
Silhouette-based Object Phenotype Recognition using 3D Shape Priors

Yu Chen1 Tae-Kyun Kim2 Roberto Cipolla1

Department of Engineering, University of Cambridge, Cambridge, UK1

Department of Electrical Engineering, Imperial College, London, UK2

yc301@cam.ac.uk tk.kim@imperial.ac.uk rc10001@cam.ac.uk

Abstract

This paper tackles the novel challenging problem of 3D

object phenotype recognition from a single 2D silhouette.

To bridge the large pose (articulation or deformation) and

camera viewpoint changes between the gallery images and

query image, we propose a novel probabilistic inference al-

gorithm based on 3D shape priors. Our approach combines

both generative and discriminative learning. We use la-

tent probabilistic generative models to capture 3D shape

and pose variations from a set of 3D mesh models. Based

on these 3D shape priors, we generate a large number of

projections for different phenotype classes, poses, and cam-

era viewpoints, and implement Random Forests to efficiently

solve the shape and pose inference problems. By model

selection in terms of the silhouette coherency between the

query and the projections of 3D shapes synthesized using

the galleries, we achieve the phenotype recognition result as

well as a fast approximate 3D reconstruction of the query.

To verify the efficacy of the proposed approach, we present

new datasets which contain over 500 images of various hu-

man and shark phenotypes and motions. The experimental

results clearly show the benefits of using the 3D priors in

the proposed method over previous 2D-based methods.

1. Introduction

Recognizing 3D objects from one or more 2D views is a

fundamental problem in computer vision. There have been

increasing attempts to solve this problem, which embraces a

number of research issues such as view-invariant object in-

stance/category recognition [11, 12, 15, 24, 32, 34], object

pose recognition [13, 17, 22, 25, 31, 29, 33], object view-

point classification [9], gait recognition [18], face recogni-

tion across pose and expression [20, 36], etc. However, to

our best knowledge, the problem of classifying generic ob-

ject phenotypes (shapes), under 3D object pose and camera

view-point changes, has not been tackled. The successful

solutions would be widely useful for potential applications

such as automatic human body shape monitoring, in relation

with recent food recognition studies in computer vision, and

Gallery

Query

Figure 1. Phenotype recognition problem. Given a silhouette

gallery of different body shapes, the goal is to classify the body

shape of a query silhouette in the presence of pose and/or camera

viewpoint changes.

wild animal (such as horse and fish) tracking, etc.

In this work, we address a novel challenging task of

shape recognition, i.e. classifying phenotypes of the 3D

object from a single 2D silhouette input (see Fig. 1 for an

example of human body shapes). Here, phenotypes are re-

ferred to the intrinsic shape differences across given human

instances, e.g., fat vs thin, tall vs short, muscular vs unmus-

cular. The major difficulty of this problem is that the query

silhouette can undergo large pose and camera view-point

changes. Traditional 2D-based approaches fail to capture

the intrinsic shape (dis-)similarity between the query and

gallery silhouettes. In view of this problem, we propose a

novel generative+discriminative solution by using 3D shape

priors, i.e. the knowledge learnt from previously-seen 3D

shapes. Our approach is motivated by the observation that

humans can perceive the 3D shape of an object from a sin-

gle image, provided that they have seen similar 3D shapes.

Once 3D shapes are estimated from single images (single

view reconstruction), camera view-point/pose invariant ob-

ject recognition is achievable.

The problem we tackle, therefore, conjoins single view

reconstruction with 3D object recognition. The novelties

and main contributions lie in:

• Going beyond pose recognition: object pose recog-
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nition and tracking by 3D template models has been

widely studied [13, 22, 25, 27, 29, 35]. This work at-

tempts to capture more subtle 3D shape variations on

the top of the estimated pose and camera view-points.

