
X
x

P ðkjxÞ
 !

¼
X
x2k

x

 !
=M 0

k; ð5:1Þ

where M 0
k is the sample number of the cluster k. The

defined transformation in (3.1) becomes

y ¼ UT
k ðx� ��kÞ for x 2 k: ð5:2Þ

The definition of the global mean (3.4) and the class mean
(3.5) changes as follows:

~mm ¼ 1

M

XK
k¼1

UT
k

X
x2k
ðx� ��kÞ ¼~00: ð5:3Þ

~mmc ¼
XK
k¼1

UT
k mck;where mck ¼

1

Mc

X
x2Xc\k

ðx� ��kÞ:

The transformed between-class matrix (3.6) and the within-
class scatter matrix (3.7) can similarly be expressed by
changing the notation from P ðkjxÞ to x 2 k. The learning
algorithm in Section 4 finds the optimal set of locally linear
transformation Uk; k ¼ 1; ::; K.

When a new pattern xtest is presented, it is first assigned
to one of the clusters by

xtest 2 k� ¼ min
arg k

xtest � ��kk k ð5:4Þ

and transformed by using the corresponding function.

ytest ¼ UT
k�ðxtest � ��k�Þ: ð5:5Þ

6 COMPUTATIONAL COMPLEXITY

The complexity of the algorithms depends on the computa-
tional costs associated with extracting the features and with
matching. For the linear subspace methods such as PCA and
LDA, the cost of feature extraction is determined by the
dimensionality N of the input vector, x, and the number of
components of the subspace S. The cost of extracting features
using linearmethods is approximatelyproportional toN � S.
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Fig. 3. An example of learning for the data distribution shown in Fig. 1, where K is set to 2 and step size � is fixed to 0.1. (a) Value of the criterion J2
(left) as a function of orientation of u11;u21 with � ¼ 0:1. The distributions of the two classes C1 ¼ C11UC12, C2 ¼ C21UC22, which are in the space

defined by the first major component u1,are drawn (right) as a series while J2 is maximized. (b) Convergence graphs of J2 with � ¼ 0:1; 0:5, and J1.



In nonlinear subspace methods like the GDA, the nth

component of the projection of vector x is computed as

yn ¼
XM
i¼1

�nikðxi;xÞ; ð6:1Þ

whereM is the total number of training patterns, �ni is a real

weight, and k denotes a kernel function. The cost of

extracting features of the GDA is about N � S �M. The

proposedmethod, LLDA, has a similar cost as that of PCA or

LDA, depending on the preceding clustering algorithm.

When a hard clustering such as K-means is applied, the cost

of extracting features is N � ðS þKÞ, where the additional

term N �K is for assigning a cluster to the input. When a

soft clustering is applied, the cost is multipled by the number

of clusters, i.e., N � S �K. Note that, usually, K << M.
When the data points are represented as the

S-dimensional feature vectors and C gallery samples

are given for the C class categories, the matching cost

for recognition is C � S. This applies to all, the linear,

nonlinear, and the proposed subspace methods.

7 EXPERIMENTS

7.1 Results on Synthetic Data

Two sets of two-dimensional synthetic data were experi-

mented with. Set 1 has three classes which have two distinct

modes in their distributions generated, respectively, by

X1 ¼ fX � Nð7; 0:9Þ; Y � Nð4:1; 0:8ÞgUfX � Nð�8:4; 0:9Þ;
Y � Nð�3; 0:7Þg;

X2 ¼ fX � Nð5; 0:9Þ; Y � Nð0:1; 1ÞgUfX � Nð�4; 0:9Þ;
Y � Nð0:1; 0:6Þg;

X3 ¼ fX � Nð2:9; 0:9Þ; Y � Nð2:9; 0:5ÞgUfX �Nð�4:2; 0:9Þ;
Y � Nð�4:2; 0:4Þg;

where Nða; bÞ is a normal variable which has a mean a and

standard deviation b. Two hundred data points were drawn

from each Gaussian mode. Set 2 has two classes which have
three distinct peaks in the distributions generated by

X1 ¼ fX � Nð4:4; 1Þ; Y � Nð5:4; 0:5ÞgUfX � Nð�4:7; 1Þ;
Y � Nð�3:9; 0:2ÞgUfX � Nð4:4; 1Þ; Y � Nð�7:8; 0:8Þg

and

X2 ¼ fX � Nð7:6; 1Þ; Y � Nð2:1; 0:9ÞgUfX � Nð�5; 1Þ;
Y � Nð�0:9; 0:6ÞgUfX � Nð1:6; 1Þ; Y � Nð�9:9; 0:7Þg:

Conventional LDA, mixture of LDA, and GDA with the
radial basis function (RBF) as a kernel are compared with
LLDA in terms of classification error. Euclidean distance
(E.D.), normalized correlation (N.C.), and Mahalanobis
distance (M.D.) were utilized as similarity functions for
the nearest neighbor (N.N.) classification. It is noted that all
the transformed data points were compared with the
sample mean of each class (3.5).

