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In murky water, the light interaction with the medium particles results in a complex image formation 

model that is hard to use effectively with a shape estimation framework like Photometric Stereo. All 

previous approaches have resorted to necessary model simplifications that were though used arbitrar- 

ily, without describing how their validity can be estimated in an unknown underwater situation. In this 

work, we evaluate the effectiveness of such simplified models and we show that this varies strongly with 

the imaging conditions. For this reason, we propose a novel framework that can predict the effective- 

ness of a photometric model when the scene is unknown. To achieve this we use a dynamic lighting 

framework where a robotic platform is able to probe the scene with varying light positions, and the re- 

spective change in estimated surface normals serves as a faithful proxy of the true reconstruction error. 

This creates important benefits over traditional Photometric Stereo frameworks, as our system can adapt 

some critical factors to an underwater scenario, such as the camera-scene distance and the light position 

or the photometric model, in order to minimize the reconstruction error. Our work is evaluated through 

both numerical simulations and real experiments for different distances, underwater visibilities and light 

source baselines. 

© 2016 Elsevier Inc. All rights reserved. 
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1. Introduction 

Consider a robotic platform operating in a murky sub-sea en-

vironment, equipped with light sources and a camera to illumi-

nate and image the scene in front. Imaging and scene understand-

ing in this scenario is challenging for two reasons: (a) light from

the sources is backscattered toward the camera reducing image

contrast severely, and (b) light reaching the scene and reflected

back to the camera is weak and results in dark (and noisy) scene

appearance. 

Feature-based methods such as Structure-from-Motion are ef-

fective in mapping large areas in clear water [14] . However, they

fail to perform reliably in murky maritime environments due to

the strong image degradation that de-features the captured images

and dictates special post-processing [28] . 

Photometric approaches on the other hand attempt to model

the cause of image degradation and develop algorithms for scene
✩ This paper has been recommended for acceptance by Shahriar Negahdaripour. 
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econstruction. However, the image formation model in murky wa-

er is complex and non-linear, making it hard to use effectively

ith a shape estimation approach such as Photometric Stereo (PS).

or this reason all photometric approaches [15,21,23,38,39] have

esorted to approximations to keep the problem tractable. For

xample, often the scene is assumed to be distant enough that

nverse-square law can be ignored and that backscatter does not

ary with distance, or the scene is assumed to be close enough

hat backscattering can be ignored. 

The above photometric model simplifications are very effec-

ive when applied in the appropriate scenarios. But it is hard for

 robotic platform exploring an unknown environment to know

 priori which assumptions are valid. Blindly applying a model

implification is very likely to result in poor scene reconstruction.

ig. 1 shows the Photometric Stereo images of a barrel using an

OV in real murky port water, and the reconstruction results us-

ng the method of [38] as the vehicle was navigating toward the

arget. Being too far decreased the SNR severely as the backscatter

ominated the dynamic range of the sensor and the reconstruction

as poor. Being too close also yielded errors, since the photomet-

ic model neglected the strong non-uniform illumination on the

cene. Since the scene was unknown, it was hard to predict which

http://dx.doi.org/10.1016/j.cviu.2016.03.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2016.03.002&domain=pdf
mailto:c.tsiotsios@imperial.ac.uk
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Fig. 1. The underwater images and the respective estimated Photometric Stereo reconstructions of a barrel object using an ROV in the port water of Leixões in Porto, 

Portugal. The reconstruction quality varied according to the distance. For large distances this was degraded due to the low camera SNR and for small distances it was also 

poor due to the photometric model invalidity [38] . Since the scene is unknown, it is hard to predict the optimal distance (middle reconstruction), or adopt automatically a 

more effective photometric model or light position. 
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istance was more effective, or if another photometric model or

ight source position could have been more successful. 

In this work, we propose an effective approach for reasoning

bout the validity of such photometric models when the scene is

nknown. To achieve this, we use a dynamic lighting framework

here a robotic platform is able to probe the scene with varying

ight positions. This approach is based on a simple idea: if the pho-

ometric model is wrong for a particular scenario, the estimated

urface normals will be erroneous and, more importantly, the er-

or will vary significantly as the light source positions are varied

ith respect to the camera. On the other hand, if the photometric

odel is correct, the estimated surface normals will not vary as

he source positions are varied. 

In short, we obtain a faithful proxy for the true reconstruction

rror by estimating the change in surface normals under differ-

nt light source positions. For example, when the source is close

o the camera, backscatter is strong and any algorithm that ig-

ores this produces worse shape estimates. But, as the source

s moved away (even a short distance), the backscatter reduces

10] and the same algorithm produces better normal estimates.

ur proposed dynamic lighting framework offers significant po-

entials to Photometric Stereo in murky water. The ability to ap-

roximate the reconstruction error can be used to adjust automat-

cally: (a) the camera-scene distance, (b) the light position, and (c)

he photometric model, in order to maximize the reconstruction

uality. 

We perform extensive numerical simulations where we mimic

ealistic scenarios underwater with different medium, distance,

nd system characteristics. Then, we present a real robotic plat-

orm in murky water navigating toward the scene of interest which

an move the lighting fixtures along a mechanical arm. We demon-

trate our system in the controlled environment of a big water

ank, where the platform explores an unknown object for different

istances, light positions and scattering levels, and we compare our

esults with the reconstruction from a depth sensor [24] . 

. Related work 

During the past years several approaches have shown how

he effectiveness of Photometric Stereo can be extended by re-

axing some of the limiting assumptions of the original method.

1,31] have shown how PS can be applied in uncontrolled environ-

ents where the scene is imaged by different cameras and variant
utdoor conditions. Specifically, internet images taken in different

eather conditions were used to reconstruct tourism sites. In [25]

nd [18] the distant-lighting and orthographic projection assump-

ions were relaxed by modeling the effects of near-field illumina-

ion and perspective projection. 