• Recognising generic deformable objects: our frame-

work does not require strong class-specific knowledge

such as human body skeleton consisting of a number of

joints in [6, 28] or face shape models defined by man-

ual control points [36], and is thus applicable to differ-

ent object categories. Previous studies [12, 15, 23, 34]

are limited to rigid object classes.

• Exploiting shape cues (vs textures): whereas a ma-

jority of existing 3D object recognition work relies

on image appearance or textures (e.g., affine invariant

patches [24, 32]), we exploit shape cues, silhouettes,

which are useful when there is no overlap in views be-

tween a model and a query, or no consistent textures

e.g. changing clothes etc.

• Transferring 3D models to images: we learn from 3D

models and perform recognition of images, which con-

trasts previous work matching only among 3D models

[4] or 2D images.

1.1. Related Work

There has been a growing interest for view-invariant ob-

ject instance or category recognition [24, 32]. Their build-

ing blocks are often the image patches that are invariant up

to affine transformations, and the structural relations among

the patches are then captured. Texture-based object recog-

nition is useful manywhere though, it becomes inherently

ambiguous when there are no consistent textures between a

model and a query: no overlapping views, changing clothes,

or textureless objects.

Shape (silhouette or edge map) is another useful cue

which has been long explored for object recognition, how-

ever most relevant studies have been done in 2D [5, 30].

They do not explicitly capture 3D shapes, poses, camera

view-points of objects, relying on a large number of model

images. It basically fails when query images exhibit con-

siderably different poses or view-points from those of mod-

els. On the other hand, studies on 2D shape representa-

tion [8, 16] have tackled the problem of recognizing articu-

lated objects, but they model the articulation on a 2D basis

and have difficulties dealing with self-occlusions and large

3D camera pose changes.

3D templates and shape models have been widely incor-

porated into object pose recognition problems for hands [31,

25] or human bodies [17, 22, 29, 33, 35], but their models

are designed for pose, often without consideration of shape

variations. Whereas they do not explicitly handle the clas-

sification problem of phenotypes or 3D shapes, we capture

and discriminate 3D shape variations in an invariant manner

to object poses and camera view-points.

Single view reconstruction is an active research field.

Just to name a few, Prasad et al. [19] reconstructed curved

objects from wireframes; Han et al. [10] applied Bayesian

reconstruction for polyhedral objects, trees, or grass. Black

et al. [6, 28] estimated detailed human body shapes us-

ing parametric morphable models. In [28], a discrimina-

tive+generative method was proposed to help initialise the

body parameters for reconstruction. In [6], shading cues are

incorporated for single view reconstruction. Although they

showed detailed shape recovery, it does not seem easy, in

general, to solve the regression problem of the huge para-

metric space of joint angles, and to extend the approach to

model other object categories. Chen et al. [3] tackled more

general deformable object categories. The shape and pose

generators need only a small number of latent variables to

estimate, yet are able to capture complex 3D object shapes.

One close work to ours is [23], where an unified method

to segment, infer 3D shapes and recognise object categories

is proposed. They used a crude voxel representation for the

shape prior and apply it to object categories such as cups,

mugs, plates, etc. However, they are limited to simple and

rigid objects. In [15, 34], 3D geometrical models are learnt

to detect objects in images, but similarly, no articulation or

deformation is considered.

The following branches of studies have conceptual dif-

ferences from our work. Studies for human gait recog-

nition [18] perform human identification from video se-

quences (instead of images) in a fixed camera view-point.

Image-based face recognition across pose is an intensively

studied area [20, 36]. Representative methods exploit active

face shape models for view-point invariance [36] or expres-

sion invariance [21], however, these models are specifically

designed for faces, involving many control points manually

defined. Studies for 3D object retrieval are quite different,

as they match one 3D model with another.