In the method of LLDA, the number of clusters, K, was
selected to maximize the value of the objective function. For
the example of the data of Set 1, the peak values of J1 changed
with K as follows: -7.14, 2.97, 0.85 for K ¼ 1; 2; 3, respec-
tively, so the number K ¼ 2 was chosen. This is much
simpler than the parameter selection of RBF as a kernel
function in GDA because the standard deviation of RBF is
hard to initialize and it is a real (noninteger) value. The axes
of LDA, LDA mixture, LLDA are drawn in Fig. 4. Table 1
shows the average number of classification errors with their
standard deviation and the relative costs of feature extrac-
tion. It is apparent that the proposed discriminant can well
solve the nonlinear classification problem on which the
conventional linear methods fail and it is much more
profitable in terms of computational efficiency as compared
to GDA. The feature extraction complexity of the proposed
method is about 1/270 of that of GDA in this example.
Although the accuracy of GDAwas slightly better, it is noted
that the kernel parameter of RBF in GDA was exhaustively
searched to find the best performance for the given data. In
contrast, the proposed algorithm based on the log objective
function has only a small integer K to be adjusted and the
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Fig. 4. Simulated data distributions and the components found. Black
solid lines represent the first major components and gray dashed lines
the second components. (a) For Set 1. (b) For Set 2.

TABLE 1
Classification Results (Number of Errors)

!!!! indicates the computational cost of deciding which cluster a new
pattern belongs to. It is usually less than 1. “LLDA J1 þ km” is the LLDA
of the objective function J1 with K-means clustering algorithm. “LLDA
J1 þGMM” indicates the LLDA of the objective function J1 with
Gaussian mixture modeling. “Lagrangian J2” denotes a numerical
solution of the Lagrangian formulation.



learning process is also much faster. Additionally, note that,
when the class distributions have a single mode, LLDA with
K ¼ 1 yields a successful separation by behaving like the
conventional LDA. LLDA with K ¼ 1 is identical to the
conventional LDA with the exception of the orthonormal
constraint imposed on the axes by LLDA.

7.2 View-Invariant Face Recognition with
One Sample Image

The proposed algorithm has been validated on the problem
of free pose face recognition in the scenario when only a
single frontal image of each class is available as a gallery
image. To recognize a novel view face, some prior
experiences of face view changes are required. Conven-
tional discriminative subspace methods such as LDA and
GDA can be applied to learn a robust representation from
any prototype face set which exhibits different poses. GDA
has a benefit of capturing any nonlinear manifolds of face
pose changes. Then, the learned subspace representation
can be applied to new test identities. In contrast, SVM,
which performs binary classification and requires a
considerable number of training samples for each class, is
completely inappropriate for this scenario.

There are a number of conventional techniques that have
been developed for view-invariant face recognition [4], [6],
[10], [12], [13], [15], [25], [26], [28]. In spite of the successes of
some approaches [6], [10], [12], [13], [26], they have an
important drawback of requiring dense correspondences of
facial features for image normalization or more than one
model image. The step of correspondence solving or
detection of abundant salient facial features, which is needed
for separating the shape and texture components of face
images in these methods, is usually difficult itself. Errors in
correspondences seriously degrade the performance of the
subsequent recognition methods, as shown in [12]. In our
experiments, the proposed algorithm, LLDA, is compared
with PCA, LDA, and GDA as the benchmark subspace
methods that have been successfully applied to face recogni-
tion in the past and FaceIt (v.5.0), the commercial face
recognition system from Identix. FaceIt ranked top overall in
the Face Recognition Vendor Test 2000 and 2002 [27], [32].

Database. We used the XM2VTS data set annotated with
pose labels of the face. The face database consists of
2,950 facial images of 295 people with five pose variations
and two different time sessions which have five months time
elapse. The data set consists of five different pose groups
(F,R,L,U,D) which are captured at frontal view, about
�30 horizontal rotations and �20 vertical rotations. The two
images of a pose group “F” captured at different times are
denoted by F1 andF2. Thismaybe the largest public database
that contains imagesof faces taken fromdifferentviewpoints.
The images were normalized to 46*56 pixel resolution with a
fixed eye position and some normalized data samples are
shown in Fig. 5. The face set is partitioned into the three
subsets: 1,250 images of 125 people, 450 images of 45 people,
and 1,250 face images of 125 people for the training (Tr),
evaluation (Ev), and test (Te), respectively. Please note that
the three sets have different face identities. For the test of the
commercial FaceIt system, the original images were applied
to the system with the manual eye positions.