Various works have studied PS for the underwater case. The

eminal work of [11] derived the image formation model in murky

ater, and since then many approaches showed how this can be

implified and optimized for the unknown orientation and albedo

15,20,21,23,38,39] . However, the resulting photometric models

ere used arbitrarily without examining their validity in different

onditions. In our work we evaluate the effectiveness of such mod-

ls considering various distances, scattering levels, light positions

nd sensor noise, and we propose a novel framework for predict-

ng their effectiveness when the scene is unknown. 

Some works emphasized the importance of the imaging system

or the quality of the captured images in murky water. The impact

f the vertical or horizontal displacement of the sources on im-

ge quality was investigated in [11,27] , the use of polarizing filters

35,36] or the fusion of two images [37] were proposed to reduce

he impact of backscatter, and the optimal separation between the

amera and the sources in terms of image quality was calculated in

10] assuming that the scene is planar and the imaging conditions

re known. Our work differs significantly from these works. First,

ecause it tackles the problem of shape and albedo estimation us-

ng Photometric Stereo and not the improvement of visibility in

urky water. Second, our work comprises an automatic approach

hat requires no prior knowledge about the scene. 

In a sense our dynamic lighting system comprises an active ap-

roach. However, it could not be compared with active approaches

n pure-air [5–7,17] . In these works, a specific photometric model

as employed without further investigation. Our work provides

he framework for evaluating such models automatically in murky

ater. 

Our work also proposes a way for estimating the optimal light

onfiguration for Photometric Stereo in murky water. Some works

ave examined the problem of finding the light position that is

ore robust to gaussian noise in pure air [3,8,16,32,33] . However,

nce again these works adopted a specific model (distant-lighting)

ithout examining its validity. In our work, we take into account

oth the model validity and sensor noise in murky water, and

e show that the optimal light position varies according to the

cenario. 
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Fig. 2. The measured brightness is the sum of the attenuated scene-reflected sig- 

nal (direct component- D ), and the unwanted scattered light from the particles 

(backscatter component- B ). 
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3. Image formation model 

Consider the image formation model for a Lambertian scene

in murky water [11,38] . The measured brightness at every pixel

equals the sum of the so-called direct and backscatter light com-

ponents ( Fig. 2 ). 

Direct component. The direct component corresponds to the

light amount from the source that reaches the scene and then gets

reflected towards the sensor pixel on the camera. A general expres-

sion can be given as 

D = n · l . (1)

Here n is the normal vector of the scene point whose magni-

tude equals the point’s albedo, � = ‖ n ‖ (we assume Lambertian

reflectance – details in Section 7.2 ). The vector l bears both the

information of the light amount (vector magnitude) that reaches

the sensor after the attenuation it goes through the medium, and

the direction of the incident illumination on the scene (vector di-

rection). Light is attenuated both due to inverse-square law and

the medium attenuation as it travels the distance d SP between the

source and the point: e −cd SP 

d SP 
2 . Here c is the total attenuation coeffi-

cient of the medium. After it gets reflected, it is attenuated again

as it travels the distance d OP through the medium: e −cd OP . Thus, the

light vector l in Eq. (1) can be expressed as 

l = I 0 
e −c(d SP + d OP ) 

d SP 
2 

ˆ l , (2)

where I 0 equals the radiant intensity of the source, and 

ˆ l is the

incident light unit-vector at the scene point. 

Backscatter component. The backscatter component corre-

sponds to the summation of all light beams that get scattered

from the particles along the Line-Of-Sight (LOS) towards the pixel

( Fig. 2 ). Consider a differential volume of particles at a point P x . As

with the scene point, this receives a light amount that has been

attenuated along its travel path d SP x between the source and the

particle: I P x = I 0 
e 
−cd SP x 

d SP x 
2 . 

Then the particle volume scatters light around all directions

around it. However, we are interested in the light amount that is

scattered towards the sensor pixel, i.e. towards a direction with an-

gle φ. Thus, the particle-reflected light equals β(φ) I P x , where β( φ)

is the scaling scattering function of the medium. This is further

attenuated as it travels the distance d OP x from the particle to the

medium by e −cd OP x . Integrating along all illuminated points on the

LOS of the pixel, we get the total backscatter light component: 

B = 

∫ P 

P 0 

I 0 β(φ) 
e −c(d SP x + d OP x ) 

d SP x 
2 

dP x. (3)

Due to the limited field of view of the source, the lower limit of

the integral equals a point P on the LOS. 
0 
. Photometric model approximations 

In this section we summarize previous model simplifications

hat were used for photometry in murky water. 

The measured brightness at every pixel equals the sum of the

irect and backscatter components. A generic expression of the im-

ge formation model (excluding noise) can be written as: 

 = 

D ︷︸︸︷ 
n · l + B. (4)

ere n is the normal vector which bears the information about the

rientation and albedo of the scene point (the albedo equals the

ormal’s magnitude), l is the light vector which bears both the in-

ormation about the light direction and the attenuation that the

eam has undergone along its travel path, and B is the backscatter

omponent. 

The goal is to recover the normal vector n for every pixel. Due

o the under-determined and complex nature of the PS equations,

revious approaches showed how the problem can be simplified.

irst, it was shown that the backscatter component can be approx-

mated using the following assumptions: 

No Backscatter. In [15,23] it was assumed that the backscat-

er component can be totally neglected compared with the di-

ect component: D � B . In this case, B is approximated by B ′ = 0 ,

nd the measured brightness corresponds to the direct component:

 = D + ���
0 

B ′ . This is valid for small distances where the incident

llumination on the scene and the respective direct component are

ery strong compared to backscatter, or when the camera-source

istance is large [10,11] . 

