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Abstract
While action recognition has become an important line of research in computer vision, the recognition of particular events
such as aggressive behaviors, or fights, has been relatively less studied. These tasks may be exceedingly useful in some video
surveillance scenarios such as psychiatric centers, prisons or even in personal camera smartphones. Their potential usability
has caused a surge of interest in developing fight or violence detectors. The key aspect in this case is efficiency, that is, these
methods should be computationally very fast. In this paper, spatio-temporal elastic cuboid trajectories are proposed for fight
recognition. This method is based on the use of blob movements to create trajectories that capture and model the different
motions that are specific to a fight. The proposed method is robust to the specific shapes and positions of the individuals.
Additionally, the standard Hough forests classifier is adapted in order to use it with this descriptor. This method is compared
to other nine related methods on four datasets. The results show that the proposed method obtains the best accuracy for each
dataset and is also computationally efficient.

Keywords Violence recognition · Fight recognition · Descriptor · Blobs · Video sequences · Hough forests

1 Introduction

In recent years, the task of human action recognition from
video has been tackled with computer vision and machine
learning techniques, see surveys [1–3]. Experimental results
have been obtained for recognition of actions such as walk-
ing, jogging, pointing or hand waving [4] using STIP
features. However, action detection has been denoted com-
paratively less effort. Violence detection is a task that can
be leveraged in real-life applications. While there is a large
number of studied datasets for action recognition, important
datasets with violent actions (fights) were not available until
[5]. The main task of large-scale surveillance systems used
in institutions such as prisons, schools and psychiatric care
facilities is generating alarms of potentially dangerous situa-
tions. Nevertheless, security guards are frequently burdened
with the large number of cameras where manual response
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times are frequently large, resulting in a strong demand for
automated alert systems. Also, this type of systems must be
very efficient because there is generally a large number of
surveillance cameras. Similarly, there is increasing demand
for automated rating and tagging systems that can process a
large amount of videos uploaded to Web sites. Since smart-
phones are often used to record beatings, efficient mobile
implementations are desired too.

Whereas action recognition techniques focus on many
classes, the recognition of a single action may be amenable
to more specific algorithms that provide either higher accu-
racy, better efficiency or both. In the particular case of fight
recognition with two classes, the concept of detection is very
similar. Then, the only difference is that detection refers to
the use of long video sequences, whereas recognition uses
trimmed sequences from the original. The latter approach is
followed in this work, in accordance with the literature on
the topic. The use of this core recognition functionality to
build a fight detector is straightforward, and hence, in this
work we always refer to the problem as “fight recognition.”

In this context, this work hypothesizes that a fight can
be described with trajectories of motion areas. A novel
descriptor is proposed in order to capture the different parts
in motion. This descriptor is called spatio-temporal elastic
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Fig. 1 A fist in motion. Top row: with a classical cuboid. Bottom row:
with a STEP trajectory

Fig. 2 Afight sequence fromUT-Interaction dataset showing a fist. Top
row: with dense cuboids. Middle row: with a sparse cuboids (only one
around the fist). Bottom row: with a STEC trajectory (also around the
fist)

cuboid (STEC) trajectories, see an example in Fig. 1 (bottom)
with a fist in motion compared with a classical cuboid (top).
See another example in Fig. 2 where a punching action is
represented using a STEC trajectory (bottom) comparedwith
a cuboid (middle). Cuboids have been often used to model
spatio-temporal changes. STEC trajectories are always cen-
tered around tracked parts, whereas the classic cuboids are
on a fixed position. It is assumed that background of the
videos have to be static or small motion. Thus, the proposed
descriptor only focuses on moving parts. Furthermore, in
order to represent these STEC trajectories, an extension of
Hu et al. [6] method is proposed. These authors propose a
novel approach to analyze the topological features of hand

postures at multiple scales. We extend this approach in time
to represent different parts of an action.

Finally, an adaptation of Hough forests [7–9] is proposed
to encode and classify STEC trajectories. In contrast, the
classical bag-of-words (BoW) [10] model assumes inde-
pendence between spatio-temporal “words” and does not
make use of the rich spatio-temporal relationships inherent
in actions. Hough forests leverage this important informa-
tion. The proposed method and two state-of-the-art methods
will be compared using BoW or Hough forests approaches
in order to verify this claim.

