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Abstract. In this paper we propose a probabilistic framework that mod-
els shape variations and infers dense and detailed 3D shapes from a single
silhouette. We model two types of shape variations, the object pheno-
type variation and its pose variation using two independent Gaussian
Process Latent Variable Models (GPLVMs) respectively. The proposed
shape variation models are learnt from 3D samples without prior knowl-
edge about object class, e.g. object parts and skeletons, and are com-
bined to fully span the 3D shape space. A novel probabilistic inference
algorithm for 3D shape estimation is proposed by maximum likelihood
estimates of the GPLVM latent variables and the camera parameters that
best fit generated 3D shapes to given silhouettes. The proposed inference
involves a small number of latent variables and it is computationally ef-
ficient. Experiments on both human body and shark data demonstrate
the efficacy of our new approach.

1 Introduction

3D shape estimation from a single image has wide applications for graphics,
surveillance, HCI and 3D object recognition. Single view reconstruction is a
highly under-constrained problem and requires prior knowledge on 3D shapes of
an object class. Various approaches have been investigated with different con-
straints. While previous methods for general scenes/object categories find it
typically hard to capture complex 3D topology of objects, much of recent study
has tackled estimating detailed 3D shapes of specific categories, e.g., human
faces [10] and body shapes [11–14]. In this work, we propose an approach for
both synthesizing and reconstructing dense 3D shapes of general object cate-
gories under articulations or deformations given a single image.

1.1 Literature Review

Below we give a brief overview of related work for general scenes/object cate-
gories and work designed specifically for human body.

Methods for general scene reconstruction have relied on primitive geometri-
cal constraints such as symmetry and yielded a coarse pop-up reconstruction:
e.g., Criminisi et al. [17] have used vanishing points and projective geometry
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constraints and Hoiem et al. [2] assumed planar/ground-vertical scenes. Prasad
et al. [1] have tackled reconstruction of curved objects, requiring user interac-
tions to reduce down complexity of 3D object topology. Saxena et al. [18] have
investigated to recover rough depth estimate from image features. Hassner and
Basri [19] have similarly inferred depth from image appearance. 3D geometries
having similar image appearance to that of a query object from a database
served as the shape prior. These view based methods require an exhaustive
number of samples. Some efforts have been made for 3D shape reconstruction
from 2D sketches or line drawings [20], where man-made objects are represented
by transparent edge-vertex graphs. Bayesian reconstruction of Han et al’s [3] is
limited to polyhedral objects, tree or grass only. An unified method to segment,
infer 3D shapes and recognise object categories proposed in [4] is based on a
voxel representation for the shape prior model and applied to object categories
such as a cup, mug, plate etc, all rather simple and rigid objects. Torresani et
al.’s [21] have attempted to recover non-rigid 3D object shape as in our work
but only up to sparse reconstruction using 2D point tracks. Their work falls into
a different topic, structure-from-motion.

More related study to ours is the work for estimation of detailed human body
shape [12–14]. Human body is an articulated object with a number of joint an-
gles. A fixed or deformable crude model based on skeleton, e.g. a cylinder model
has been widely exploited for human body pose estimation and tracking. By
fitting the model to images, joint angles and a rough 3D shape estimation are
obtained, e.g. [6]. Finer body models, e.g. using volumetric representations [7] or
generic deformable models [8] have been used to capture more subtle shape vari-
ations. Those models, however, consider body parts independently and decouple
pose from shape variations, therefore not representing shape variations around
joints and pose-dependent shape deformations. Recently, a more detailed human
model called SCAPE (Shape Completion and Animation for PEople) has been
proposed [11]. SCAPE models 3D shape variations among different human bod-
ies in a canonical pose by Principal Component Analysis (PCA), and different
poses, i.e. articulation, by joint angles. The shape transfer from a source body
to target bodies is obtained by rigid rotations of the 13 body parts manually
defined and the pose-dependent deformations for subtle muscular deformation
around joints. Balan et al. [12] have adopted this model for the detailed human
body shape estimation from silhouettes and formulated the problem as an opti-
misation over the SCAPE model parameters. However, the optimisation of the
SCAPE model is difficult due to uniform priors placed on a number of parameters
(joint angles and eigen-coefficients). Stochastic search in [12] is computationally
expensive and has initialisation problems. Sigal et al. [13] have used a regression
technique to help initialising the SCAPE model parameters prior to stochastic
search and Guan et al. [14] have incorporated more visual cues, the shading cues
and internal edges as well as silhouettes to facilitate fitting the SCAPE model to
images. Although these methods have shown detailed shape recovery from few
silhouettes, using strong priors on a human body model, i.e. manually defined
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Fig. 1. 3D shape recovery (blue meshes) of a human body (left) and a shark (right)
under pose change and their shapes in the canonical pose (gray meshes).

skeleton and body parts, makes them difficult to be extended to other, especially,
free-form object categories without redesigning the representation.