Protocol and Setting. The training set is utilized to learn
the subspace representation of the conventional PCA/LDA/
GDA methods and LLDA with K-means. For efficiency of
learning, all of the algorithms were applied to the first
80 eigenfeatures of the face images. Fig. 6 shows the plots of
eigenvalues and J1 of LLDA as a function of dimensionality.
The evaluation set is utilized to adjust the kernel parameter of
GDA (an RBF kernel with an adjustable width) and the
dimensionality of the output vectors for all the methods. The
parameters are properly quantized and all combinations of
the discrete values of the quantized parameters are examined
to get the best recognition rate on the evaluation set. In LLDA,
the number of clusters corresponded to the number of the
pose groups and K-means algorithm was applied. The log
objective function J1 was utilized to learn the set of
transformation functions and the learning ratewas controlled
to have faster convergence. Typically, the learning took 2 or
3 minutes in Pentium IV 2GHz PC.

In the test, the frontal face images of the test set, which
are the leftmost images in Fig. 5, are registered as a gallery
and all the other images of the test set are exploited as
queries. All the test images are projected into the learned
subspace and Nearest-Neighbor-based classification is
performed based on the projection coefficients. Recognition
rates in (percent) are measured. In LLDA, test face images
were assigned to one of the clusters by (5.4) and projected
into the corresponding subspace by (5.5).

Results. Table 2 presents the recognition rates on the
evaluation and test set and Fig. 7 shows the performance
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Fig. 5. Some normalized data samples. The leftmost image is the gallery

image.

Fig. 6. (a) Eigenvalues of the face data. (b) Plot of J1 as a function of
dimensionality.

TABLE 2
Face Recognition Rates (%)



curves of the test set as a function of dimensionality. The
recognition rate of the evaluation and test set was much
enhanced by the proposed algorithm. FaceIt exhibited the
best recognition performance for the frontal images F2, but
quite low recognition rates for the rotated faces especially
involving up/down rotations. More results showing the
effects of the elapsed time and the size of test population are
given in Fig. 8.

InLLDA, thenumber of clusterswas chosen as thenumber
of the pose groups, as previously mentioned, by assuming
that themultimodality of the face class distributions is caused
by the different poses. In each cluster, classes are assumed to
be linearly separable. Although this assumption is not
necessarily true, as other factors such as time elapse can
make a class distributed multimodally and not linearly
separable, we found that LLDA performed much better as
compared with LDA/GDA/FaceIt. A performance degrada-
tion as a function of time was observed for all the methods,
but a relative performance gain exhibited by LLDA was still
preserved, as shown inFig. 8.Asmentionedabove, the results
of the test set were obtained by utilizing the output
dimensionality found to be the best for the evaluation set.
The establishment of a proper evaluation set is important
because the test results are sensitive to the output dimension-
ality, as shown in Fig. 7. This may be because the pose
variation is so large that the methods find only a few
meaningful axes. We can see that the evaluation set used
has proven adequate for solving this peaking problem as the
recognition results on the test set using the best dimension-
ality indicated by the evaluation set in Table 2 agreedwith the
best results of the graph in Fig. 7. GDA had the tendency to
highly overfit on the training set so that a separate evaluation
set was needed to suppress this behavior.

Regarding the complexity of the feature extraction, PCA,
LDA, and the LLDA are approximately identical and GDA
about 40 times worse than the linear methods. Please note
that the complexity of GDA depends on the size of the
training set. The proposed method is not expensive in terms
of computational costs and provides more robust and
accurate performance for all the dimensionalities as
compared with the other methods.

8 CONCLUSION

A novel discriminant analysis method which can classify a
nonlinear structure has been proposed for face recognition. A
face data set that exhibits large pose variations has nonlinear
manifolds and is not linearly separable. A set of local linear
transformations is found so that the locally linearly trans-
formed classes maximize the between-class covariance and
minimize thewithin-class covariance in a single global space.
The proposed learning method for finding the optimal set of
locally linear bases does not suffer from the local-maxima
problem and stably converges to a global maximum point.
The proposed discriminant provides a set of discriminant
features for the view-invariant face recognition with a given
single model image and it is highly efficient computationally
as compared with the nonlinear discriminant analysis based
on the kernel approach. By virtue of the linear base structure
of the solution, the method reduces overfitting. We intend to
improve the performance of the proposed approach by
exploiting more facial feature correspondences for an image
regularization step in the future. The current performance
was obtained with the images registered with a fixed eye
position and this can be seen as a poor basis of the image
normalization for the method. More elaborate regularization
is expected topromote face class structures arewell separated
by a set of local linear transformations, similar to having the
results of [4].
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Fig. 7. The test performance curves as a function of dimensionality.