The main contributions of this paper are: the novel STEC
trajectories descriptor combined with Hough forests classi-
fier for fight recognition and an extension of Hu et al. [6]
method to represent the trajectories.

The paper is organized as follows. Section 2 reviews state-
of-the-art related methods. Section 3 describes the proposed
method. Section 4 provides experimental results. Finally, in
Sect. 5 the main conclusions are outlined.

2 Related work

One of the first proposals for violence recognition in video is
Nam et al. [11], which propose a method to recognize violent
scenes in videos using flame and blood detection and captur-
ing the motion degrees, as well as the characteristic sounds
from violent events. Cheng et al. [12] recognized gunshots,
explosions and car-braking in audios using a hierarchical
approach based on Gaussian mixture and hidden Markov
models (HMM). Clarin et al. [13] presented a novel method
that uses Kohonen self-organizing maps to search blood and
skin areas for each image to detect violence actions where
blood appears. Besides, Giannakopoulos et al. [14] proposed
a violence detector based on audio features. Zajdel et al. [15]
proposed the CASSANDRA system, which extracts motion
features related from articulations in video and scream-like
cues in audio to search aggressive actions in surveillance
videos.

Gong et al. [16] develop a violence detector that uses low-
level visual, acoustic features and high-level audio sounds for
identifyingpotential violent action inmovies.Chen et al. [17]
used binary local motion descriptors (spatio-temporal video
cubes) andBoWapproach to detect aggressive behaviors. Lin
andWang [18] described a weakly supervised audio violence
classifier combined using co-training with motion, explosion
and blood to detect violent scenes in movies. Giannakopou-
los et al. [19] also proposed a novel method for searching
violence actions in movies clustering audio–visual features
applying statistics, average motion and motion orientation
variance features in video with a K -nearest neighbor clas-
sifier to decide whether there are violence actions. Chen et
al. [20] proposed a method based in motion, detecting faces
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and nearby blood. Hassner et al. [21] recently approached
the problem of detecting violence outbreaks in crowds using
an optical flow-based method. Proof of the growing interest
in the topic is also the MediaEval Affect Task, a competition
that goals at searching violence action in color movies [22].

In summary, a significant number of previous state-of-
the-art methods require audio cues for detecting violence
or trust on color areas to detect cues such as blood or skin.
In that regard, we note that there is an important number
of applications, especially in surveillance, where audio and
color features are generally unavailable. In other cases, it is
possible and easy to obtain audio features, but audio infor-
mation may increase false positive rates or decrease true
positive rates because there are many violence actions where
the audio features may be confused: to push, throw (some-
thing), knock down, attackwith a knife, block (someone), etc.
Moreover, while explosions, blood and running may be very
useful cues to detect violence scenarios in actionmovies, they
are unusual in real-world actions. Anyway, violence detec-
tion is a very difficult issue, since violence is a subjective
concept. Fight detection, on the contrary, is a more spe-
cific violence-related topic that may be tackled using similar
techniques.

The authors of the local motion patterns (LMP) method
[23] claim that it is both informative and efficient for action
and violence recognition. Since the number of extracted
descriptor vectors varies in each video sequence, this method
is based on extracting simple statistics (variance, skewness
and kurtosis) from temporal cuboids centered on tracked
keypoints. Keypoints are located with a Harris detector.
Furthermore, Mohammadi et al. [24] proposed a novel
computational framework to classify violence behaviors in
various scenes. They focus on capturing the dynamics of
pedestrians based on spatio-temporal characteristics of sub-
stantial derivatives. They also combine spatial and temporal
motion patterns.

More recently, Deniz et al. [25,26] introduced a novel
method to recognizefight sequenceswhere blurred areaswith
specific acceleration patterns are used as the main features.
Bermejo et al. [5] demonstrated challenging results using
generic action recognitionmethods to fight detection, obtain-
ing 90% accuracy using MoSIFT features [27]. MoSIFT
are powerful features generally applied for generic action
recognition. Nonetheless, the computational time cost for
extracting features is prohibitively large, taking almost 1
second per frame on a high-performance laptop. The vio-
lence flow method (ViF) [21] is a recent method which
may be considered representative of dense optical flow-based
methods for action recognition. Serrano et al. [28] proposed
a novel method considering motion blobs. Simple features
(area, perimeter, etc.) are extracted from the largest K blobs
and used to discriminate between fights and non-fights.