1.2 Proposed Approach

In this work, we propose a probabilistic generative model for both learning and
inferring dense and detailed 3D shapes of a class of nonrigid objects from a single
silhouette. In our previous work [15], learning shape priors of canonical-posed and
rigid objects for single view reconstruction was addressed. Extended from that
paper, we investigate a more challenging setting including pose variations and
camera viewpoint changes (see Fig. 1). Over prior-arts, we infer more complex
and general deformable 3D shapes from a single image.

In our probabilistic framework, the shape variations of objects are modeled by
two separate Gaussian Process Latent Variable Models (GPLVMs) [22], named
the shape generator and the pose generator. The former captures the phenotype
variation, which refers to the shape variation between objects: tall vs short,
fat vs thin, etc, while the latter captures the pose variation, which includes
articulation or other nonrigid self-deformation. They are learnt directly from
3D samples without prior knowledge about object class. The GPLVM has been
successfully applied for human pose estimation [9] and tracking a deformable
surface [16] by mapping a high-dimensional parameter space, i.e., a number of
joint angles or mesh coordinates, to a low dimensional manifold. In our work, it
nonlinearly maps the complex 3D shape data into a low-dimensional manifold,
expressing detailed shape variations only by a few latent variables. With both
generators, arbitrary 3D shapes can be synthesized through shape transfer [5],
as shown in Fig. 2.

We also propose a novel probabilistic inference algorithm for 3D shape esti-
mation from silhouette(s). The shape estimate is obtained by maximum-likelihood
estimation of the latent variables of the shape and pose generators and camera
parameters that best match generated shapes to input silhouettes. Compared
to stochastic optimisation over a large parametric space, i.e. joint angles in [7,
12–14], the proposed inference is computationally efficient as the latent space
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Fig. 2. Synthesizing new shapes of sharks (left) and human bodies (right) by shape
transfer.

has a very low dimension. Experiments on articulated human bodies and sharks
demonstrate efficacy of the proposed method for reconstructing detailed shapes
of general deformable object categories.

The rest of this paper is structured as follows. Section 2 presents the proposed
probabilistic model; Section 3 explains learning the shape and pose generator and
synthesizing new shapes by the shape transfer; Section 4 presents probabilistic
inference algorithm; experimental results are shown in Section 5, and discussions
conclusions are drawn in Section 6 and 7 respectively.

2 Probabilistic Model for 3D Shape Estimation

The proposed shape estimation is done by: first, synthesizing 3D shapes from a
shape generator MS that spans the phenotype variation, and a pose generator
MA that spans the pose variation; and then, matching the generated shapes with
the input silhouette(s). The proposed graphical model is shown in Fig. 3. In the
formulation, we consider a more general k-views setting. Let Sk (k = 1, 2, · · · ,K)
be the observed silhouettes in K distinct views, which are given in the form of
2D point sets; V = [V1,V2, · · · ,VN] is a 3N -D vector which represents the 3D
shape with N sampling points on its surface; and Wk (k = 1, 2, · · · ,K) is the
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Fig. 3. The graphical model for the 3D shape inference.

silhouette of V in the k-th view. The joint distribution can be written as:

P ({Sk,Wk}K
k=1,V,u,v|{γk}K

k=1,xA,xS,MA,MS)

=
( K∏

k=1

P (Sk|Wk)P (Wk|V, γk)
)

P (u|xA,MA)P (v|xS,MS)P (V|u,v).(1)

In (1), xA and xS are the latent coordinates of the corresponding models; u and
v are the respective latent feature vectors generated by MA and MS at xA

and xS; γk = {Pk, tk} (k = 1, 2, · · · ,K) are the camera parameters of K views.
Here, we assume an affine camera model, Pk is a 3 × 2 projection matrix and
tk is a 2 × 1 translation vector on the image plane. The terms P (Sk|Wk) and
P (Wk|V, γk) (k = 1, 2, · · · ,K) model the matching of 3D shapes V with the
observed silhouettes Sk. The details of inferring shapes from silhouettes will be
presented in Section 4. The last three terms P (u|xA,MA), P (v|xS,MS), and
P (V|u,v) of (1) model the 3D shape synthesis from the pose generator MA and
the shape generator MS given the new latent coordinates xA and xS, which will
be presented in detail in Section 3.

3 Shape Generation

3.1 Data Set and Shape Registration

In our approach, the shape generator MS and the pose generator MA are mod-
eled by two independent GPLVMs [22], and trained separately on two data sets,
named shape data set and pose data set. The former contains different shape
instances in the canonical pose, while the latter is comprised of various poses of
a particular shape instance called zero shape.

In order to train the generators, we must build up vertex-wise correspon-
dences among training instances so that we can encode the phenotype variation
and pose variation in a vectorized form. For the pose data set, the correspon-
dences are straightforward as all the pose data are generated by animating the
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same 3D instance in our experiment. Such correspondences are, however, not
given for the shape data set and shape registration is required.

