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a b s t r a c t

Videos tend to yield a more complete description of their content than individual images. And egocentric
vision often provides a more controllable and practical perspective for capturing useful information. In
this study, we presented new insights into different object recognition methods for video-based rigid
object instance recognition. In order to better exploit egocentric videos as training and query sources,
diverse state-of-the-art techniques were categorised, extended and evaluated empirically using a newly
collected video dataset, which consists of complex sculptures in clutter scenes. In particular, we
investigated how to utilise the geometric and temporal cues provided by egocentric video sequences
to improve the performance of object recognition. Based on the experimental results, we analysed the
pros and cons of these methods and reached the following conclusions. For geometric cues, the 3D object
structure learnt from a training video dataset improves the average video classification performance
dramatically. By contrast, for temporal cues, tracking visual fixation among video sequences has little
impact on the accuracy, but significantly reduces the memory consumption by obtaining a better signal-
to-noise ratio for the feature points detected in the query frames. Furthermore, we proposed a method
that integrated these two important cues to exploit the advantages of both.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Video-based object recognition (VbOR) methods have emerged
during the last decade, but attracted less attention than image-
based methods. Its motivation, however, has been further estab-
lished by a recent research [1], by revealing that how human brain
can effortlessly interpret a multitude of objects with different
identity-preserving transformations. After exposing a monkey's
visual system to an artificial visual world without temporal
contiguity, neuroscientists observed that inferior temporal cortex
neurons began to lose their capacity for being transformation
invariant. This strongly encourages the exploitation of temporal
information in object recognition tasks. For instance, some recent
studies attempted this by using learned trajectory descriptors [2,3]
or viewpoint invariant features [4,5] during visual fixation in video
clips from different aspects.

On the other hand, the exploitation of spatial cues, either in 2D
image layouts [6] or 3D object structures [7], is a flourishing
branch of object recognition. The viewpoint-invariant theorem [8]

states that the essential component of object recognition, regard-
less of viewing conditions, is structural information. Encoding
object structural information requires only a small amount of
memory, yet it is capable of producing a multitude of object
representations via their interrelations and mental rotations. In
the field of computer vision, stereo vision is often utilised to obtain
precise depth perception, and hence 3D structure. On top of that,
some recent studies have obtained impressive performance by
using multi-view images to reconstruct 3D information to support
object recognition [9], semantic segmentation [10] and pose
estimation tasks [11,7]. Recently, due to the growing use of
wearable vision devices, e.g., Google Glass, research into egocentric
videos has attracted more and more attention. As one of the useful
source of spatial information, egocentric vision has the advantages
of being controllable during capturing informative viewpoints and
being more practical than turntable settings.

In this comparative study, our goal is to explore the potential
usage of egocentric videos for training and as query sources for the
recognition of rigid 3D objects in realistic scenes. In particular, we
aim to exploit the temporal and spatial cues provided by ego-
centric videos and to answer the following questions. Are they
helpful? If so, are they helpful in terms of accuracy or efficiency?
Can they be combined? It is worth noting that there have been
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recent advances in object category recognition [12–14], but only a
small number of studies have investigated the problems of
instance object recognition [15], particularly in egocentric videos
[16,17]. Therefore we highlight our contributions as below:

� We captured a Sculptures in Victoria and Albert (V&A) Museum
dataset from an egocentric viewpoint.� We categorised and compared diverse state-of-the-art object
recognition frameworks and their video-based extensions.

� We proposed a hybrid solution that combines the advantages of
both temporal and spatial cues.

2. Methods

Given exemplar videos of target objects, the purpose of VbOR is
to identify them in query videos. Due to the egocentric setting in
our study, each video captured multiple views of only one target
object that appeared roughly in the centre. Therefore, the whole
video was assigned and recognised with one label. In this
comparative study, we focused on the methods represented by
the taxonomy shown in Fig. 1. In terms of utilising spatial
information, these methods can be categorised mainly into 2D
and 3D approaches. Among the 2D approaches, there are three
different ways to represent videos: image-based, set-based and
video-based. In image-based methods, each video is treated as
independent images, where a straightforward combination of
individual results is applied to obtain the final output of the video.
In set-based methods, each video is treated as a set of unordered
images with underlying mathematical structure, such as a mani-
fold. In video-based approaches, each video is represented as a set
of ordered images, i.e., with temporal information. By contrast, 3D-
based VbOR utilises reconstructed 3D information from multi-
view images. This is a relatively new area with only a small set of
methods. Thus we consider these methods as a separate category.
In the following subsections, we analyse the pros and cons of each
framework. Comparative evaluation can be found in Section 5.