Tobias et al. [29] utilized Lagrangian measures to detect
violent video footage. They focus on Lagrangian coherent
structures where they found the directional Lagrangian field
a promising feature space that characterizes motion informa-
tion over a time interval. They propose a local feature set that
extends the SIFT algorithm and implements the Lagrangian
field to encode the spatio-temporal characteristic of a posi-
tion.

Gaoet al. [30] developed anovel feature extractionmethod
called oriented ViF (OViF) for detecting violence actions,
which takes full advantage of the motion magnitude change
information in statistical motion orientations based on the
aforementioned ViF method [21]. The new feature repre-
sentation method OViF is proposed considering motion and
orientationsmagnitudes. Feature combination andmulticlas-
sifier combination strategies are adopted.

Another aspect related to this work is trajectories that are
used to build the proposed spatio-temporal elastic cuboid
descriptors. Therefore, it is important to mention some of the
most relevant methods based on the concept of trajectories,
such as [31–33]. In these methods each trajectory is attached
to a particular moving feature. That is, in video deriving
from themovement of physical bodies through space, a prop-
erly tracks feature (and hence trajectory) that contains useful
information about the movement. Wang et al. [34] proposed
a robust method that extracts improved dense trajectories
(called IDT) for action recognition. This method estimates
the camera motion using SURF features and dense optical
flow to reject no consistent features. The trajectories are built
using the right features. Afterward, HOF and MBH features
are extracted for each trajectory. Then, well-known BoW
approach is applied to feed a support vector machine (SVM)
with linear kernel. They achieve good results on four chal-
lenging action datasets.

Finally, some relevant and recent action recognitionmeth-
ods based on deep learning are exposed. Simonyan et al. [35]
proposed a deep video classificationmethod for action recog-
nition, which incorporates spatial and temporal recognition
streams based on convolutional neural networks (CNN).
They used optical flow for training the temporal CNN and
achieved significantly better results than training from raw
frames. Wang et al. [36] proposed a novel video descrip-
tor, called trajectory-pooled deep-convolutional (TDD) that
combines the merits of handcrafted and deep learning fea-
tures. They used deep architectures to learn discriminative
convolutional feature maps, and construct trajectories con-
strained pooling to aggregate these convolutinal features
into effective descriptors. Tran et al. [37] proposed spatio-
temporal feature learning using 3-dimensional convolutional
neural networks (3D-CNN) for action recognition, called
C3D.The authors argue that 3D-CNN is able tomodel tempo-
ral information thanks to the 3D pooling and 3D convolution
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layers. The method achieves 85.2% action recognition accu-
racy on the challenging UCF101 dataset.

3 Proposedmethod

The proposedmethod consists of two independent stages: the
spatio-temporal elastic cuboid (STEC) trajectories (descrip-
tor) andHough forests (classifier). The following subsections
describe both stages.

3.1 Spatio-Temporal Elastic Cuboid trajectories

In the following method, it is assumed that background of
the videos is static.

In thiswork, it is hypothesized that a fight can be described
with the position, size, rotation and shape of motion areas.
Figure 2 shows a simple example of a STEC trajectory
that tracks a part in motion (the fist). State-of-the-art meth-
ods [9,38–41], etc.) that extract spatio-temporal features use
cuboids fromagrid (Fig. 2 top) or from salient features (Fig. 2
middle) in videos. In this work we use “elastic” cuboids (or
STEC trajectories) (Fig. 2 bottom) that track different parts
in motion and then extract features. The “elastic” concept is
used to differentiate them from the classic cuboids that have
a fixed position throughout neighboring frames.

Note that pixel tracking approaches (generally based on
optical flow) may not be appropriate in our context for two
reasons. Firstly, the assumption of “immediate neighborhood
of (x, y) is translated some small distance (dx, dy) dur-
ing the interval.” Therefore, aggressive actions (i.e., with
very fast motion) should be subject to failures due to the
previous assumption. Secondly, the processing time on cam-
eras, on these aggressive actions, usually produces blur areas
that affect pixel-level tracking. On the other hand, these
approaches are computationally slower, which may preclude
implementations in resource-limited hardware (like smart-
phones). For all these reasons, we decided to focus on region
tracking over consecutive frames. In a sense, the approach
here is not to attempt fine-detail tracking but instead focus
on coarser changer.