Backscatter Saturation. In [36,38] it was described that the

ackscatter component becomes saturated, i.e. it reaches a maxi-

um value and remains constant after a small distance from the

amera. In other words, it becomes scene-depth independent and

or this reason it can be approximated for every pixel by cap-

uring images from a camera looking at infinity B ′ = E ∞ 

, where

 = 0 . These images are then subtracted from the main Photomet-

ic Stereo images, and the remaining signal corresponds to the di-

ect component: E − E ∞ 

= D . 

When valid, both of these approximations facilitate scene re-

onstruction, as they do not have to model and solve for the sev-

ral unknown variables of the backscatter component. Then, the

roblem comes to the estimation of the normal vector n using the

irect component only. The challenging part in this case is to de-

ne the incident illumination vector l for every pixel. As soon as

his is estimated, the remaining unknown is the normal vector only

nd Photometric Stereo corresponds to a linear system of equations

s in pure air [38] . A very fundamental assumption for the direct

omponent has been that the lighting on the scene is distant: 

Distant-Lighting. It is assumed that the incident light vector

rom a source is the same for all scene points, which is valid when

he scene depth is large compared with the object size. Then, l

 Eq. (2) ) is approximated by the constant vector l ′ for all pixels,

hich is the light vector between the source and the centroid of

he object (details in Section 6 ). l ′ is easily calibrated using a white

atte sphere at the object position [21,38] . Otherwise, it can be

stimated via an uncalibrated way as in pure air [2,9,34] . 

Distant-Lighting yields a linear PS system of equations and has

een used by the vast majority of photometric approaches due to

ts computational simplicity. However, its principle assumption be-

omes violated when the camera-scene distance is small with re-

pect to the object size. In that case the incident illumination on

he scene is non-uniform: 

Near-Lighting corresponds to the original model for the direct

omponent, where l ( Eq. (2) ) differs according to the unknown 3 D

osition of every scene point and the total attenuation coefficient
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Fig. 3. Simulations showing the reconstruction error for various photometric models in different conditions. The error depends on the noise level, the scene depth, the 

scattering level, the size of the object and the light source baseline. 
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 of the medium. In this case, the direct component is non-linear

nd has more unknowns than its distant approximation. [15,23]

olved the Near-Lighting problem using external hardware for esti-

ating c and an iterative optimization algorithm. According to this,

he Distant-Lighting approximation was initially considered in or-

er to recover a first estimate of the normal map of the object.

y integrating the normal map and having prior knowledge about

he average camera-scene distance, the depth map of the object

as estimated and the incident illumination on the object was re-

alculated taking into account the depth variation per pixel. Then,

 refined version of the normal map was estimated. The algorithm

as iterated until convergence. 

Combining the photometric models for the direct and backscat-

er components yields potential optimization strategies. For exam-

le, for large camera-scene distances it was shown that Distant-

ighting & Backscatter Saturation model approximations yield a

imple, linear solution that requires no prior knowledge about

he medium coefficients [38] . For small camera-scene distances,

istant-Lighting might fail (depending on the object size) and the

on-linear Near-Lighting model can be solved either assuming that

he backscatter is saturated or neglected entirely. 

In the next section, we investigate the factors that influence the

ffectiveness of such photometric models in murky water. 

. Photometric model effectiveness evaluation 

Consider a Photometric Stereo system operating in murky wa-

er. Given the captured images, a version of the normal map is esti-

ated by inverting the photometric model that is used to describe

he image formation. We now examine how the validity of such

odels changes according to the imaging conditions. 

In pure-air and controlled imaging conditions there are some

ough rules for predicting when a photometric model is correct.

or example, Distant-Lighting dictates that the scene depth is at

east an order of magnitude larger than the object size. In murky

ater, the validity of Distant-Lighting approximation is harder to

redict as it also depends on the total attenuation coefficient c

f the medium. The camera Signal-to-Noise ratio ( SNR ) is another

mportant factor in murky water since it is directly related with

he effects of attenuation and backscattering [10] . We performed a

arge number of simulations in order to evaluate the effectiveness

f different photometric approximations in murky water. In this

ase, the metric that indicates the model effectiveness is the dif-

erence between the estimated and the ground-truth normal map

f the object. 

We have numerically simulated the image formation underwa-

er, a Photometric Stereo system with 4 sources, and a sphere ob-

ect at different scene depths (the term depth in this work refers

o the scene depth, i.e. distance, rather than the water depth).

ig. 3 a shows the reconstruction error for the ideal case that the

ensor is noiseless and has unlimited dynamic range. When no

odel approximations are made (only possible in simulations), the
econstruction error is zero everywhere (blue dotted line) as would

appen in pure air (orange dotted line). When a model approxima-

ion is used (red, green and black lines), some error appears in the

stimated normals and this varies with distance according to the

alidity of the model’s assumptions. At large distances for exam-

le, the Distant-Lighting model is very effective because the object

ize is small compared with the depth, while the No Backscatter

odel fails badly as it erroneously neglects the strong backscatter

omponent. Thus, in the noiseless case the error varies only due to

he level of model invalidity. 

Consider now a realistic sensor with limited dynamic range and

ome noise. In this case the image formation model is rewritten

s E = D + B + N S , where N S is additive noise. The Signal-to-Noise-

atio for a captured image is 

NR ≡ D 

B + N S 

. (5) 

nlike in pure air, the SNR is affected by the backscatter compo-

ent which takes up part of the limited dynamic range of the sen-

or, and the strength of the direct component which is attenuated

ccording to the scattering level of the medium. 