2. Phenotype Recognition and Shape Recon-

struction Based on Classifiers

In the paper, the phenotype recognition problem is for-

mulated as follows. We assume that a set of 2D phenotype

galleriesG = {SG
c }Nc

c=1 of Nc instances, which contains one

sample silhouette SG
c for each phenotype class c (see Fig. 1

for examples), is provided as the reference, and all the sil-

houettes in G are in a common canonical pose. We hope to

find the phenotype label c∗ ∈ {1, 2, · · · , Nc} for a query

silhouette Sq in an arbitrary pose and camera viewpoint.

To handle the difficulties caused by poses and camera

view changes, our approach learns 3D shape priors M on

available 3D data. Gaussian Process latent variable models

(GPLVMs) [14] have been shown powerful in pose estima-

tion and shape modeling [3, 17, 35]. We implement the

framework in [3], in which two GPLVMs, the shape gener-

ator MS and the pose generator MA, are learned to sepa-
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Figure 2. The graphical model for the 3D shape recognition and reconstruction problem (left). Example trees of Random Forests for the

phenotype FS (middle) and pose FA (right): they show the class histogram at each split node and the phenotype/pose class at each leaf

node. Note that the trees shown here are grown tiny for the visualisation purpose.

rately capture 3D shape and pose variations and jointly used

to synthesize new 3D shapes. Each 3D shape V is then

parametrized by a phenotype latent variable xS and a pose

latent variable xA, as Fig. 2(left) shows.

Given a silhouette image Sq, we infer its embedding

pose latent parameters xA, and the camera parameters γ
so that we can neutralise the influence of pose and camera

viewpoint changes in the recognition. Inferring these pa-

rameters can be done through the optimisation process of

the generative model in [3]. However, the back-projection

from 2D to 3D is usually multi-modal, and this results in

a non-convex objective function with multiple local op-

tima, which is usually difficult to solve. To avoid this non-

convex optimisation, some previous studies have tried com-

bining generative and discriminative approaches [25, 28].

We here propose an approach for fast hypothesizing shape

(phenotype), pose, and camera parameters based on ran-

dom forest (RF) classifiers, which are shown to have excep-

tional performance in solving multi-modal mapping prob-

lems [22, 27]. In our approach, three RFs {FS ,FA,FC},

are learned on a large number of silhouettes synthesized by

MS and MA with different camera parameters γ (see Sec-

tion 3 for details of learning these RFs). FS predicts the

shape parameter xS from a gallery silhouette SG
c , while FA

and FC predict the pose and camera parameters {xA, γ}
from the query silhouette Sq. Sq or SG

c is passed down

each tree in the forest, and the leaf nodes of these trees

quickly provide multiple candidates of its corresponding

shape, pose or camera parameters (see Fig. 2 for examples).

Finally, the 3D shape V of the query Sq is recovered by

the estimated pose latent values xA of Sq and the shape la-

tent values xS of each gallery instance SG
c (see Section 2.2),

and the recognition is achieved by a model-selection, i.e.,

assigning the phenotype class c∗ that yields the best match-

ing between the query Sq and the projection of the recon-

structed shape V in camera viewpoint γ (see Section 2.1).

2.1. Phenotype Recognition

Phenotype recognition is formulated as a model-

selection problem. Based on the graphical model in

Fig. 2(left), we infer the label c∗ of the query instance

by maximizing a posteriori probability given pre-learned

shape priors M = {MS ,MA} and classifiers F =
{FS ,FA,FC} as

P (c∗|Sq, S̃q, {SG
c }Nc

c=1,M,F)

∝P (S̃q|c∗,Sq, {SG
c }Nc

c=1,M,F)P (c∗)

=P (c∗)

∫

xS,xA,γ

P (xS|S
G
c∗ ,FS)P (xA|Sq,FA)

P (γ|Sq,FC)P (S̃q|xS,xA, γ,M)dxSdxAdγ, (1)

where S̃q denotes the mirror node of Sq. Here, we assume

that the class prior P (c∗) is subject to a uniform distribu-

tion, i.e., P (c∗) = 1/Nc.