2.1. Image-based methods

To select representative image-based methods, we adopted
three baselines from state-of-the-art object recognition frame-
works based on their image classification techniques, i.e., (a)
point-to-point (P2P), (b) image-to-image (I2I) and (c) point-to-
class (P2C), as illustrated in Fig. 2. The image classification results
are combined later via voting.

Point-to-point methods measure the similarity between two
images based on their corresponding local image appearance,
which is usually encoded by a feature descriptor.

In the seminal paper by Lowe [18], image classification was
performed by matching a set of keypoints detected in image
regions. Using robust fitting algorithms, e.g., RANSAC [19], the
correspondences can be constrained further by dominant trans-
formation between the matched pairs. This technique can improve
the recognition precision significantly. But it may fail when there
is no similar viewpoint in the database to a query image. Recent
advances in graph matching [20,21] have relaxed the geometric
constraint between point correspondences for articulated or
deformable object recognition. However, these methods are gen-
erally computationally expensive and infeasible for large-scale
problems.

Image-to-image methods compute the vector of visual word
frequencies in images to facilitate similarity measurement. In
general, I2I methods are efficient and suitable for large-scale
problems because of the compactness of their image representa-
tions. The Euclidean distance in a feature space reflects the
similarity between features. Thus we can also apply learning-
based classifiers, e.g., linear support vector machine (SVM) and
Random Forests, to facilitate a better generalisability and efficient
recognition. I2I methods have been applied widely to various
image classification tasks, e.g., scene recognition [6], image cate-
gorisation [22,23], object recognition [24] and video image retrie-
val [25]. These methods have achieved state-of-the-art
performance on most publicly available benchmark datasets of
image classification. [12,13]. However, despite the success of these
methods, the vector quantisation process may degrade the dis-
criminatory power of individual image features, which is crucial
for instance recognition problems.

Point-to-class (P2C) methods have also achieved impressive
results on several benchmark datasets in recent years. The concept
was emphasised in [26] to sidestep the negative effects of vector
quantisation in I2I methods, and later improved and extended in
[27,28]. The basic idea is to directly measure the similarity
between query features and training features in every object class
without vector quantisation. Compared with P2P methods, P2C
has better generalisability, because images are decomposed into
image features that can be matched simultaneously across all
training images. This approach is also suitable for large-scale
problems because the feature-matching procedure can be accel-
erated to real-time using approximated nearest neighbour algo-
rithms. The main drawback is that P2C methods are based on non-
parametric classifiers and consequently consume more memory
because all the features are retained.

2.2. Set-based methods

Set-based methods aim to capture the inherent characteristics
of a set based on the assumption that the members of the set
follow a particular statistical distribution, as shown in Fig. 3. For
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Fig. 1. Method categorisation and experimental setup.
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the VbOR problem, the appearance of an object in each frame is
constrained by identity-preserving image variations, i.e., view-
point, scale or illumination changes. If we consider that an image
is a data point in a high-dimensional space, the manifold that is
spanned by the image variations can be learned using subspace or
manifold techniques [29,30]. The video-to-video similarity can
then be estimated based on their manifold intersection, e.g., their
largest principal angle. In previous studies, these techniques have
achieved superior performance in different tasks, such as face
recognition [31], head pose estimation [32] and object pose
estimation [29].

The motivation for applying set-based techniques to object
recognition problems is that the unseen views of an object can be
interpolated from existing images, which leads to significant
improvements in generalisability. However, in dynamic real-
world scenarios, estimating the subspace or manifold from an
image set is always challenging as the distribution of images in a
set is often highly non-linear due to the existence of complex
background noises and object variations.

2.3. Video-based methods

Video-based methods exploit the temporal coherence between
adjacent frames in the video. For the VbOR problem, temporal
coherence can be used to learn better representations from videos
based on feature tracking [3], or to remove unstable local features
[25]. In addition, applying video-based techniques may facilitate
learning the variation among object parts, improving the signal-
to-noise ratio, or compressing the representation of video data. An
example is shown in Fig. 4 where the trajectories can be extracted
via tracking and later used for matching.