In our implementation, every instance V in the shape data set is registered
with the zero shape in the canonical pose V0. In this work, the registration
includes three steps. Firstly, we roughly align the scale and orientation of V and
V0 by their first principal axis which is obtained through a Principal Component
Analysis (PCA). Secondly, for every paired sample points (pi,qj) of two 3D
shapes V0 and V (i = 1, 2, · · · , I; j = 1, 2, · · · , J , and I ≤ J), we compute
hybrid distances d(pi,qj) as weighted averages of the 3D spatial distance [24]
d3D(pi,qj) and the χ2 distance dSC(pi,qj) of the 160-bin 3D version of shape
contexts [23] (4 in the radial distance × 8 in the longitude × 5 in the latitude),
which are defined as follows:

d(pi,qj) = αd3D(pi,qj) + (1− α)dSC(pi,qj) (2)
d3D(pi,qj) = ‖pi − qj‖2 (3)

dSC(pi,qj) =
K∑

k=1

‖hpi
(k)− hqj

(k)‖2
hpi

(k) + hqj
(k)

, (4)

where hpi
(k) and hqj

(k) denote the k-th values of K-bin normalised histograms
at pi and qj, respectively, and the weighting factor α is fixed to be 0.5 in the
implementation. Hungarian algorithm [25] is then used to find the minimal cost
point-wise matching between the two shapes:

Dmin = min
{li}I

i=1

I∑

i=1

d(pi,qli). (5)

where li ∈ {1, 2, · · · , J} denotes the corresponding vertex index in the input
shape V.

In the third stage, we then use the thin-plate spline (TPS) model [26] to re-
cover point-wise warping between the pair of shapes using the correspondences
established. Given an arbitrary 3D position p on the zero shape V0, its cor-
responding position q on the new input shape V is obtained by the following
interpolating function:

q = [pT 1]B +
I∑

i=1

ciφ(‖p− pi‖) (6)

where the kernel function φ(r) = r3 in the 3D case; B is a 4 × 3 coefficient
matrix; ci (i = 1, 2, · · · , I) are 1× 3 weighting vectors, which also satisfy that:

I∑

i=0

ci = 0, and
I∑

i=0

cipi = 0. (7)

TPS coefficients B and ci are chosen to minimise the matching errors as well as
the bending energy cbased on all the pair-wise vertices correspondences (pi,qli)
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(i = 1, 2, · · · , I) obtained in the matching stage:

ETPS =
I∑

i=1

‖pi − qli‖2 + βTr(CTΦC). (8)

where Φ = [φ(‖pi − pj‖)]1≤i≤I,1≤j≤J is the I × I kernel matrix; C = [ci]Ii=1

is an I × 3 weighting matrix; and β is the regularization factor controlling the
amount of smoothness, and it is set to be 0.25 is our implementation. ETPS in
(8) can be minimised analytically through the following linear system:

[
Φ̃ ΠP

ΠT
P 0

] [
C
B

]
=

[
Πq

0

]
, (9)

where ΠP =




pT
1 1

pT
2 1
...

...
pT

I 1


 is a I × 4 matrix, ΠQ =




qT
1

qT
2
...

qT
I


 is a I × 3 matrix, and

Φ̃ = Φ + βI is an I × I matrix.
The algorithm alternates between the last two stages and converges quickly

within a few iterations. It produces good registration with coherent one-to-one
correspondence.

After the registration stage, Principal Component Analysis (PCA) is applied
to decorrelate and reduce the dimension of input data before training the pose
and shape generators. We use the first m = 30 principal components as the pose
feature u and shape features v for training the GPLVMs.

3.2 Synthesizing New Shapes and Poses from GP

Given the new latent coordinates xA and xS, generating the pose vector u of
the zero shape and the shape vector v of the canonical pose from MA and MS
can be formulated as the following Gaussian predictive likelihoods:

P (u|xA,MA) = N (
u;kT

U(xA)K−1
U YA, (kU (xA,xA)− kT

U(xA)K−1
U kU(xA))I)

= N
(
u; ū(xA), σ2

A(xA)I
)

(10)

P (v|xS,MS
)

= N (
v;kT

V(xS)K−1
V YS, (kV (xS,xS)− kT

V(xS)K−1
V kV(xS))I

)

= N
(
v; v̄(xS), σ2

S(xS)I
)
. (11)

In (10) and (11), YA = [ui]NA
i=1 and YS = [vi]NS

i=1 are matrices which contain NA

and NS training instances in columns for learning MA and MS , respectively;
KU = [kU (xA,i,xA,j)] 1≤i≤NA,1≤j≤NA

, KV = [kV (xS,i,xS,j)]1≤i≤NS ,1≤j≤NS
,

kU(xA) = [kU (xA,xA,i)]1≤i≤NA
, kV(xS) = [kV (xS,xS,i)]1≤i≤NS

are the cor-
responding non-linear kernel matrices/vectors. In this paper, kU and kV are
defined as the RBF+linear kernels [9]:

kU (xA,i,xA,j) = θU,1e
− θU,2

2 ‖xA,i−xA,j‖2 + θ−1
U,3δij + θU,4xA,i

T xA,j; (12)

kV (xS,i,xS,j) = θV,1e
− θV,2

2 ‖xS,i−xS,j‖2 + θ−1
V,3δij + θV,4xS,i

T xS,j. (13)
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Fig. 4. Transforming local triangle meshes during pose change.

where δij is the Kronecker delta function, and θU = {θU,i}4i=1 and θV = {θV,i}4i=1

refer to the hyper-parameters in the nonlinear kernels.