In (1), the first three terms describe the prior of shape

and pose latent parameters (xS,xA) and camera parame-

ters γ from the random forest classifiers FS , FA, and FC ,

respectively. The shape classifier FS predicts NS candidate

phenotype shapes {xc∗

S,i}
NS

i=1 for the canonical posed gallery

silhouette SG
c∗ of each class c∗; while the pose classifier FA

and the camera viewpoint classifier FC predict NA candi-

date poses {xA,j}
NA

j=1 and NK candidate camera parameters

{γk}
NK

k=1 for the query silhouette input Sq. Mathematically,

these three terms can be written as delta impulses.

P (xS|S
G
c∗ ,FS) =

NS
∑

i=1

hc∗

S,iδ(xS − xc∗

S,i), (2)

P (xA|Sq,FA) =

NA
∑

j=1

hA,jδ(xA − xA,j), (3)

P (γ|Sq,FC) =

NK
∑

k=1

hC,kδ(γ − γk), (4)

where hc∗

S,i, hA,j , and hC,k are class histogram values voted

by every tree in FS , FA, and FC , respectively, and they

satisfy
∑NS

i=1 hS,i =
∑NA

j=1 hA,j =
∑NK

k=1 hC,k = 1.1

1For the purpose of robustness and acceleration, we discard all the

small-weighted candidates under the thresholds hc∗

S,i
< 0.05, hA,j <

0.05, and hC,k < 0.05 in the experiments.
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In the last term of the model, each combination of shape

and pose latent parameters (xS,xA), and the camera pose γ
are verified by the silhouette likelihood of the query image

S̃q. It can be formulated as the following equation:

P (S̃q|xS,xA, γ,M)

≈
1

ZS

√

det
(

I + 1
σ2

s
ΣW

)

e−OCM

(

µW,S̃q
)

/2σ2

s , (5)

where W is referred to the projected silhouette of the latent

3D shape V in the camera viewpoint γ; µW and ΣW refer

to the mean and the covariance matrix of W, respectively

(refer to [3] for detail formulations); σ2
s and ZS are normal-

isation factors. We use oriented Chamfer matching (OCM)

distance [31] to measure the similarity between the mean

projected silhouette µW and the silhouette of the query im-

age S̃q. Detailed formulations of OCM are described in

Section 4.2. Given all the probability terms, the final poste-

rior probability in (1) can be computed as:

P (c∗|Sq, S̃q, {SG
c }Nc

c=1,M,F)

≈
1

NC

NS
∑

i=1

NA
∑

j=1

NK
∑

k=1

hc∗

S,ihA,jhC,kP (S̃q|xc∗

S,i,xA,j, γk,M).

(6)
2.2. Single View 3D Shape Reconstruction

As a by-product, our framework can also be used to

quickly predict an approximate 3D shape V from the query

silhouette Sq. This shape reconstruction problem can be

formulated probabilistically as follows:

P (V|Sq, {SG
c }Nc

c=1,M,F)

=

Nc
∑

c=1

[
∫

xS,xA

P (V,xS,xA, c|Sq,SG
c ,M,F)dxSdxA

]

=

Nc
∑

c=1

P (c)

[
∫

xS,xA

P (xS|S
G
c ,FS)P (xA|Sq,FA)

P (V|xS,xA,M)dxSdxA

]

≈
1

NC

Nc
∑

c=1

NS
∑

i=1

NA
∑

j=1

hc∗

S,ihA,jN
(

V|µV,ΣV

)

. (7)

where µV = µV(xA,j,x
c
S,i) and ΣV = ΣV(xA,j,x

c
S,i)

are referred to the mean and variance function of the 3D

shape distribution V, respectively, and their detailed formu-

lations can be found in [3]. Compared with the optimisation

approach in [3], the classifiers-based approach in the paper

provides fairly good qualitative results and is much more

efficient in computation time (See Section 4.4).