Extracting spatio-temporal coherence is important in many
tasks, such as action recognition, video surveillance and object
tracking. However, it is not trivial to do so in an egocentric setting,
since the camera can move in an arbitrary manner and the time-
ordering does not reflect any characteristics of the object's
identity. Greater computational power is also consumed due to
the additional tracking process.

2.4. 3D-based methods

A different approach is to utilise 3D geometric cues, earlier
works such as [33] requires hand-crafted 3D CAD models as input,
whilst in this study we focus on more recent methods that
reconstruct models from multi-view images, as shown in Fig. 5.
3D-based object recognition is a relatively new yet attractive
research field, which has been popularised by the emergence of
low-cost depth cameras. In the case of rigid objects, 3D geometry
can be treated as one of the most nuisance-invariant cues that can
be obtained from video. In the literature, [34] provides a compre-
hensive survey of how 3D CAD models can be used in content-
based retrieval systems. Several recent studies, including object
recognition [35], landmark recognition [36] and camera pose
estimation [37], have exploited 3D models reconstructed by
photogrammetric methods, such as stereo matching [38] and
structure-from-motion [39].

However, the use of 3D object models for object recognition
has several limitations. Photogrammetric methods require camera
calibration to retrieve the absolute scale and location of an object,
and the 3D point cloud generated is generally sparse, which
requires more computation. Moreover, the object is often required
to be static in the scene.

3. Implementation

As illustrated in Fig. 1, we implemented baseline methods and
extended them by adapting geometric and temporal validation
techniques. Although there exist frameworks for invariances of
image features and receptive field responses under more general
classes of visual transformations [40,41], in this paper we restrict
ourselves to scale invariance as implemented in standard SIFT [18]
in all experiments.

Image-based methods: We adopted the framework proposed in
[18] as the baseline for the P2P approach, the standard bag-of-
words approach [42] for I2I, and NBNN [26] for P2C. In P2P and
P2C, geometric validation was achieved by strictly applying RAN-
SAC [19] to correspondences based on a perspective transforma-
tion. In I2I, we employed Spatial Pyramid Matching (SPM) with a
uniformed grid (as in [6]), and spatial consistency using Video
Google [25]. Additionally, extensions for each image-based method
are implemented. In I2I, we replaced the clustering method (k-
means) by sparse coding with max pooling, as described in [22], to
reduce the error from vector quantisation. Apart from that, better
distance functions were employed from [25]. In P2C, we imple-
mented Local-NBNN [43] as a state-of-the-art version of NBNN.

Set-based methods: A kernel approach, Kernel Principle Angles
(KPA) [30], is implemented to compute the principal angles in the
feature space as the basis of the manifold-based method. We
collected bag-of-words representations of video frames as the
feature set based on the assumption that images in a sequence are
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highly correlated so that they lie on a low-dimensional manifold,
which spans the variations in the object.

Video-based methods: For video-based methods, we tracked
interesting points bidirectionally [44] with Kanade-Lucas-Tomasi
feature tracker (KLT) [45]. Three video-based methods were eval-
uated in the Local-NBNN framework: unstable feature removal
(Filtering), averaged-trajectory matching (TM) and trajectory
matching by KPA (TMþKPA). Additionally, we added a recent
method [17] into comparison. In Filtering, only unstable feature
points are rejected; in TM, each trajectory is encoded into a single
feature vector by averaging its feature points; and in TMþKPA and
Liu et al.'s method [17], KPA is applied to obtain trajectory
similarity measurements.

3D-based methods: According to the general framework of 2D-
to-3D image classification systems described in the literature
[35,46,7], we first reconstructed 3D object point cloud models
from the training videos using the VisualSfM toolkit [47], which is a
structure-from-motion based photogrammetric modelling pro-
gram, where foreground segmentation is used to cleanse the noisy
3D point clouds. As shown in Fig. 5, each 3D point corresponds to a
set of image features from video sequences during appearance-
based feature matching and 2D-to-3D geometric validation can
then be applied to constrain the correspondences to a rigid
transformation. We applied ePnP [48] to facilitate efficient 2D-to-
3D transformation estimation and 3D RANSAC for 3D-to-3D
estimation, according to [49].