3.3 Shape Transfer using Jacobian Matrices

MA or MS only models the shape variation along one of two axes in the shape
space. To fully span the shape space, we present a shape synthesis method based
on shape transfer in this section.

For the convenience of formulation, we introduce two auxiliary variables VA

and VS to represent the shapes with only the pose variation/phenotype variation
imposed, respectively. See Fig. 2. Both of them are 3N -D vectors, which contain
the 3D spatial positions of N sampling vertices of the shape. VA and VS are
recovered from the m-D features u and v through linear combinations of the
PCA eigen-vectors as: VA = GA + AAu and VS = GS + ASv, where GA and
GS are the mean vectors, and AA and AS are 3N ×m matrices containing the
first m eigen-vectors of the pose and shape data set, respectively; VO denotes
the zero-shape in the canonical pose.

The concept of transferring deformation from a source object to target objects
has been investigated in the previous work [5]. In our problem, an arbitrary shape
V is synthesized by applying the phenotype variation on the posed zero-shape
VA locally as follows:

V = VA + ∆V′ + nV, (14)

where ∆V′ = [∆Vi
′]Ni=1 is a 3N -D concatenating displacement vector that

represents the pose-dependent local shape variation from VA, and nV is an
additional random variable modeled by the white Gaussian noise subjected to
N (0, σ2

nI3N×3N). We assume that the vertex-wise phenotype variations ∆Vi and
∆V′

i before and after the pose change are locally linear transforms as ∆Vi =
VS

i −VO
i and ∆V′

i = Vi −VA
i (refer to Fig. 2) and they can be related by the

3× 3 local Jacobian matrix Ji, similarly to [5]:

∆V′
i = Ji∆Vi. (15)
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where

Ji =




∂VA
i,x

∂Vi,x

∂VA
i,y

∂Vi,x

∂VA
i,z

∂Vi,x

∂VA
i,x

∂Vi,y

∂VA
i,y

∂Vi,y

∂VA
i,z

∂Vi,y

∂VA
i,x

∂Vi,z

∂VA
i,y

∂Vi,z

∂VA
i,z

∂Vi,z


 , (16)

Computing the Jacobian matrices Ji requires the partial derivatives of sur-
face, which are often hard to obtain when an arbitrary 3D triangular mesh
is given. We calculate the local Jacobian matrices at a single sampling ver-
tex approximately from mesh triangles it belongs to. Given the sampling ver-
tex VO

i on the zero-shape in the canonical pose (and its corresponding ver-
tex VA

i in the new pose), we can find their corresponding the mesh triangles
TO

i = {VO,0
i ,VO,1

i ,VO,2
i } and TA

i = {VA,0
i ,VA,1

i ,VA,2
i }, as shown in Fig. 4

(left). Each triangle pair (TO
i ,TA

i ) only gives the correspondences of two pairs
of in-plane vector bases (mO,1

i ,mA,1
i ) and (mO,2

i ,mA,2
i ), where

mO,1/2
i = VO,1/2

i −VO,0
i , (17)

mA,1/2
i = VA,1/2

i −VA,0
i . (18)

To fully determine Ji, we need the third pair of bases (mO,3
i ,mA,3

i ) with
the normal vector in order to constrain the space perpendicular to the triangle
plane, where

mO,3
i =

√
‖mO,1

i ‖‖mO,2
i ‖ mO,1

i ×mO,2
i

‖mO,1
i ×mO,2

i ‖
, (19)

and its deformed counterpart mA,3
i is defined in a similar form. It is worth

mentioning that the norm of the third basis is chosen to be the square root of
the product of the other two bases in order to maintain the local homogeneity
of the space. The local Jacobian matrix Ji can finally be computed as:

Ji = [mA,1
i ,mA,2

i ,mA,3
i ][mO,1

i ,mO,2
i ,mO,3

i ]−1. (20)

In the training stage, we compute the Jacobian matrix at every sampling
point for all the instances of the data set using the method described above.
A weighted average filtering over 8 nearest-neighbor sampling points is applied
to Jacobian matrices for smoothness. Finally, these matrices are vectorized and
used to learn the pose generator MA in junction with the vertex displacements.
In the prediction, the elements of Jacobian matrices can thus also be recovered
from the pose feature u using PCA mean GJ and eigen-vectors AJ as

vec(J) = GJ + AJu, (21)

where 9N -D vector vec(J) = [vec(J1),vec(J2), · · · ,vec(JN)] is the vectorized-
form of matrix J.
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3.4 A Probabilistic Model for the Shape Synthesis