The process to obtain the STEC trajectories is summarized
in the following:

1. A binarized image is obtained containing movements
between consecutive frames. A standard binarization
method is applied using an adaptive threshold. An image
with motion blobs is obtained for every two consecutive
frames.

2. The best K blobs are selected from the binarized images.
3. A body part in motion (for example, the hand in a punch)

is modeled by a trajectory of motion blobs (STEC). Here,

it is necessary to link the motion blobs in the previous
image with those in the current image. A method is pro-
posed to associate two consecutive blobs using distance,
area and shape.With these linked blobs a STEC trajectory
is built.

4. Characterize STEC trajectories. To model a STEC tra-
jectory, relative sizes, positions, orientations and shapes
are obtained.

In the following, these steps are described in detail:
Firstly, a short sequence S(s) of gray images is denoted

as:

S(s) = I1, I2, . . . , It , . . . , IT (1)

where s ∈ Z (number of sequences), with size N × M . T is
the number of frames, and N and M are the number of rows
and columns for S(s) sequence.

Let It−1 and It be two consecutive frames in the sequence.
The absolute difference between consecutive images is then
computed as:

Et = |It−1 − It | (2)

Then, E is binarized using a traditional binarization
method:

Ft =
{
1, if Et > 255 · Ht ,

0, otherwise
(3)

where Ht is an adaptive threshold used to binarize each
Et image, 0 < Ht < 1 and Ht ∈ R, calculated with the
Otsu method. These binarized images contain the areas with
motion.

The second step is to locate and select a set of blobs in
each image Ft . The K largest blobs are selected for each
binarized image. The blobs are represented as a function
Bb,t = b where b ∈ {0, 1, . . . , J } is the unique index for
each blob in the image, and J is the number of blobs in the
image Ft . Each blob Bb,t is obtained as an image that contains
a set of adjacent points, neighborhood pixels and where their
values are 1 from Ft . These blobs are calculated from each
binarized image. Afterward, the K largest blobs are selected
using their blob areas (Ab,t ) that are calculated counting the
pixel number inside each blob. A1,t , . . . , Ab,t , . . . , AJ ,t are
the number of adjacent pixels (or area) of each blob, respec-
tively, and A1,t + · · · + Ab,t + · · · + AJ ,t ≤ N · M

Here it is assumed that the blobs with largest areas are the
most representative in each frame. However, when there is
little or no movement in the frame, some of these K largest
blobsmay not be representative. Therefore, themt (minimum
threshold area) is defined to reject blobs with little area as:
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Fig. 3 A punching sequence with the best five blobs marked in two
consecutive frames. These five blobs have been also linked in this pair
of frames

mt =
⎧⎨
⎩
1

J

∑J
b=1 Ab,t , if

1

J

∑J
b=1 Ab,t > Ma · N · M

Ma · N · M, otherwise

(4)

whereMa (minimumareas) is a parameter to set, 0 > Ma > 1
and Ma ∈ R. Finally, if Ab,t < mt , then the blob Bb is
rejected. Note that K is thus a maximum of blobs, and if
there is little motion fewer blobs will be selected.

The third step is to link a selected blob in the current frame
with another one in the next frame. Let us use a sequence
where K blobs have been selected (example, see the sequence
in Fig. 3 using 5 marked blobs). For each blob in frame t we
need to findwhere the next blob is in t+1. For this purpose, a
match measure will be defined for a blob in t and every blob
in t + 1. This measure is calculated based on the relative
areas, distances and shapes of the two blobs. Let us use Bb,t

for Bb,t ; this measure is defined as:

ϕ(Bb,t ; Bb′,t+1)

= 1

area(Bb,t , Bb′,t+1) · dist(Bb,t , Bb′,t+1) · shape(Bb,t , Bb′,t+1)

(5)

where area(Bb,t , Bb′,t+1) represents the absolute difference
of two area blobs and can be rewritten as: area(Bb,t , Bb′,t+1)

=| Ab,t+1 − Ab′,t |. The term dist(Bb,t+1, Bb′,t ) represents
the distance between two points. The centroids of the blobs
are used to represent each blob position and calculate their
distances. This part of the equation can be rewritten as:

dist(Bb,t , Bb′,t+1) =√
(CXb,t − CXb′,t+1)

2 + (CYb,t − CYb′,t+1)
2,

(6)

where CXb,t and CYb,t are the centroids of a blob that is
defined as:

CXb,t = 1

mb

∑
Bb,t=b

x,CYb,t = 1

mb

∑
Bb,t=b

y (7)

Fig. 4 Left and middle: 2 consecutive difference images from a punch-
ing sequence where the HOG method is applied on the blob center;
the blue lines are the predominant direction vectors (amplified). Right:
these blue line vectors are subtracted and the magnitude is calculated,
the black line (color figure online)

The last part of the equation is the termshape(Bb,t , Bb′,t+1)

that provides a shape difference between the two blobs. The
blob Bb,t shape is estimated using histogram of oriented gra-
dients (HOG) method that is applied on the difference image
region for blob Bb,t . An example is shown in Fig. 4, where
the HOG method is applied on the blob center to estimate
its shape (as the predominant angle). The vector of maxi-
mum gradient is used (HOGmax(Bb,t )). Then, this part of the
equation can be rewritten as:

shape(Bb,t , Bb′,t+1)

=|| HOGmax(Bb,t ) − HOGmax(Bb,t+1) || (8)

In summary, these two HOG vectors have been obtained
and subtracted, and the magnitude of this result vector is
calculated.

Noweach pair of blobs should be linkedwith the following
maximization function where the best blob b′ is selected:

max
b′

(
ϕ(Bb,t ; Bb′,t+1)

)
(9)

Each pair of blobs is linked in time t . This process is
repeated each time step to build the trajectories. Parameter L
(length) limits the number of blobs paired along a trajectory,
for example see Fig. 5 with L = 5 blobs. In order to reduce
mismatches, i.e., pairs of blobs that are far away and very

Fig. 5 A 5-length STEC trajectory where the blobs have been linked
in time
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Fig. 6 Left: the first blob with three erosions. Right: the matrix result
for K trajectories of L blobs using the extended erosion method. The
column with the ellipse is the result for the first blob that counts the
number of regions for each erosion step

different, parameter Mt (minimum trajectories) is introduced
to reject trajectories, where Mt can be chosen between 0 >

Mt > 1 and Mt ∈ R. Finally, if area(Bb,t , Bb′,t+1) > Mt ·
N · M or dist(Bb,t , Bb′,t+1) > dmax · Mt , then the current
trajectory is rejected, where dmax = √

N 2 + M2 (diagonal
distance of one frame).

The last step is how to describe each trajectory. In order to
build a robust descriptor, relative features between pairs of
consecutive blobs in the trajectory are calculated. Different
features of the blobs are used to encode the position, size,
orientation and shape. It is proposed to use 9 relative mea-
sures of each blob (9(L−1) features), the length trajectory (1
feature) and a set of features that encodes the shape in space–
time (x, y, t) (Ne ·K ·L features). The first 9 relativemeasures
are centroid (x and y), area, distance, perimeter, major and
minor axes, orientation and number of other blobs. These
relative measures are calculated by subtracting the values at
t and t + 1. The centroid, area and distance were already
defined. To estimate the perimeter (Pb,t ) the Sobel operator
is used to detect the edges on Bb,t . In summary, the pro-
posed method obtains L · (Ne · K + 9) − 8 features per
trajectory.

The features that can model the shape of the trajectories
in space–time (L · Ne features) come from an extension of
[6]. In [6] the authors proposed a novel approach to analyze
the topological features of hand postures at multiple scales.
They computed the convex hull on the hand region and con-
sidered the complementary space of the hand as holes. Then,
they applied multiple morphological erosion operations (Ne)
over these holes and counted the number of regions that are
formed. In this paper, an extension of this approach is pro-
posed. This method is applied for each blob on the trajectory.
Then, the sequence shape in space–time can be modeled. An
example using the multiscale erosion method in space–time
is shown in Fig. 6 for K trajectories.

3.2 Hough forests

Hough forests [8,9] consist of a set of random trees [42]
that are trained to learn a mapping from densely sampled
D-dimensional feature cuboids to their corresponding votes
in a Hough space H ⊆ R

H. The Hough space encodes the
hypothesis for an object/action position in scale(time)–space
and class. The term cuboid below is used in a generalized
sense to represent a local image patch (D = 2) or video
space-temporal neighborhood (D = 3) depending on the
task.