Fig. 3 b shows the error for the realistic-noisy case. The recon-

truction in the scattering medium (blue dotted line) suffers from

igh error compared with pure air (orange dotted line) especially

t large scene depths where the SNR is low. This affects all model

pproximations, the use of which introduces additional error. As

ome imaging characteristics change – for example the scattering

evel ( Fig. 3 c), the object size ( Fig. 3 d), or the light baseline (i.e. the

istance of the sources from the camera – Fig. 3 e) the reconstruc-

ion effectiveness for each photometric model changes as well. 

Overall, the system effectiveness depends on several factors and

ence using a photometric model arbitrarily can yield significant

econstruction error. At the same time, it is hard to predict auto-

atically when the reconstruction is effective since the scene and

he environment are normally unknown. In the next sections we

escribe how this can be achieved using a Photometric Stereo sys-

em with dynamic lighting. 

. Model effectiveness prediction using dynamic lighting 

In a real underwater scenario the ground-truth normal map of

he object is unknown, making the evaluation of a photometric

odel’s effectiveness hard. We tackle this problem using a Pho-

ometric Stereo system with dynamic lighting. Consider a PS light

aseline where a number of sources (at least 3) are placed around

he camera. Combining the model approximations of Section 4 , we

an estimate a version of the normal vector n r at every scene

oint, where r denotes the baseline distance of the sources from

he camera. Whether the ground-truth normal map n was known,

e could estimate the true reconstruction error (p-norm) as 

r = ‖ n r − n ‖ p . (6) 
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Fig. 4. Consider a Photometric Stereo system which can move the light sources by a small incremental step dr . This way, two versions of the normal map are estimated: 

one using the light baseline r , and one using r + dr. When the photometric model is valid, the estimated normal maps coincide as they match the ground-truth. Otherwise 

the estimated normals differ from the ground-truth as they absorb some error due to the model invalidity. 

Fig. 5. Given that the source-object distance is large compared with the object size, Distant Lighting (top-row) assumes that the illumination vector l can be approximated by 

the constant distant vector l ′ . The level of agreement between these two (a) is reflected in the respective approximation error in the recovered normal (b). When we change 

the light position, the source-object distance is changed. This affects the distant lighting assumption and its respective approximation error. For a valid model, the error is 

small at both source positions and the recovered normals coincide. For an invalid model, the error differs significantly, and we see a similar difference in the estimated 

normals (c). Similarly, when we change the light position the backscatter component is changed (bottom-row), affecting the validity of the respective approximations. 
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The level of agreement between the two vectors depends on the

validity of the photometric model. When the model is correct we

expect the vectors to be equal or to vary insignificantly. Otherwise

they will differ, as the error in modeling will be absorbed by the

estimated normal n r . 

Consider now a framework that allows the baseline to change

by moving all sources by a small displacement dr ( Fig. 4 ). Using the

new baseline r + dr, we can recover a new version of the normal

vector n r+ dr , that corresponds to ground-truth error 

εr+ dr = ‖ n r+ dr − n ‖ p , (7)

as in Eq. (6) . 

Since we are imaging the same object, the estimated normals

using the two baselines should coincide and equal the ground-

truth when the photometric model is valid. In this case, n r �
n r+ dr � n . Nonetheless, when the model is invalid, the modeling

error is evident in an estimated normal vector which differs from

the ground-truth one. Our key observation is that this error dif-

fers with baseline, and thus we expect εr 	 = εr+ dr 	 = 0 which leads

to the estimation of a different normal for the same scene point

n r 	 = n r+ dr 	 = n . This gives us the insight that the level of disagree-

ment between the estimated normals for the same scene point us-

ing proximate baselines indicates the model validity: 

ε′ 
r = ‖ n r+ dr − n r ‖ p . (8)

This requires no prior knowledge about the ground-truth object

normals, but only two separate Photometric Stereo sessions using

different light source positions. 
.1. Model approximation error 

We now give the physical explanation of our proposed method

onsidering different model approximations and noise due to low

NR . As described in the previous section we assume that all light

ources are displaced by dr away from the camera ( Fig. 5 shows

nly one source only for clarity). 

Distant-Lighting assumes that the illumination vector from a

ight source is constant. Consider the case of Fig. 5 -top left. When

he source is at position r , the real illumination vector at a scene

oint will be l r . For Distant-Lighting, this is approximated by the

ector l ′ r between the light source and the centroid of the object.

his will cause some error to the estimated vector n r , according to

ow valid the approximation of l r is with l ′ r . Similarly, when the

ources are moved by dr , l r+ dr is approximated with l ′ 
r+ dr 

, which

auses error to n r+ dr . 

When the object size X is small compared with the source-

bject distance 
√ 

r 2 + d 2 � X, the Distant-Lighting model is valid.

hen, the difference between the real illumination vector and the

istant one is negligible l ′ r � l r , and n r � n . If 
√ 

r 2 + d 2 � X, then
 

(r + dr) 2 + d 2 � X also, meaning that Distant-Lighting is also

alid for the baseline r + dr. Thus l ′ 
r+ dr 

� l r+ dr and n r+ dr � n . Then,

he proposed error of Eq. (8) will be ε′ 
r = ‖ n r − n r+ dr ‖ p � 0 , indi-

ating that the Distant-Lighting model is correct. 