Hybrid methods: Furthermore, we propose a hybrid method
combining a video-based and a 3D-based method to incorporate
benefits from both. To avoid unnecessary experiments, we chose to
combine the best method out of each category, i.e., Local-
NBNNþTM and 2D-to-3DþePnP, by empirical results (see
Section 5). In practice, each object 3D point cloud and video
trajectories corresponds to a set of similar features, which can be
encoded by simply averaging the set of feature vectors into a single
representation for better Local-NBNN performance. After matching
video trajectories to 3D object points, ePnP validation is performed
between the trajectories’ coordinates of each frame and object 3D

point coordinates. Similar to the 3D-based methods, only the
correspondences that pass geometric validation are taken into
account for the later voting procedure.

4. Dataset

Several egocentric datasets have been made publicly available
[50,51]. However, to the best of our knowledge, there is no suitable
benchmark dataset for evaluating complex rigid object recognition
methods with egocentric videos. Thus, we constructed a new
video dataset with 33 less textured sculptures in cluttered
museum scenes, as shown in Fig. 6.

In total, 363 videos (30 fps, 720�576 pixels) were captured by
amateur users with a hand-held camcorder in a crowded
museum.1 We have collected 33 different sculptures served as
object instances, each of which has a training video and 10 testing
videos. The training videos were captured at 180 or 360 degrees
from azimuth around the sculptures, depending on their positions.
For testing videos, we deliberately added different nuisance
including extreme views, large scale changes, occlusions, light
reflection and temporal object disappearance.

Our video-based dataset has many unique properties compared
with standard image-based datasets: (i) high correlation within each
video sequence, (ii) high inter-class correlation between classes, and
(iii) various types of additional nuisances. The high correlation
between images within the video sequence poses several challenges:
how to extract useful cues from the correlated video frames (e.g., 3D
geometry and temporal coherence), and how to remove redundant
information from large video datasets to improve efficiency while
maintaining the discriminatory power. In addition, the sculptures
were similar in their appearance and physical structure. Therefore the
dataset has a high inter-class correlation, which causes difficulties for

Fig. 5. Toy example of 3D-based methods where each video is treated as an unordered image set.
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Fig. 4. A toy example of trajectory matching methods based on feature tracking.

1 The dataset and feature will be available at http://www.mangshao.net/
vadataset.
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many linear classifiers, e.g., linear SVM. Furthermore, the most
common technique used for object recognition, vector quantisation,
would greatly reduce the discriminatory power of features and
degrade the recognition accuracy.

5. Evaluation

In Figs. 7 and 8, an overview of all the experiments performed
with our dataset is provided. The category of each experiment was

Fig. 6. Illustration of the collected dataset.
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determined by the representation of query testing videos. Tradi-
tionally, object recognition evaluations report the accuracy as
percentage. To better demonstrate the impact of each method,
we measured their performance in the form of a precision–recall
(PR) curve, which was inspired by the ratio test in [18], since it can
be easily generalised to evaluate the performance of image
classification. For each query video, the assigned object class was
deemed acceptable only if the ratio between the highest and
second-highest class probability was above a certain threshold,
otherwise it was considered as a false negative. If the highest class
was the same as the ground truth, it was considered as a true
positive. By testing all possible thresholds, a full PR-curve is
obtained. It is worth noting that some of the results obtained
with image-based methods contrast with their performance using
public datasets. We consider this is mainly due to the aforemen-
tioned uniqueness of our dataset.

Image-based methods: Only the final voting accuracy for each
video is shown for image-based methods. In general, I2I methods
had poor performance due to the quantisation of image descrip-
tors, as described in the literature [26]. The larger (approximately
10k) visual vocabulary with a better distance function (Bhatta-
charyya distance) in Video Google or SPM based on sparse coding
(ScSPM) improved the results obtained with bag-of-words to some
extent, but it was still not as good as other methods.

The P2P and P2C methods achieved similar accuracy and
outperformed I2I methods, owing to the following reasons. Firstly,
there was no feature quantisation in P2P and P2C and thus no loss
of discriminatory power. Secondly, the geometric relationship
among features is partially lost in I2I methods, whereas the robust
estimation method RANSAC in P2P and P2C methods constrains
the spatial distribution of image features, which is favourable for
rigid object recognition.