Each tree τ in Hough forests τ = Ttree is constructed from
a set of feature cuboids Pi = (Fi , ci , di ) that are randomly
sampled from the image or video sequence where Fi are the
extracted features from a cuboid of fixed size (D) in R

D ,
ci is the class label for the sample, and di is a displacement
vector from the cuboid pointing toward the spatio-temporal
center of the action. The negative classes have di = 0. In
[8,9], cuboids are used with fixed dimensions 16 × 16 and
16 × 16 × 5 for images and videos, respectively. Then, for
each cuboid the grayscale intensity, absolute value of x , y
and time derivatives, absolute value of optical flow in x and
y are obtained. In this work, Hough forests are trained with
the STEC trajectories.

Each leaf node L stores the probability of the cuboids
belonging to the object class ϕ(c | L), estimated as the
proportion of cuboids per class label reaching the leaf after
training, and DL

c = {di }ci=c′ the cuboids respective displace-
ment vectors. In this work, each non-leaf node is modified to
assign a binary test from a set of input vector features (F).
The binary test is now defined by a composition of two fea-
tures values (p, q) ∈ R

D with some offset Os . The binary
test (b) on a non-leaf node is redefined as:

bp,q,Os (F) =
{
1, if F(p) < F(q) · Os

0, otherwise
(10)

The next steps of the Hough forests method are con-
structed according to [9]. The Hough forests output for a
sequence (set of features) is an image with their correspond-
ing votes inHough spaceH ⊆ R

H.Besides, themaxima class
probability can be searched by applying a Parzen estimator
with a Gaussian kernel. The accumulation of the probabil-
ities is made with the summation criteria to make the final
decision.

The Hough forests are constructed using whole STEC
trajectories that were extracted from the training set. This
training step is computationally slow since the number of
operations is exponentially related to depth of trees. After-
ward, a set of decision trees have been created.When a testing
STEC trajectory is tested on the created Hough forests, it
gives a class probability and prediction in a spatio-temporal
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Fig. 7 A pushing sequence with some STEC trajectories represented.
Each STEC trajectory points to the action center

Fig. 8 Sum space votes in time from a fight and non-fight Hockey
sequence, respectively. Left: the fight space votes. Right: the non-fight
space votes

position. The testing step is computationally very efficient
because the complexity is logarithmic.

The main reason to use Hough forests in this work is:
this classifier does not need a previous BoW to cluster (or
encode) and represent the trajectories for each sequence.
Each sequence has a different number of trajectories that
depend on the amount ofmotion. Then, nomatterwhat classi-
fier is to be used, a previous clustering is needed. On the other
hand, under a BoW framework the sequencing of the STEC
trajectories would be lost, and this aspect is very important to
model a fight action. Hough forests use all trajectories (fea-
tures) independently without losing temporal information,
see an example in Fig. 7 where each STEC trajectory gives
spatio-temporal information about the action and its center.

The Hough forests classifier creates a Hough voting space
when a new sequence (set of features) is tested. Each feature
produces a vote in space–time and class. To see an example
on a fight Hockey sequence, the mean of the space votes in
time is represented in Fig. 8. It is now possible to knowwhere
the fight/non-fight is. Besides, the accumulation of votes is
calculated for each time step (see Fig. 9), so it is also possible
to know when the fight/non-fight occurs.

4 Experiments

The proposedmethod is assessed using four different datasets
and compared to nine related methods. In order to evaluate
the performance of the proposed descriptor and classifier,

Fig. 9 Sum votes in space for each time step. Using the same fight
Hockey sequence

Fig. 10 UT-Interactions dataset (set 1) with the six classes

a sparse set of STEC trajectories is obtained from each
sequence. Then, using this sparse set of features, a Hough
forests classifier is trained and tested.

4.1 Datasets

The first dataset [43] isUT-Interaction that contains videos of
six classes of human–human interactions: shake hands, hug,
kick, point, punch and push. There are 20 video sequences
in total. Each video contains at least one execution of the
action, providing 8 execution of human activities per video
on average. The dataset is divided into two sets. Set 1 is
recorded in a parking lot with a stationary background and
set 2 on a lawnwith slight backgroundmovement and camera
jitter. The authors of this dataset also give the segmented
actions. In each set, there are 10 segmented sequences per
class, in total 60. These sequences are used and clustered in
two classes: fights and non-fights. The fight classes are kick,
punch and push actions, and non-fight classes are the other
three classes. These two sets are called “UT1” and “UT2.”
See an example of this dataset (set 1) in Fig. 10.
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Fig. 11 Sample fight videos from the action movie (above) dataset and
the Hockey (below) dataset