As the ratio between the source-object distance and the ob-

ect size is decreased, the Distant-Lighting approximation becomes

nvalid. In this case, 
√ 

r 2 + d 2 ∼ X, l ′ r 	 = l r , and n r 	 = n . Since the

ource-object distance and the object size are now comparable,

he displacement in source position dr is important. Specifically,√ 

(r + dr ) 2 + d 2 
> 

√ 

r 2 + d 2 
, meaning that the error in approximating
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Fig. 6. The SNR of the captured images depends on the light position. Thus in the 

presence of SNR error the estimated normal maps differ from one light position to 

the other. When the SNR error is low (small scene depths where the direct compo- 

nent is strong) the estimated normals coincide. 
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Fig. 7. As the light baseline is increased, the No Backscatter assumption becomes 

valid as the backscatter is decreased and thus the ground-truth reconstruction error 

is also decreasing (left graph). After the optimal light baseline the true reconstruc- 

tion error is increasing again due to the low SNR . Our proposed error metric (right 

graph) approximates the ground-truth error and predicts the optimal baseline. 
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′ 
r+ dr 

with l r+ dr , will be smaller than approximating l ′ r with l r ,

eading to n r 	 = n r+ dr . 

Fig. 5 a-top row shows the difference between the approximated

nd the real illumination vectors for light positions r and r + dr. At

arge scene depths, the vectors are well approximated with their

istant versions for both baselines, and the estimated normals in

oth cases are close to ground-truth ( Fig. 5 b). As the scene depth

ecreases, a small change in light baseline dr has a big impact on

he Distant-Lighting approximation, and the estimated normals us-

ng each baseline differ. Thus our proposed error metric ( Fig. 5 c)

an be used for predicting the validity of the model approxima-

ion. 

Backscatter Component: The change in source position sim-

larly affects the validity of the backscatter component approxi-

ations. In this case though, the reflected error in the estimated

ormals is due to the erroneous approximation of the backscat-

er component B with B ′ , where B ′ = 0 for the No Backscatter as-

umption, or B ′ = E ∞ 

for the Backscatter Saturation. Fig. 5 -bottom

eft shows the effect of the light position on the backscatter. The

ackscatter integration path for the source at position r will be al-

ays greater than the respective one at r + dr, leading to B r > B r+ dr 

10] . 

Consider the No Backscatter model approximation for a baseline

 . This assumes that the backscatter component is negligible with

espect to the strong direct component, and approximates B r with

 

′ 
r � 0 . In this case, the estimated normal will absorb some error

ccording to how valid the approximation of B r is with B ′ r ( Fig. 5 a-

ottom row). This is valid for small scene depths. If B r � B ′ r � 0

hough, then B r+ dr � 0 as well, since B r+ dr < B r . Hence when the

odel is valid the error is negligible for both baselines which re-

over normals close to ground-truth n r � n r+ dr � n ( Fig. 5 b). For

arge scene depths where backscatter is not negligible, using the

o Backscatter approximation will reflect significant error in the

stimated normals. Since B r+ dr < B r , the error that will affect n r+ dr 

ill be smaller than the error to n r . This leads to n r 	 = n r+ dr 

 Fig. 5 c). 

SNR Error: Even when a model approximation is correct, the

econstruction might suffer from error due to low SNR ( Section 5 ).

n [10] it was described that this also varies with the light position

ince the position affects the direct and backscatter components

nd therefore the image SNR ( Eq. (5) ). Therefore, similarly with the

odel approximation errors, the error e r in Eq. (6) for baseline r

ill be different than e r+ dr when SNR error is present, which leads

o n r 	 = n r+ dr . In the absence of SNR error, the two normal maps

ould coincide. 

Fig. 6 a shows the impact of the noise to the useful direct com-

onent (expressed as SNR −1 ). This is strong in large scene depths

here the direct component is low. The fact that the SNR error

epends on the light position reflects a respective change to the

stimated normal maps that differ from the ground-truth ( Fig. 6 b)

nd they also differ from each other ( Fig. 6 c). 
.2. Optimal light baseline 

We have explained that the change in the estimated normals

nder two source positions reflects the validity of the photometric

odel. Given that the sources can move to more than two posi-

ions, our proposed metric ε′ ( Eq. (8) ) can also be used to compare

he reconstruction effectiveness at different light baselines. Since

he error changes according to the light position, there is an opti-

al light baseline r O that minimizes the ground-truth error: 

 O = arg min 

r 
‖ n r − n ‖ p . (9)

Consider Fig. 7 , which corresponds to a system that can move

he light sources by many small steps, creating an equal number

f baselines (x-axis). Left graph indicates the ground-truth recon-

truction error at every light source baseline. In the absence of

ny model approximation error in pure air, all baselines yield an

nsignificant error that changes due to sensor noise only (orange

otted line). Within scattering and when a model approximation

s used, the baseline is crucial as it affects the reconstruction er-

or. Here, the No Backscatter model is subject to large error for

mall baselines, since backscatter is strong there and neglecting it

eflects large error to the estimated normals ( Section 6.1 ). Increas-

ng the baseline reduces the backscatter component and hence the

rror is decreased. After the optimal baseline r O , the reconstruc-

ion error is increased again because then the distance between

he sources and the object is too big and SNR is low [10] . 

Right graph corresponds to our error metric, which compares

he estimated normal map of every two successive baselines (r, r +
r) . In the pure air case and when no model approximation is

sed, the normal map changes insignificantly. When the model ap-

roximation is used, the reconstruction changes a lot when the

odel is erroneous and the noise is strong (small baselines), and

xhibits the minimum change when the reconstruction is least

ubject to errors. Thus, we predict the optimal baseline by esti-

ating 

 

′ 
O = arg min 

r 
‖ n r − n r+ dr ‖ p . (10)

It is important to note here that the optimal light baseline for

S differs according to the scene depth, the photometric model and

he murkiness level as Fig. 8 indicates. Hence, a Photometric Stereo

ystem with fixed light sources has a decreased effectiveness com-

ared with a dynamic system. 