The last term P (V|u,v) of (1) models the synthesis of new 3D shapes from
the pose feature u and shape feature v, which are generated by GPLVMs in
Section 3.2. By combining (14), (15), and (21) the shape synthesis can therefore
be formulated as the following equation:

V = VA + J · (VS −VO) + nV

= GA + AAu + mat
(
GJ + AJu

) · (GS + ASv −VO
)

+ nV, (22)

where J = diag(J1,J2, · · · ,JN) is a 3N ×3N matrix, and mat(·) is an operator
which reshapes the 9N × 1 vector into a 3N × 3N block diagonal matrix.

We hope to formulate the posterior distribution of the synthesized shape V
explicitly given the latent coordinates xA and xS of the pose and shape genera-
tors MA and MS . From the previous subsection, we know that the distributions
of VA, VS, and vec(J) have Gaussian form, since they are linearly generated
from Gaussian-Process predictions u and v.

VA|xA,MA ∼ N (VA;µVA(xA),ΣVA(xA)), (23)
VS|xS,MS ∼ N (VS;µVS(xS),ΣVS(xS)), (24)

vec(J)|xA,MA ∼ N (vec(J);µJ(xA),ΣJ(xA)). (25)

where

µVA(xA) = GA + AAµu, ΣVA(xA) = σ2
uA

AAAT
,

µVS(xS) = GS + ASµv, ΣVS(xS) = σ2
vA

SAST
,

µJ(xA) = GJ + AJµu, ΣJ(xA) = σ2
uA

JAJT
.

According to (22), the synthesized shape V is the product of multi-variate
Gaussian VS and J, and it is non-Gaussian. However, we find its Gaussian
projection V̂ with the same mean and covariance is very good approximation to
the true distribution of V, and this projection greatly helps the computation.

P (V̂|xA,xS,MAMS) ≈ N (
V̂;µV(xA,xS),ΣV(xA,xS)

)
, (26)
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where

µV = EVA,VS,J

(
VA + J(VS −V0)

)

= EVA(VA) + EJ(J)EVS(VS −V0)
= µVA + µ̂J(µVS −VO)

ΣV = E(VVT )− µV̂µT
V̂

= σ2
nI + EVA,VS,J

(
VA + J(VS −V0)(VA + J(VS −V0)

)T − µV̂µV̂
T

= σ2
nI + ΣVA + EVS,J

(
J(VS −V0)(VS −V0)T JT

)−
µ̂J(µVS −V0)(µVS −V0)T µ̂T

J

= σ2
nI + ΣVA + EJ

(
J
(
ΣVS + (µVS −V0)(µVS −V0)T

)
JT

)

−µ̂J(µVS −V0)(µVS −V0)T µ̂T
J

= σ2
nI + ΣVA + µ̂JΣVS µ̂T

J +
[[

Tr
(
ΣJ

ij
mnSij

)]
m,n=0,1,2

]

i,j=0,1,··· ,N−1

where µ̂J = mat(µJ) represents 3N × 3N matrix shape of µJ
1; Sij = S(3i + 1 :

3i+3, 3j +1 : 3j +3) is the 3×3 sub-matrix of the 3N ×3N matrix S = ΣVS +
(µVS −VO)(µVS −VO)T ; and ΣJ

ij
mn = ΣJ(9i+3m+1:9i+3m+3,9j+3n+1:9j+3n+3) is

the 3 × 3 sub-matrix of the 9N × 9N matrix ΣJ. In the cases when σ2
u and σ2

v

are small, the variance ΣV can be approximated by

ΣV ≈ σ2
nI + ΣVA + µ̂JΣVS µ̂T

J . (27)

4 Inferring 3D Shapes from Silhouettes

The matching between the synthesized 3D shapes and input silhouettes is for-
mulated as a two-stage process in our approach. The first stage is the projection
stage, which models the procedure of projecting the 3D shape V into a silhouette
Wk in the k-th view, as shown in (28).

P (Wk|V, γk) = N (Wk; P̃kV + t̃k, σ2
wI), (28)

where P̃k = Pk ⊗Mk and t̃k = tk ⊗ 1N′ are the expanded version of projec-
tion matrix and the offset vector in the k-th view, respectively. Here, Mk =
[mk,ij ]1≤i≤N ′,1≤jleqN is a N ′×N binary masking matrix with element mk,ij = 1
if the projection of the i-th 3D sample points is on the boundary and mk,ij = 0
otherwise. Mk selects the N ′ silhouette points of the projection in the k-th view
and it is fully determined by Pk.