3. Training Random Forest Classifiers

In order to learn the random forest classifiers F =
{FS ,FA,FC}, we use the shape and pose generators

{MS ,MA} to synthesize a large number of silhouettes

with different latent parameters {xS,xA} and camera view-

points γ.

The shape classifier FS , an ensemble of randomised de-

cision trees, is used to encode the phenotype information

of each gallery silhouette SG
c in the canonical pose. It is

trained on a dataset D1 consisting of canonical-posed sil-

houettes of N = 50 phenotype samples {xS,i}
N
i=1 which

are uniformly sampled from the latent space of the shape

generator MS . For each sample of phenotype label i ∈
{1, 2, · · · , N}, we generate R = 250 sample silhouettes

from the 3D mesh model with minor pose perturbations and

camera parameter changes, e.g., slight camera rotations and

focal length changes. All N × R = 12500 binary images

are aligned and normalised to have the same size.

On the other hand, the pose classifier FA and the cam-

era classifier FC are used to predict the pose and camera

viewpoint of the query silhouette Sq. We train them on an-

other dataset D2 with large pose and camera viewpoint vari-

ations as well as phenotype variations. We uniformly sam-

ple M = 50 pose samples {xA,j}
M
j=1 from the latent space

of the pose generator MA, and K = 50 camera viewpoint

samples {γk}
K
k=1 uniformly distributed in the 3D space, and

generate 3D shapes along with the same N = 50 pheno-

type samples {xS,i}
N
i=1 used in the shape classifier training

stage. This generates N ×M ×K = 125, 000 silhouette in-

stances, and each of them is labeled by (i, j, k) representing

phenotype, pose and camera viewpoint, respectively. An

ensemble of decision trees for FA and FC are grown by the

pose label j and camera label k, respectively2. See below

for the random features and split criteria used.

3.1. Error Tolerant Features

We generate D = 12000 random rectangle pairs

{(Rd,1, Rd,2)}
D
d=1 with arbitrary centroid locations

(ld,1, ld,2), heights hd, and widths wd (see Fig 3(a) for

example). For each binary silhouette image I for training,

the difference of mean image intensity values within each

pair of rectangles is then computed as the split feature

fd = 1
wdhd

(
∑

l∈Rd,1
I(l) −

∑

l′∈Rd,2
I(l′)

)

. In this way,

each training instance I is hence converted to a 12000-D

feature vector f = [fd]
D
d=1. These features are efficient to

compute and capture spatial context [26].

When training the phenotype classifier FS , we also in-

troduce a feature-correction scheme. Since FS is trained

on synthetic silhouettes generated by the shape priors M,

which are clean and unclothed, its discriminative power is

usually reduced when working on noisy gallery silhouettes

segmented from real images. To model the systematic er-

rors between the synthetic and real silhouettes, we use the

approach in [3] to create an extra silhouette set which con-

2In our implementation, we set the tree number NT of all the forests

FS , FA, and FC to be 30, and the maximum depth dmax of a single tree

to be 30.
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Figure 3. (a) Random paired-rectangle features. (b) A 3×3 exam-

ple of dissimilarity matrix Π for human phenotype classes.

sists of Ne pairs of real and synthetic silhouettes describ-

ing different clothing and segmentation errors and capturing

different phenotypes. We then extract the features from im-

ages using the same set of random rectangle pairs. Here, f̃em
(m = 1, 2, · · · , Ne) denotes the features extracted from the

real silhouette images, and fem denotes those from the cor-

responding synthetic silhouette images. The feature errors

can be thus modeled by em = f̃em − fem.

To compensate for the systematic silhouette errors when

trainingFS , we correct all those synthetic training data with

these error vectors {em}Ne

m=1. For each feature vector f of

instance I , we find its T nearest neighbor synthetic features

in E (we choose T = 3), and use the corresponding error

vectors et to correct f as f̃t = et + f , (t = 1, 2, · · · , T ).
Finally, all N×R×T corrected features vectors f̃t of N×R
training instances are used as training samples for FS .