Fig. 8. Recognition rates under aging for different sizes of test population.
(a) Recognition rates on the test set consisting of 125 identities.
(b) Recognition rates on the test set consisting of randomly chosen
50 identities.



REFERENCES

[1] A. Hyvarinen, J. Karhunen, and E. Oja, Independent Component
Analysis. John Wiley & Sons, 2001.

[2] G. Baudat and F. Anouar, “Generalized Discriminant Analysis
Using a Kernel Approach,” Neural Computation, vol. 12, pp. 2385-
2404, 2000.

[3] D.D. Lee and H. Sebastian Seung, “Algorithms for Non-Negative
Matrix Factorization,” Advances in Neural Information Processing
Systems, vol. 13, pp. 556-562, 2001.

[4] R. Gross, I. Matthews, and S. Baker, “Appearance-Based Face
Recognition and Light-Fields,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 26, no. 4, pp. 449-465, Apr. 2004.

[5] S.T. Roweis and L.K. Saul, “Nonlinear Dimensionality Reduction
by Locally Linear Embedding,” Science, vol. 290, pp. 2323-2326,
2000.

[6] T. Vetter and T. Poggio, “Linear Object Classes and Image
Synthesis From a Single Example Image,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 19, no. 7, pp. 733-742, July
1997.

[7] H.-C. Kim, D. Kim, and S.-Y. Bang, “Face Recognition Using LDA
MixtureModel,” Proc. Int’l Conf. Pattern Recognition, vol. 2, pp. 486-
489, 2002.

[8] K. Fukunaga, Introduction to Statistical Pattern Recognition, second
ed. Academic Press, 1990.

[9] A.S. Georghiades, P.N. Belhumeur, and D.J. Kriegman, “From
Few to Many: Illumination Cone Models for Face Recognition
under Varialbe Lighting and Pose,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 23, no. 6, pp. 643-660, June 2001.

[10] K. Okada and C. von der Malsburg, “Analysis and Synthesis of
Human Faces with Pose Variations by a Parametric Piecewise
Linear Subspace Method,” Proc. Computer Vision and Pattern
Recognition, pp. 761-768, 2001.

[11] X. He, S. Yan, Y. Hu, and H. Zhang, “Learning a Locality
Preserving Subspace for Visual Recognition,” Proc. Int’l Conf.
Computer Vision, pp. 385-392, 2003.

[12] V. Blanz, S. Romdhani, and T. Vetter, “Face Identification Across
Different Poses and Illuminations with a 3D Morphable Model,”
Proc. IEEE Int’l Conf. Automatic Face and Gesture Recognition,
pp. 192-197, May 2002.

[13] Y. Li, S. Gong, and H. Liddell, “Constructing Facial Identity
Surfaces in a Nonlinear Discriminating Space,” Proc. Computer
Vision and Pattern Recognition, vol. 2, pp. 258-263, 2001.

[14] Q. Liu, R. Huang, H. Lu, and S. Ma, “Face Recognition Using
Kernel-Based Fisher Discriminant Analysis,” Proc. IEEE Int’l Conf.
Automatic Face and Gesture Recognition, pp. 205-211, 2002.

[15] D.B. Graham and N.M. Allinson, “Automatic Face Representation
and Classification,” Proc. British Machine Vision Conf., pp. 64-73,
1998.

[16] M.E. Tipping and C.M. Bishop, “Mixtures of Probabilistic
Principal Component Analyzers,” Neural Computation, vol. 11,
pp. 443-482, 1999.

[17] D.D. Lee and H.S. Seung, “Learning the Parts of Objects by Non-
Negative Matrix Factorization,” Nature, vol. 401, pp. 788-791, 1999.

[18] T.-K. Kim, H. Kim, W. Hwang, S.C. Kee, and J.H. Lee,
“Component-Based LDA Face Descriptor for Image Retrieval,”
Proc. British Machine Vision Conf, pp. 507-526, 2002.

[19] T.-K. Kim, J. Kittler, H.-C. Kim, and S.-C. Kee, “Discriminant
Analysis by Multiple Locally Linear Transformations,” Proc.
British Machine Vision Conf., pp. 123-132, 2003.