. Results 

.1. Simulations 

We have conducted a large number of numerical simulations

onsidering different object distances and underwater visibilities

n order to evaluate the effectiveness of our approach. Figs. 9 and
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Fig. 8. The optimal light baseline differs according to the scene depth, the photo- 

metric model, and the murkiness level. In general, at bigger scene depths larger 

baselines are preferred (regardless of the photometric model) in order to mini- 

mize the backscatter that affects the SNR . At small scene depths, the backscatter is 

low anyway and smaller baselines are preferred to maximize the direct component. 

Then, each photometric model dictates a different baseline so that its assumptions 

become valid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Normalized processing time per model. 

Photometric model Time 

Distant+Saturation 1 

Near+No Backscatter 125 

Near+Saturation 170 
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10 outline our framework, considering a scenario where a robotic

platform navigates toward a sphere object. 

At this part we considered three photometric models by com-

bining different model approximations for the direct and backscat-

ter components. These are the following: (a) Distant-Lighting and

Backscatter Saturation, (b) Near-Lighting and Backscatter Satura-

tion, and (c) Near-Lighting and No Backscatter. Section 4 contains

further details about each photometric model. 

We considered a large sphere object with a diameter of 40 cm

so that the Distant-Lighting assumption is violated at small scene

depths and the reconstruction error between the photometric

models is significantly different. We used the values of c = 0 . 1 /b =
0 . 04 , c = 0 . 4 /b = 0 . 2 , and c = 2 /b = 1 . 8 for the cases of low,

medium and strong scattering respectively, according to [12] . At

every scene depth the system varies the light baseline by mov-

ing all sources by small displacements of dr = 2 cm , within a range

from 0 . 2 –1 . 5 m from the camera. Then, using Eq. (8) it predicts the

error for each model. 

Fig. 9 a shows the ground-truth reconstruction error for ev-

ery model over the varying light baselines and 9 b shows our

proposed metric that can be estimated without ground-truth
Fig. 9. Simulations of a realistic underwater scenario, where a robotic platform is carryin

t every scene depth under the different light positions. (a) shows the ground-truth reco

normal map as the light positions change. 
nformation. We can notice that our method approximates effec-

ively the ground-truth reconstruction error at all scene depths.

t also indicates the optimal baseline r ′ 
O 

for every model, i.e. the

aseline where the error is minimized. 

Then, considering that each photometric model is characterized

y the reconstruction error at its optimal baseline ε′ 
r O 

(i.e. that the

ystem adapts a different light baseline for each model at every

cene depth), we can predict how the effectiveness of every model

hanges with scene depth. Fig. 10 corresponds to three different

cattering levels and outline the several advantages of our method.

he dotted line in (a) corresponds to the ground-truth error per

odel and scene depth, after selecting the true optimal baseline

 O using Eq. (9) . The solid line, corresponds to the ground-truth

rror when our predicted optimal baseline r ′ O is selected using

q. (10) . These two coincide in almost all the different scattering,

cene depth and model cases. Thus, our proposed metric can be

sed to adapt the light position to the scenario. The graphs at (b)

how the final predicted model effectiveness per scene depth. We

an see that this successfully approximates the ground-truth error

f (a). 

Our framework can also be used for comparing the effective-

ess of different models and forming an improved optimization

trategy in robotic underwater missions. Recall here that the pro-

essing capability of underwater vehicles is constrained by the

imited power and computational resources [4] . Each photomet-

ic model has a different com plexity and computational cost. For

xample Distant-Lighting+Backscatter Saturation corresponds to a

inear solution, while the Near-Lighting models are non-linear and

omprise additional unknowns. Table 1 shows an estimate of the

rocessing time (normalized by the time of the fastest method)

hen each model is optimized using our simulations. 
g a dynamic lighting system, and it estimates several reconstructions of the sphere 

nstruction error of every model. (b) shows the average difference in the estimated 
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Fig. 10. Simulations showing the effectiveness of our proposed approach. (a) shows the reconstruction error per method, assuming that we have selected the ground- 

truth optimal light baseline per scene depth (dotted line) and the respective reconstruction error when we select the optimal baseline according to our proposed method 

(solid line). (b) shows our automatic estimation of the error per model and scene depth. (c) shows how the reconstructed sphere shape changes with scene depth, directly 

reflecting the effectiveness of the respective model. Finally, we can predict the best reconstruction, as the one that minimizes the change in normal map for all scene depths 

and models (red box). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 
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Approximating the reconstruction error per model can be used

n order to adapt such models automatically according to the sce-

ario. Consider for example that the Distant+Saturation model is

sed initially, due to its simplicity/low computational cost and its

ffectiveness in lar ge camera-scene distances where all models are

ffected by the SNR error ( Fig. 10 ). The robotic platform could pre-

ict that navigating towards the object decreases the reconstruc-

ion error until the scene depth where it starts increasing again

ecause of the invalidity of the Distant-Lighting model. Then it

ould compare whether the more complex Near-Light models per-

orm significantly or insignificantly better and adapt the one with

he minimum error. 

In Fig. 10 (c) shows some instances of the reconstructed sphere

hapes using different models per scene depth in the case of strong

cattering. Notice how the reconstructed shapes change, in accor-

ance with the respective ground-truth and approximated errors.

s our framework can be used for approximating the level of error

or every model at every scene depth, all possible reconstructions

an be compared and the one that corresponds to the minimum

redicted error can be selected as optimal (highlighted with red). 

.2. Discussion of other photometric factors 

Our method is based on the observation that the change in esti-

ated surface normals under different source positions is a faithful

roxy of the true reconstruction error per model. For robustness,

e estimate the average change in a large number of pixels. It is

mportant to investigate whether other effects can influence the

ffectiveness of our method. 

Ambient light might be present, however it is an additive signal

hat is constant for all source positions. Thus, it can be measured
y capturing an image will all lights off and subtracted from the

riginal images. This will lead to a reduced SNR which we already

nvestigated in our work. 