3.2. Similarity­Aware Criteria Functions

When training a random forest classifier F∗ ∈
{FS ,FA,FC}, the instance I is pushed through each tree

in F∗ starting from the root node. At each split node, the

error-corrected random feature f̃ = [f̃d]
D
d=1 is evaluated for

every single training instance (see Section 3.1). Then, based

on the result of the binary test f̃d > τth, I is sent to the left

or the right child node. The feature dimension index d and

the split value τth at a split node n are chosen to maximize

∆C(n) = C(n)− |nL|C(nL)+|nR|C(nR)
|nL|+|nR| , where C measures

the distribution purity of the node, and nL and nR denote

the left and right children of node n. For the criteria func-

tion C, we generalise Gibbs and Martin’s diversity index [7]

and take the class similarity into account:

C(n) =pT
nΠpn, (8)

where pn = [pn,1, pn,2, · · · , pn,NB
] is referred to the class

distribution of node n; NB denotes the number of class la-

bels of the random forest F∗; the weighting matrix Π =

{πij = 1−e−‖∆Vi,j‖
2/σ2

}NB×NB
, which is defined by the

average spatial mesh distance ‖∆Vi,j‖
2 between classes i

and j (see Fig. 3(b) for an example of phenotype classes).

When Π = 1 − I, equation (8) is reduced to the standard

diversity index C(n) = 1 −
∑NB

c=1 p2
n,c. Intuitively, a lower

misclassification penalty is assigned between two visually

similar classes in (8). The experiment shows that such a

similarity weighting scheme notably improves the recogni-

tion rate (see Section 4.3).

4. Experimental Results

4.1. Datasets

We have verified the efficacy of our approach on two

shape categories: humans and sharks. For the human data,

we train the shape model MS on the CAESAR database,

which contains over 2000 different body shapes of North

American and European adults in a common standing pose,

and train the pose model MA on 42 walking and jumping-

jack sequences in CMU Mocap dataset. For the shark data,

we learn MS on a shape data set that contains eleven 3D

shark models of different shark species available from the

Internet, and MA on an animatable 3D MEX shark model

to generate an 11-frame sequence of shark tail-waving mo-

tion [3]. The mesh resolutions are: 3678 vertices/7356 faces

for the human data, and 1840 vertices/3676 faces for shark

data, respectively. We empirically set the latent space di-

mension of the shape model MS to be 6 for human data

and 3 for shark data, while for the pose model MA, we set

the latent dimension to be 2 for both, similarly to [3].

As there is no suitable public datasets to evaluate the

proposed approach, we have collected two new silhouette

datasets which capture a wide span of phenotype, pose,

and camera viewpoint changes(see Fig. 4 for examples).

Human motion dataset mainly captures two different hu-

man motions: walking (184 images of 16 human instances)

and jumping-jack motion (170 images of 13 human in-

stances). The images are cropped from video sequences on

YouTube and public available human motion datasets, e.g.,

HumanEva [29]. For each instance, a canonical standing

pose image is provided (see Fig. 1 and Row 1, 2 of Fig. 4).

All the instances are in tightly-fitting clothing. Shark mo-

tion dataset includes 168 images of 13 shark instances of

5 sub-species. These images are cropped from underwater

swimming sequences downloaded from Internet. For each

instance, a profile-view image is provided as the canonical-

pose gallery image.

The silhouettes are manually segmented from the images

and all of them are normalised by their height and resized to

the resolution 121 × 155. For both datasets, Ne = 20 addi-

tional images are collected for modeling the feature errors

(in Section 3.1).