The second stage is the matching stage, which models how well the input
silhouette Sk fits the corresponding boundary projection Wk of the generated

1 For the convenience of notation, we sometimes omit the parameters of the mean and
covariance in the formulation. E.g., µJ = µJ(xA)
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shape in the k-th view. The observation likelihood is defined on the basis of
Chamfer matching, which provides more robustness to errors and outliers in the
input silhouettes as

P (Sk|Wk) =
1
Z

exp
(
− 1

2σ2
s

DT 2
Sk

(
Wk)

))
, (29)

where DT 2
S(·) refers to the squared L2-distance transform of the silhouette S =

{si}|S|i=1. For an arbitrary point set W = {wi}|W|
i=1 , it is defined as DT 2

S(W) =
1

2|W|
∑|W|

i=1 minsi∈S ‖wi − si‖2 + 1
2|S|

∑|S|
j=1 minwj∈W ‖wj − sj‖2. To simplify the

computation, the normalization factor Z is approximated by a constant here.
As stated in the previous section, generating the 3D shapes V from MS and

MA can be approximately formulated as a Gaussian Process (26). It follows
that the silhouette likelihood P (Wk|xA,xS,MA,MS , γk) also has the Gaussian
form by combining (26) with (28):

P (Wk|xA,xS,MA,MS , γk) = N (
Wk;µWk

(xA,xS, γk),ΣWk
(xA,xS, γk)

)
,(30)

where µWk
= P̃kµV + t̃k and ΣWk

= P̃kΣVP̃T
k + σ2

wI.
Our target is to find the 3D shape which best fits all the image evidences

Sk (k = 1, 2, · · · ,K) in K views, or equivalently, to find such latent positions
xA, xS and the parameters γk of K cameras. This can be done by finding
the maximum of the overall likelihood P ({Sk}K

k=1|xA,xS,MA,MS , {γk}K
k=1)

(k = 1, 2, · · · ,K). The likelihood has no closed form since the direct integral over
the terms with the distance transform is not tractable, but it can be efficiently
optimised by the closed-form lower bound Q (See Appendix A for derivations):

P ({Sk}K
k=1|xA,xS,MA,MS , {γk}K

k=1) ≥ Q(xA,xS, {γk}K
k=1)

=
K∏

k=1

1

Zk

√
det

(
I + 1

σ2
s
ΣWk

) exp
(− 1

2σ2
s

DT 2
Sk

(
µWk

))
. (31)

Maximizing the lower bound Q, or equivalently, minimizing − log Q, gives a
good approximated maximum-likelihood estimate of the latent coordinate xML

A ,
xML
S , and camera parameters γML

k (k = 1, 2, · · · ,K):

(xML
A ,xML

S , {γML
k }K

k=1) ≈ arg min
xA,xS,{γk}K

k=1

− log Q(xA,xS, {γk}K
k=1).

= arg min
xA,xS,{γk}K

k=1

K∑

k=1

(
1

2σ2
s

DT 2
Sk

(
µWk

)
+

1
2

log det
(
I +

1
σ2

s

ΣWk

))
. (32)

In our implementation, we minimize − log Q by adaptive-scale line search and
use multiple initializations to avoid local minima. The optimization alternates
between finding the latent coordinate (xA, xS) and correcting the camera pa-
rameters {γk}K

k=1 (and hence the masking matrices {Mk}K
k=1). The convergence

usually comes fast, as the latent dimensions of GPLVMs are low. Consequently,
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the corresponding maximum likelihood estimate of the 3D shape can be approx-
imately given as:

P (VML|xML
A ,xML

S ,MAMS) ≈ N (
VML;µV̂(xML

A ,xML
S ),ΣV̂(xML

A ,xML
S )

)
,(33)

which gives the mean shape µV̂ and the uncertainty measurement ΣV̂.

5 Experimental Results

We have investigated two shape categories in the experiments: human bodies
and sharks. For the human data, we used Civilian American and European
Surface Anthropometry Resource (CAESAR) database as the shape data set,
which contains over 2000 different body shapes of North American and European
adults in the canonical pose. The pose data set was obtained by synthesizing
animations of different 3D poses, e.g, running (150 frames), walking (150 frames),
arm stretching and torso movements (250 frames), etc., using the 3D female
human model Sydney in Poser 7. For the shark data, the shape data set contains
eleven 3D shark models of different shark species available from Internet [19]. For
the pose data set, we used an animatable 3D MEX shark model to generate an
11-frame sequence of shark tail-waving motion. The mesh resolution of the zero-
shapes are: 3678 vertices/7356 faces for the human data, and 1840 vertices/3676
faces for shark data, respectively. To train MA and MS , we empirically set the
latent space dimension dS = 6 for the human shape generator, dS = 3 for the
shark shape generator, and dA = 2 for the pose generator for both data sets.