Forward-scattering can take place in small camera-scene dis-

ances, causing resolution loss [11,20] . In our work, we did not

odel forward-scattering. In [13] it was described that the con-

rast loss due to attenuation and backscatter in underwater images

s dominant compared with the resolution loss caused by forward-

cattering. This was demonstrated with objective criteria in [29,30] ,

nd a wide series of real experiments in a water tank in [19] .

n [39] forward-scattering was included, however the additional

odel parameters were assigned arbitrary values, as the authors

escribed that these are hard to estimate without tedious, high-

recision calibration that is subject to errors. For this reason, in a

ater work a detailed sensitivity analysis was performed in order

o determine the importance of the various model variables and it

as concluded that the impact of the forward-scattering parame-

ers is negligible compared with attenuation and backscatter [39] .

n every case, our work provides the framework for evaluating such

hotometric models in murky water that can be investigated in fu-

ure work. 

Specularities are generally weak underwater and otherwise they

an be mitigated using polarizers on the source and camera, re-

pectively [30] . Similarly, inter-reflections can be compensated us-

ng a high-frequency spatial light modulator on the source [22] .

e believe that modeling these effects mathematically adds un-

ecessary complexity when they can be mitigated optically, espe-

ially since we are designing an underwater robot. Self-shadowing

ay influence our approach for objects near the camera. Specif-

cally, as a light source is moving it can create a self-shadow

t some point that will change the pixel’s intensity, causing a
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Fig. 11. As the sources move, the estimated normal changes smoothly (left). When 

an outlier is created from one of the sources, the respective change in the estimated 

normal is abrupt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Top: Our mechanical system for moving the light sources inside water. Two 

sources are placed above and two sources below the camera, that can move along 

a horizontal direction. Bottom: The imaging setup for one of the murky water ex- 

periments using a shell object. 

Fig. 13. At every scene depth we estimate the average change in normal map per 

model, and we select the baseline that exhibits the smallest change. In this way the 

system adapts the light baseline to the scenario, instead of using a fixed baseline. 
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respective change to the estimated normal vector. However, con-

trary to the change in a normal vector due to erroneous model ap-

proximations or SNR error, the change due to such outliers is very

abrupt. Fig. 11 demonstrates this effect. Left graph corresponds to

a scene point that is not subject to outliers. The estimated normal

vector in this case changes smoothly for all photometric models as

we change the baseline. When one of the sources creates an outlier

(shadow or specularity) in the right graph, the estimated normal

will change abruptly at that point no matter what model is used.

Thus, we can easily detect pixels that exhibit changes above some

threshold, and omit them from our Photometric Stereo framework.

7.3. Discussion of lighting setup 

We denoted the change in light source position by dr . Theoret-

ically, if dr tends to zero the estimated normal maps will coincide

regardless of the model validity. In reality dr corresponds to non-

zero values that are feasible to achieve using a mechanical system

or an array of light sources. 

Selecting the value of dr depends on the sensing capabilities of

the sensor that should be able to measure the respective change

in image brightness. In our work, we tested different values of dr

( dr = 1 cm in Section 6 , dr = 2 cm is Section 7.1 , and dr = 5 cm in

the real experiments of Section 7.4 ), all of which in the order of

cm , considering the physical limitations of the setup underwater

where the light sources position varies usually within cm on the

robotic platform and the scene distance varies from cm to 1–2 m

in turbid water [11] . 

An interesting future direction would be to automatically adjust

the displacement dr as well according to the accuracy needed and

the sensing properties of the system. For example, starting from a

large dr the system would predict an optimal light position, and

then refine this using smaller displacements. 

The number of sources is irrelevant with the effectiveness of

our method, which requires at least 3 sources as any traditional PS

system. We have tested our method using 3, 4 and 8 sources with

no change in performance. 

In the simulations of Section 7.1 we considered a symmetrical

lighting system where all sources move in a square around the

camera, while in the real experiments we used a system where the

sources move in horizontal direction that is easier to implement.

The displacement pattern does not affect the performance of our

method, as soon as all of the sources move either further away or

toward the camera. In our case, we considered only symmetrical

setups that are coherent with the previous works of [21,38] . 

7.4. Real experiments 

In order to evaluate our proposed system in real murky wa-

ter, we performed experiments in a big water tank (approximately

50 0 0 l ). We constructed a mechanical arm that allows the light fix-

tures to move along a horizontal line ( Fig. 12 ). To the best of our
nowledge this is the first dynamic Photometric Stereo system in

urky water. Our platform was also able to move at different dis-

ances from the object. A NIKON D70 0 0 camera with an NIKKOR

5 mm lens, and 4 sources were all immersed into the water. Two

ifferent levels of scattering were created by diluting milk into

lean water as in [21,38] , and a real shell object was imaged at

our different scene depths at each scattering level. At every scene

epth, the lighting setup around the camera was varied by moving

 sources above and 2 below the camera along a horizontal line,

reating 10 different baselines separated by a step of dr = 5 cm . 

At every scene depth, we varied the light sources baseline and

e estimated a different normal map for every photometric model.

e estimated the change in the non-unit normal vectors since the

econstruction error can be reflected both to the normal direction

nd magnitude (which corresponds to the albedo). Fig. 13 shows

ur predicted error of the change in normals per model for two

ifferent scene depths in one of the scattering levels. This allowed

s to select the optimal baseline per method, i.e. the one that min-

mizes the predicted error using Eq. (10) . As in the ground-truth

imulations of Fig. 8 , for big depths the estimated optimal base-

ine was larger for all models compared with the respective ones at

maller depths, and also larger for the No Backscatter model com-

ared with the other two models. 