The work [5] introduced two datasets explicitly designed
for assessing fight detection. The first dataset (“Movies”)
introduced in [5] consists of 200 video clips in which
fights are extracted from action movies (see Fig. 11 above).
Each clip is limited to 50 frames and resolution lowered
to 320 × 240. These videos depict a wider variety of
scenes and are captured at different resolutions. The non-
fight videos are extracted from public action recognition
datasets. The second dataset (“Hockey”) consists of 1000
clips at a resolution of 720 × 576 pixels, divided into two
groups, 500 fights (see Fig. 11 below) and 500 non-fights,
extracted from hockey games of theNational Hockey League
(NHL).

4.2 Method parameters

In order to obtain an appropriate set of parameters, a grid
search optimization method was used. This simple optimiza-
tion method is performed on the training/validation part of
theUT1dataset (80 and 10%of the dataset, respectively). The
value being optimized is the average classification accuracy
with 10-fold cross-validation. Besides, to reduce variance,
three runs are separately performed and the average of accu-
racy is considered. The following parameters of the proposed
algorithm are optimized: the maximum number of motion

blobs per frame (K ), minimum areas threshold (Ma), min-
imum trajectories threshold to link blobs (Mt), trajectory
length (L) and number of erosions (Ne). For the optimiza-
tion, the parameter space is divided into a rough grid with
manually selected points.

The optimization converged to the following set of param-
eters: the maximum number of motion blobs per frame
K = 10; minimum areas Ma = 0.0001; minimum trajec-
tories to link blobs Mt = 0.2; trajectory length L = 4; and
number of erosions Ne = 6 for UT1 dataset. After that, it
is not needed to re-tune the parameters for the remaining
datasets. The parameters obtained fromUT1 are used for the
other datasets.

The proposed method also estimates the shape between
blobs with the HOG algorithm, and it has been used with
these standard values (as [44]): the block size is 2 × 2, cell
size is 8 × 8, overlap is half the block size, number of bins
is 9 and non-signed orientation is used.

Accuracy is defined as the measure used to compare and
obtain results. Accuracy is calculated as the number of the
true positives (TP) plus true negatives (TN) divided by the
total number of samples. It is a goodmeasure because number
of video examples is equilibrated.

4.3 Experimental results

In all subsequent experiments, the parameters used were
those obtained as discussed in Sect. 4.2. The Hough forests
classifier was trained with 10 trees, depth 15 and 100 splits
per node (as [8]).

In order to compare the proposed method, the following
recent methods were used with one or more datasets. The
methods [24,30,37] which were explained in Sect. 2 use one
or more datasets.

Seven related methods have been tested for each dataset.
The first three methods are: the violence flow method (ViF)
[21], the local motion patterns method (LMP) [23] and
the method [28] that were mentioned on Sect. 2. The LMP
method needs fixed-size histograms to extract the features.
The best results are obtained using 6 bins. These three meth-
ods have been used with Random Forests classifier because
it is more akin to the classifier used and usually gets the
best accuracy. The last four methods are: space–time inter-
est points (STIP) [4] and improved dense trajectories (IDT)
[34] that were also mentioned on Sect. 2, following two
approaches. The first approach is carried out following the
identical setting to [34], and it is repeated for STIP features.
The STIP and IDT features are extracted for each dataset. To
encode the features, BoW is used with a 4000-bin codebook.
Afterward, a SVM with linear kernel is trained and tested.
The second approach is carried out using the STIP and IDT
features with Hough forests classifier using the mentioned
parameters.
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Table 1 Ten related methods compared with the proposed method
(STEC) on some or all datasets

UT 1 (%) UT 2 (%) Movies (%) Hockey (%)

[24] – – 96.9 –

[37] – – 93.6 87.4

[30] – – 87.5 –

ViF + RF 81.7 78.3 88.9 82.4

LMP + RF 60 53.3 92 77.7

[28]+RF 86.7 91.7 97.8 82.4

STIP + BoW 71.7 56.6 72 75.4

STIP + HF 98.4 98.3 94.5 89.2

IDT + BoW 61.7 78.3 74.5 57.3

IDT + HF 80 95.5 84 80

STEC + BoW 58.3 55 70 65.3

STEC + HF 98.6 99.5 98 82.6

Bold values show the best results for the dataset

Table 2 Feature extraction times. Average times measured on UT1
dataset, on an Intel Xeon computer with 2 processors at 2.90Ghz