5.1 Shape Synthesis

A direct and important application of our framework is to synthesize a variety
of shapes in the category from the shape generator and the pose generator. We
visualize the process of synthesizing human shapes in running pose for the latent
coordinates of the pose and shape generators in Fig. 5. To examine the synthesis
quality, we sampled 10 positions in both the shape and pose latent spaces along
the trajectories shown by numbers, and generated the human shapes by pairing
up the corresponding shape and pose coordinates. As shown in Fig. 5, a wide-
range of body shapes and different stages in the running pose were synthesized.
We have also observed that the predictive variances (low variance indicated by
red in Fig. 5) imply the quality of shape synthesis. The higher-quality shapes
(shapes 4 − 7 marked by the rectangle) were generated from the low variance
area of the shape latent space, where more training samples were presented.

5.2 3D Shape Reconstruction from Images

To verify the efficacy of our 3D shape inference framework, we have tested our
approach over 20 human images in tight-fitting clothes and 22 shark images
which were collected from Internet. These images involve different camera poses
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ator: Running

Fig. 5. Generation of new human body shapes in running pose. The shape and pose
latent spaces are shown in their first two dimensions. Shapes are spanned by the paired
coordinates.

Data Precision Recall

22 shark s

20 human bodies

0.8996     0.0481± 0.9308      0.0380±

0.7801     0.0689± 0.8952      0.0995±

Fig. 6. (a) An example of variance estimates of the shark reconstruction; (b) Precision-
Recall ratios of the predicted shapes.

and various object motions, including human running, walking, arm stretching,
and shark tail movement. We adopted GrabCut [27], a state-of-the-art interactive
segmentation algorithm based on graph cut, to segment the foreground and
extract the corresponding silhouettes. The goal is to infer the reasonable 3D
shapes implied by the pictures given the foreground region.

It is worth mentioning that the single-view reconstruction problem is inher-
ently ambiguous. The single silhouette often corresponds to multiple possible 3D
shapes mainly due to symmetry and viewpoint changes. Our software generates
multiple shape candidates to the silhouette and provides estimate variances for
each prediction (Fig 6(a)). For each image, the running time to predict 10 candi-
dates was about 10 - 15 minutes by our unoptimized c++ codes in 2.8GHz PC.
In the implementation, we randomly initialised the latent positions of the shape
and pose generators. However, we find it helpful to roughly initialise the camera
viewpoint. This will speed up the algorithm and greatly increase the possibility
of obtaining desired results.

We have evaluated the performance of the approach qualitatively (see Fig. 7
and 8), and quantitatively by the Precision-Recall (P-R) ratios as given in
Fig 6(b). Here, the precision and recall are defined as: Precision = |SF∪SR|

SR
,
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Fig. 7. The qualitative results on shark images. Column 1, 4: input images; Column 2
and 5: the reconstructed shapes in contrast with the input silhouettes; Column 3 and
6: the reconstructed shapes at another viewpoint.

and Recall = |SF∪SR|
SF

, where SF denotes the ground-truth foreground and SR

represents the projection of our prediction. All the 3D results provided in Fig. 7
and 8 correspond to the highest likelihood values given the input silhouettes
and the shape priors. It shows that our approach captures both phenotype and
pose variations and gives accurate estimates on the camera viewpoint. Also, P-
R ratios on human data are of reasonable accuracy in comparison with those
generated by the human specific model [12], although it is not straightforward
to compare quantitatively due to different data sets and number of silhouettes.
The reconstructed human bodies are comparatively worse in both visual quality
and the P-R ratios than those of sharks because the more complex articulation
structure makes exact pose fitting difficult. For example, the pose generator fails
to explicitly model the closing hands in the first example of Fig. 8, although the
arm and torso poses are well fit (see Section 6 for more discussions).

6 Discussion

Compared to previous parametric models [11, 12], the proposed method has both
advantages and disadvantages. The benefits include: 1) requiring no strong class-
specific priors (parts and skeletons), which facilitates modeling general cate-
gories, 2) estimating a much smaller number of model parameters and thus be-
ing more efficient, and 3) providing a probabilistic intuition on the uncertainty
of shape generation and inference. However, the second benefit could be the
drawback at the same time. E.g. whereas the SCAPE allows all possible body
configurations by joint angles, our method generates poses similar to those in
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Fig. 8. The qualitative results on human images: Row 1: input images; Row 2: the
reconstructed shapes in contrast with the input silhouettes; Row 3: the reconstructed
shapes at another viewpoint; Row 4: the body shapes in the canonical pose.

the pose data set. When training instances are insufficient, the pose generator
can be limited in descriptive power, as the first example of Fig. 8 shows. How-
ever, the pose generator is easily extendable by more pose data sets and is able
to span sufficient local pose variations (the same advocated for pose estimation
in [9]).

It is interesting to compare the shape transfer stage in our approach with
that in parametric models. In the SCAPE, part-wise rigid rotations matrices
and pose-dependent deformation matrices together serve similar functions as
Jacobian matrices in our method do but incorporate joint angles. The shape
transfer in our method can also benefit when structure priors are available,
e.g. Jacobian matrices can be more reliably computed by enforcing part-wise
smoothness constraints.