After selecting the optimal baseline for each photometric model

t every scene depth, the final predicted error can be estimated

 Fig. 14 ). This is very high for all models at large depths, where

he SNR of the captured images was low due to the attenuated di-

ect and the strong backscatter components. Then, the error was
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Fig. 14. The predicted error at a specific scattering level, per photometric model 

and scene depth (after selecting the optimal baseline in every case). All models 

exhibit high error at large scene depths, which is decreased rapidly as the plat- 

form moves closer to the object and SNR gets higher. For smaller scene depths the 

improvement in reconstruction is weaker, and in some cases (Distant+Backscatter 

Saturation model) the reconstruction error is increased, indicating the model 

invalidity. 
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Fig. 16. The blue line corresponds to the predicted error of a system that adapts 

a different photometric model and light baseline at every scene depth (minimum 

change in surface normals). The dotted lines show the predicted error of differ- 

ent systems that use a fixed model and light baseline in all cases (black line: Dis- 

tant+Saturation with a baseline of 40 cm , red line: Near+Saturation with a baseline 

of 30 cm , green line: Near+No Backscatter with a baseline of 20 cm ). The respective 

reconstructions for every system can be seen in Figs. 17 and 18 . (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article). 
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ecreased for smaller distances where the visibility was better.

ig. 15 shows the reconstructions for the Distant+Saturation model

for the optimal light positions at every depth) that correspond to

he predicted error of Fig. 14 . The reconstruction error was signif-

cantly decreasing initially as the scene depth was decreasing and

he SNR was getting higher. Then at the closest depth where the

ear-light effect was strong, the predicted reconstruction error in-

reased again indicating that the model becomes invalid. This is

upported by the optical comparison between the reconstructed

hapes and the reconstruction obtained using a depth sensor in

ure air. For large scene depths the reconstruction is dominated by

oise, for the smallest depth it has a strong bias in the middle (af-

ected by the near-field illumination), and at the predicted optimal

epth (marked by red) it is closest to the depth sensor reconstruc-

ion. For the smallest depth, our predicted error indicates that the

wo other models are more valid ( Fig. 14 ), and this can be optically

onfirmed by the reconstructions in Fig. 15 (third row). Among the

wo, the error for the Near+Saturation method was predicted to be

ower (marked by red). 
ig. 15. The reconstructed object shape when the Distant-Lighting+Backscatter Saturation 

ethod can automatically predict that the reconstruction quality is initially increasing as

uality is getting worse due to the model invalidity. Thus our method predicts the opti

mallest scene depth it is predicted that the other two models are more valid, and specifi

ed). (For interpretation of the references to color in this figure legend, the reader is refer
Our method yields an adaptive Photometric Stereo system

hich can adjust the light position and the photometric model

ccording to the scenario. The graphs in Fig. 16 show the pre-

icted error of using such an adaptive system that selects a dif-

erent model and light position at every scene depth (the ones

hat correspond to the minimum change in the surface normals)

nd different traditional, non-adaptive systems that use a constant

ight baseline and model regardless of the scenario. Figs. 17 and

8 show the respective optical results for each system at two scat-

ering levels. First, it can be noticed how significantly different the

econstruction quality can be as the depth, scattering level, photo-

etric model and light baseline vary. Using such factors arbitrarily

an yield large reconstruction errors. Our adaptive system yields

ignificantly better shape and albedo estimations for all distances

n both scattering levels, without any prior knowledge about the

rue object shape. The reconstruction marked by red corresponds

o our predicted optimal solution among all potential reconstruc-

ions (for every scattering level there were 10 light positions × 3
photometric model is used, for decreasing camera-scene distance (second row). Our 

 the distance is getting smaller. Then, for the smallest distance the reconstruction 

mal camera-scene distance (denoted by red) for the specific model. Then, for the 

cally that the reconstruction for the Near+Saturation model is optimal (marked by 

red to the web version of this article). 
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Fig. 17. The reconstruction results of an adaptive and different non-adaptive systems at different scene depths. The predicted optimal reconstruction (among all scene depths 

& models) is marked by red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 
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Fig. 18. The reconstruction results for a different scattering level. 
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models × 4 scene depths = 120 potential reconstructions that can

be seen in our supplementary material). 

8. Discussion and conclusions 

In this work, we evaluated the effectiveness of different photo-

metric models in murky water considering several factors that are

critical in realistic imaging conditions (model validity, camera SNR ,

light source baseline, distance, scattering etc.). We showed that the

reconstruction error depends strongly on the imaging conditions

and for this reason we presented a simple way for predicting the

effectiveness of a photometric model when the scene and the en-

vironment are unknown. The effectiveness of our method lies on

the observation that the change in estimated surface normals un-

der different light source positions reflects the true error due to an

invalid photometric model or noise due to low SNR . 

Our methodology still assumed that some information is a-

priori known or calibrated, such as the incident illumination vector

on the object centroid. This can be easily estimated using a sonar

or laser beam sensor [23] , or using uncalibrated methods that have

been suggested for pure air [2,9,34] . The goal of our work was to

focus on the photometric model validity in murky water, rather

than on its final optimization. In future work, our framework can

be used to evaluate totally uncalibrated methods. 

Approximating the model’s effectiveness using our dynamic

lighting system offers significant potentials to Photometric Stereo

in murky water. Specifically, some critical parameters that were

chosen arbitrarily in previous works, such as the scene depth, the

light baseline and the photometric model, can be adapted auto-

matically to an unknown imaging scenario. Additional photomet-

ric models could be evaluated through our framework, such as

forward or multiple scattering [10,11,20,23] , or models which as-

sume different illumination profiles for the light sources such as

[21] which neglects shadow volumes in the medium or [26] which

models non-isotropic sources. 

Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at 10.1016/j.cviu.2016.03.002. 
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