Method Features/sequence Msecs/frame

ViF 96000 454.5

LMP 10368 151.6

[28] 2940 26.5

STIP – 163.2

IDT – 996.1

STEC – 61.8

These ten related methods are now compared with the
proposed method (STEC) on some or all datasets (the IDT
approach is also applied to the STEC trajectories) (see
Table 1). The proposed method (STEC + HF) achieves the
best results in three of the four datasets. It can be seen that the
Hough forests approach achieves better results to encode and
classify spatio-temporal features (as STIP, IDT and STEC)
than BoW+ SVM approach. Note that the results in the first
column of Table 1 were obtained with the test part of UT1
dataset, which is disjunct from the validation part mentioned
in Sect. 4.2.

Table 2 shows the number of features used for classifi-
cation and the computational cost (for feature extraction).
These results show that the proposedmethod is not the fastest
one, although the difference is very small compared to the
fastest [28]. However, the accuracy is significantly better.
Note that the STEC, STIP and IDT features do not give a
fixed number of features per sequence, because these meth-
ods obtain features where motion occurs. Therefore, they
depend on the input sequence. It can be seen that the pro-
posed method achieves a right trade-off between accuracy
and computational time.

The proposed method is a simple yet efficient tool for vio-
lence or fight recognition. The accuracy has been compared
to the state-of-the-art methods with four datasets containing
violence actions. The accuracy was significantly higher in
the three of the four compared datasets. The boost in this
accuracy can be explained by the ability of STEC trajec-
tories to capture the different motion parts in space–time.
Each STEC trajectory models a part of the action, and it
points to the action center in space–time. Also the Hough
forests classifier does not lose temporal transition informa-
tion that is considered useful. Another positive aspect is the
lowextraction times,which canbe explainedbecause a sparse
sampling is used to represent the actions. This is in contrast
withmost state-of-the-artmethods, which need a dense sam-
pling to represent the actions. Again, efficiency in this task
is paramount.

5 Conclusions

The spatio-temporal elastic cuboid (STEC) trajectories
descriptor is a novel proposed descriptor to model the dif-
ferent parts in motion in fight or non-fight sequences. These
STEC trajectories capture the relative position, size, orienta-
tion and shape of the movements. The descriptor is robust to
scale, orientation and position changes due to the use of rela-
tivemeasures between consecutive frames. Furthermore, this
method does not need a person detector to find the actors as
other state-of-the-artmethods because thewhole sequence is
used.Also, themethoddoes not use trackers that are generally
computationally expensive and may require manual initial-
ization. The proposed method does not use a BoW method
to cluster the trajectories (features), for the adapted Hough
forests classifier is used to keep the temporal order of the
action.

The proposed method has been compared with ten other
methods in some or all of the four datasets. Experiments
show that the method is better than the related methods in
the three of the four datasets. Although it is not the fastest
one, the trade-off between computational time and accuracy
is clearly better. This method gives an accuracy between 98
and 99.5% in UT1, UT2 and Movies datasets. The accuracy
in the Hockey dataset is 82.5%.

Note that pixel tracking approaches (generally based on
optical flow) may not be appropriate in our context for
two reasons. Firstly, aggressive actions (i.e., with very fast
motion) should be subject to failures due to the previ-
ous assumption. Secondly, the processing time on cameras,
on these aggressive actions, usually produces blur areas
that affect pixel-level tracking. On the other hand, these
approaches are computationally slower, which may preclude
implementations in resource-limited hardware. In a sense,
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the approach here is not to attempt fine-detail tracking but
instead focus on coarser changer.

The Hough forests approach achieves better results to
encode and classify spatio-temporal features (as STIP, IDT
and STEC) than the BoW + SVM approach.

While other methods tackle a more general problem (such
as action recognition) or resort to computationally intensive
optical flow computations, the proposedmethod opens up the
possibility of practical implementations. There is growing
interest in the private video surveillance sector in deploying
efficient methods for violence detection in prisons and other
similar scenarios.

Future work will seek to improve accuracy by using addi-
tional features to detect the violent areas. In general, STEC
trajectories method provides an excellent balance between
high detection accuracy and feature extraction times, and it
is expected than an implementation of this method on a GPU
would give an extra significant speed-up.
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