Although our method exploits only silhouettes in the experiments, more vi-
sual cues such as shading and internal edges could be used to improve matching
accuracy [14]. More direct mapping from silhouettes to shapes could be learnt
by regression techniques [13] from the new shapes of new poses synthesized by
the proposed model. This would help initialising the proposed inference.
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7 Conclusions

In this paper, we have proposed a probabilistic generative method that models
3D deformable shape variations and infers 3D shapes from a single silhouette.
The inference in the proposed framework is computationally efficient as it in-
volves a small number of latent variables to estimate. The method is easy to
extend to general object categories. It learns and recovers dense and detailed 3D
shapes as well as camera parameters from a single image with a little interaction
for segmentation. The proposed method can also serve as a good substitution or
approximation of a detailed parametric model especially when physical structure
of a category is not available.

There are many interesting applications of the proposed solution. We can
animate a recovered individual shape by synthesizing new poses by the pose
generator and pose transfer. As future work we shall perform experiments using
multiple silhouette inputs for higher precision and extend the framework to in-
corporate dynamic models for inferring shapes from video sequences. Also, 3D
object recognition or action recognition can also be done by the pose-free 3D
shape or shape-free pose recovered by the proposed method respectively.
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A Detailed Derivations of Equation (31)

In Section 4 of the paper, we define the squared L2-distance distance transform
of the silhouette S = {si}|S|i=1 as

DT 2
S(W) =

1
2|W|

|W|∑

i=1

min
si∈S

‖wi − si‖2 +
1

2|S|
|S|∑

j=1

min
kj∈{1,2,··· ,n}

‖wkj
− sj‖2,(34)

for an arbitrary point set W = {wi}|W|
i=1 . The likelihood P ({Sk}K

k=1|xA,xS,MA,
MS , {γk}K

k=1) has no closed form since the direct integral over the terms with
distance transform is not tractable. As a consequence, a direct maximization
on the likelihood will be computationally troublesome. However, the following
property of the distance transform will help the computation.

Property 1. Let S be the edge map, and W = {w1,w2, · · · ,wn} and U =
{u1,u2, · · · ,un} be two sets of n 2D image points. Then the squared L2-distance
transform of W satisfies DT 2

S(W) ≤ DT 2
S(U) + ‖W −U‖2.
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Proof.

l.h.s =
1
2n

n∑

i=1

min
si∈S

‖wi − si‖2 +
1

2|S|
|S|∑

j=1

min
kj∈{1,2,··· ,n}

‖wkj
− sj‖2

≤ 1
2n

n∑

i=1

min
si∈S

‖wi − si‖2 +
1

2|S|
|S|∑

j=1

min
kj ,lj∈{1,2,··· ,n}

(‖ulj − sj‖2 + ‖wkj
− ulj‖2

)

≤ 1
2n

n∑

i=1

min
si∈S

(‖ui − si‖2 + ‖wi − ui‖2
)

+
1

2|S|
|S|∑

j=1

min
lj∈{1,2,··· ,n}

(‖ulj − sj‖2 + ‖wlj − ulj‖2
)

≤
(

1
2n

n∑

i=1

min
si∈S

‖ui − si‖2 +
1

2|S|
|S|∑

j=1

min
lj∈{1,2,··· ,n}

‖ulj − sj‖2
)

+
1
2n

n∑

i=1

‖wi − ui‖2

+
1

2|S|
|S|∑

j=1

max
lj∈{1,2,··· ,n}

‖wlj − ulj‖2

= DT 2
S(U) +

1
2n

n∑

i=1

‖wi − ui‖2 +
1
2

max
i∈{1,2,··· ,n}

‖wi − ui‖2

≤ DT 2
S(U) +

n∑

i=1

‖wi − ui‖2 = r.h.s.

Property 1 leads a closed-form lower bound Q(xA,xS, {γk}K
k=1) to the like-

lihood P ({Sk}K
k=1|xA,xS,MA,MS , {γk}K

k=1), as follows.

P ({Sk}K
k=1|xA,xS,MA,MS , {γk}K

k=1)

≥
K∏

k=1

1
Zk

exp
(− 1

2σ2
s

DT 2
Sk

(
µWk

(xA,xS, γk)
))

·
K∏

k=1

∫

Wk

e
− 1

2σ2
s
‖Wk−µWk

(xA,xS,γk)‖2N (
Wk;µWk

(xA,xS, γk),ΣWk
(xA,xS, γk)

)
dWk

=
K∏

k=1

1

Zk

√
det

(
I + 1

σ2
s
ΣWk

(xA,xS, γk)
) exp

(− 1
2σ2

s

DT 2
Sk

(
µWk

(xA,xS, γk)
))

= Q(xA,xS, {γk}K
k=1). (35)