[20] P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman, “Eigenfaces
vs. Fisherfaces: Recognition Using Class Specific Linear Projec-
tion,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19,
no. 7, pp. 711-720, July 1997.

[21] W. Zhao, R. Chellappa, and N. Nandhakumar, “Empirical
Performance Analysis of Linear Discriminant Classifiers,” Proc.
Computer Vision and Pattern Recognition, pp. 164-169, June 1998.

[22] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.-R. Muller,
“Fisher Discriminant Analysis with Kernels,” Proc. IEEE Workshop
Neural Networks for Signal Processing, pp. 41-48, 1999.

[23] S. Gong, S. McKenna, and J. Collins, “An Investigation into Face
Pose Distributions,” Proc. IEEE Int’l Conf. Automatic Face and
Gesture Recognition, pp. 265-270, Oct. 1996.

[24] M. Turk and A. Pentland, “Eigenfaces for Recognition,” J. Cognitive
Neuroscience, vol. 3, no. 1, pp. 71-86, 1991.

[25] A. Pentland, B. Moghaddam, and T. Starner, “View-Based and
Modular Eigenspaces for Face Recognition,” Proc. Computer Vision
and Pattern Recognition, pp. 84-91, 1994.

[26] B. Heisele, P. Ho, and T. Poggio, “Face Recognition with Support
Vector Machines: Global versus Component-Based Approach,”
Proc. Int’l Conf. Computer Vision, vol. 2, pp. 688-694, 2001.

[27] P.J. Phillips, P. Grother, R.J Micheals, D.M. Blackburn, E. Tabassi,
and J.M. Bone, “FRVT 2002: Evaluation Report,” Mar. 2003,
http://www.frvt.org/FRVT2002/.

[28] T.-K. Kim, H. Kim, W. Hwang, S.-C. Kee, and J. Kittler,
“Independent Component Analysis in a Facial Local Residue
Space,” Proc. Computer Vision and Pattern Recognition, vol. 1,
pp. 579-586, 2003.

[29] V. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.

[30] E. Osuna, R. Freund, and F. Girosi, “Training Support Vector
Machines: An Application to Face Detection,” Proc. Computer
Vision and Pattern Recognition, pp. 130-136, June 1997.

[31] M.-H. Yang, “Kernel Eigenfaces vs. Kernel Fisherfaces: Face
Recognition Using Kernel Methods,” Proc. IEEE Int’l Conf.
Automatic Face and Gesture Recognition, pp. 215-220, 2002.

[32] D.M. Blackburn, M. Bone, and P.J. Phillips, “Facial Recognition
Vendor Test 2000: Evaluation Report,” 2000.

[33] T. Okada and S. Tomita, “An Optimal Orthonormal System for
Discriminant Analysis,” J. Pattern Recognition, vol. 18, pp. 139-144,
1985.

[34] W. Zhao, “Discriminant Component Analysis for Face Recogni-
tion,” Proc. Int’l Conf. Pattern Recognition, vol. 2, pp. 818-821, 2000.

Tae-Kyun Kim received the BSc and MSc
degrees from the Department of Electrical
Engineering and Computer Science at the Korea
Advanced Institute of Science and Technology
(KAIST) in 1998 and 2000, respectively. He has
worked as a research staff member at Samsung
Advanced Institute of Technology, Korea, since
2000. This is also his period of obligatory military
service. In January 2005, he will begin working
on the PhD degree at the University of Cam-

bridge. His research interests include computer vision, statistical pattern
classification, and machine learning. He reviews for the IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (TPAMI) and is the
Korea delegate of MPEG-7. The joint proposal of face descriptor of
Samsung and NEC, for which he developed the main algorithms, was
accepted as the international standard of ISO/IEC JTC1/SC29/WG11.
He is a member of the IEEE.

Josef Kittler is a professor of machine intelli-
gence and director of the Centre for Vision,
Speech, and Signal Processing at the University
of Surrey. He has worked on various theoretical
aspects of pattern recognition and image analy-
sis and on many applications, including personal
identity authentication, automatic inspection,
target detection, detection of microcalcifications
in digital mammograms, video coding and
retrieval, remote sensing, robot vision, speech

recognition, and document processing. He coauthored the book Pattern
Recognition: A Statistical Approach (Prentice Hall) and has published
more than 500 papers. He is a member of the editorial boards of Image
and Vision Computing, Pattern Recognition Letters, Pattern Recognition
and Artificial Intelligence, Pattern Analysis and Applications, and
Machine Vision and Applications. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KIM AND KITTLER: LOCALLY LINEAR DISCRIMINANT ANALYSIS FOR MULTIMODALLY DISTRIBUTED CLASSES FOR FACE RECOGNITION... 327