Set-based methods: Overall, set-based manifold methods did
not have significant impact on the performances of I2I methods.
The main difficulty was related to the complex nuisance effects in
scenes such as under extreme view or occlusions, since manifold-
based methods are generally prone to set complexity and outliers.
In addition, KPA [30] improves ScSPM [22] but it degrades Video
Google [25]. The results showed that the advantage of applying
KPA was reduced when the vocabulary size increased. Since the
high heterogeneity of image representations caused the failure of
KPA when determining dependencies within the set, thereby
leading to inaccurate estimates of the subspace from the image set.

Video-based methods: The results of the comparisons between
four methods, Filtering, TM, TMþKPA, Liu et al.'s method [17] and
their baseline Local-NBNN, have shown that: (i) the formation of a
trajectory did not improve the recognition accuracy, (ii) averaging
the trajectory obtained a similar performance, and (iii) KPA was
computationally expensive and not suitable for application to
trajectory matching.

These contradictory results can be explained as follows: (i) To
reduce unstable features and prevent long-term drifting, a bidirec-
tional validation was applied to the trajectories. As shown in Fig. 9(c),
approximately 90% of the features used in training and 67% in the
testing dataset were filtered. However, the filtering process did not
generate extra inliers and the inherent advantage of Local-NBNN is its
robustness to noisy feature points, which explains their similar
accuracy. (ii) Fig. 9(a) shows that the trajectories were short due to
the strict spatio-temporal constraint and unstable features increased
due to the use of a hand-held camera. This feature is actually
favourable to averaged trajectory matching, since the features in most
of the trajectories are nearly identical, hence their mean is represen-
tative. (iii) However, this also explains the poor performance of the
KPA approach because short trajectories were far from sufficient to
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span the variations in the object parts, thus they lacked discriminatory
power. In addition, it should be noted that the application of KPA is
computationally intense with massive trajectories due to its high
complexity.

However, by using trajectory averaging, the dataset was com-
pressed to 1.48% for training and to 5.30% for testing compared
with their original sizes, as shown in Fig. 9(c). This reduced the
computational power and memory requirements, especially when
using non-parametric classifiers.

3D-based methods: Retrieving 3D mesh model of objects from
the training video and performing 2D-to-3D geometric validation
has increased the recognition performance dramatically for two
reasons. (i) In training videos, the reconstruction process rejected
features that were not consistent with the object geometry, such
as pedestrians or specularities from light reflection, thereby
resulting in a large increase in the signal-to-noise ratio of the
database. (ii) Fig. 9(b) shows the long-tail distribution of a number
of features allocated to 3D points, which indicates that a consider-
able amount of 3D points contained features that covered a large
range of view. The 3D geometry is viewpoint-invariant according
to the assumption of the objects rigidity, thus the 2D-to-3D
geometric validation strictly constrained the correspondences,
which resulted in a higher confidence in the final voting of the
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object class. This is especially helpful for VbOR because the object
class can usually be determined from a few confident frames
within the video. Furthermore, the training dataset was com-
pressed to 67.23% after 3D reconstruction and to 4.75% after it was
averaged further into a single feature vector, according to Fig. 9(c).
3D-to-3D also achieved good recognition accuracy, but the recon-
struction process during the testing stage required too much
memory and computational power, which made it inefficient
compared with 2D-to-3D methods.

Hybrid methods: The combined method exploited the advan-
tages of 3D-based and video-based methods, and achieved one of
the best P–R rates, as shown in Fig. 10. It also compressed the
training dataset to 4.75% by averaging the features in each 3D
point and it compressed the testing dataset to 5.30% by averaging
the trajectories, leading to significant reduction in memory con-
sumption whilst maintaining the discriminatory property within
the target objects.

6. Conclusion

We have performed a comparative study of various object
recognition methods and their video-based extensions for the rigid
object instance recognition problem in egocentric videos. Based on
the empirical evaluation results, we conclude that video- and 3D-
based methods not only outperformed image-based methods, but are
also capable of compressing the dataset into a more compact form. In
particular, utilising 3D geometric constraints greatly improves the
video classification accuracy, whilst tracking significantly reduces the
query data size by rejecting unstable image regions and by forming
trajectories. We have found that the most promising method for
achieving the best object recognition performance with egocentric
videos is to train the object classes with geometric constraints and to
classify the query videos with spatio-temporal constraints. Thus we
have developed and validated a hybrid method combining advantages
from both constraints.

Appendix A. Supplementary material

The following are the supplementary data to this paper:
Video S1.
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