4.2. Comparative Methods

For the purpose of comparison, we also implemented

three state-of-the-art methods based on 2D shape match-

ing: 1) Shape contexts (SC) [1], 2) Inner-Distance Shape

Context (IDSC) [16], and 3) the oriented chamfer matching
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Figure 4. Examples of images and their corresponding silhouettes

in our phenotype-class recognition datasets. Row 1,2: dataset

structure: one canonical-posed instance and several arbitrary-

posed instances; Row 3: human jumping-jack motion; Row 4:

human walking; Row 5: shark underwater swimming motion.

(OCM) [31], and two methods using the 3D shape priors:

4) the single-view 3D shape reconstruction method by Mix-

ture of Experts [28] and 5) the RF implementation directly

using the shape class labels. Nearest Neighbor classifica-

tion is performed in terms of the similarity provided by the

compared methods.

Histogram of Shape Context (HoSC). Shape contexts

(SC) are rich local shape-based histograms encoding con-

tour information and they have been widely used for shape

matching and pose recognition. Since SCs are defined

locally on every single silhouette point, representing the

whole shape can be expensive. To reduce the dimension-

ality of shape contexts, Agarwal and Triggs introduce a

bag-of-features scheme called histogram of shape context

(HoSC) [1] for human pose estimation. In HoSC, k-means

clustering is used to yield a L-dimensional codebook of

the cluster means (L = 100 in the paper), and all its

shape contexts are then softly binned to a quantized L-

dimensional histograms. We implemented a 2D approach

HoSC-χ2, which compares the χ2-distances of HoSC fea-

tures extracted from the query and each gallery silhouette.

Inner-Distance Shape Context (IDSC). Recent research

on shape matching has addressed the problem of finding

articulation invariant distance measurement for 2D shapes.

Among them, a representative recent work is Inner-Distance

Shape Context (IDSC) by Ling and Jacobs [16], which has

been proved successful in 2D shape classification problems.

The authors’ own code is used.

2D Oriented Chamfer matching (OCM). Chamfer match-

ing and its variants have been widely used for shape match-

ing and pose recognition.Among them, oriented Chamfer

matching has been proved to be an effective method for

shape-based template matching [31]. The query silhouette

Sq = {sqk}
Nq

k=1 and gallery silhouettes SG
c = {sGc,j}

NG
c

j=1

(c = 1, 2, · · · , Nc), where s
q
k and sGc,j denote edge points,

are divided into Nch orientation channels: {Sq
t }

Nch

t=1 and

{SG
c,t}

Nch

t=1 , respectively. In our implementation, we set

Nch = 8. To minimise the allocation error of image edges

in orientation, an edge point sGc,j is assigned to both adjacent

channels when its orientation is around the border region.

The OCM distance between SG
c and Sq is calculated as the

sum of independent chamfer distance with each indepen-

dent orientation channel, as the following equation shows:

OCM(SG
c ,Sq) =

1

Nq

Nch
∑

t=1

∑

sG
c,j

∈SG
c,t

min
s
q

k
∈S

q
t

‖sqk − sGc,j‖
2, (9)

Mixture of Experts for the shape reconstruction. We im-

plemented a 3D shape recognition approach, called HoSC-

MoE-Chamfer, based on the shape reconstruction frame-

work proposed in [28], in which mappings from HoSC fea-

tures to shape and pose parameters are learned using a Mix-

ture of Experts (MoE) model. Weighted linear regressors

are used as mixture components. For a fair comparison, the

same training sets D1 and D2 and shape priors M are used,

and the recognition is also based on the OCM distance be-

tween the predicted shape and the query silhouette.

Single Random Forest Shape Verification. We also com-

pare our framework with a straightforward classification ap-

proach based on a single shape random forest, in which FS

is directly learned on the large pose and camera viewpoint

variation dataset D2 according to the phenotype label i (see

Section 3). For an arbitrary input silhouette, the phenotype

prediction from the forest FS is given by a histogram which

summaries the phenotype vote from each tree. The pheno-

type similarity between the query silhouette and an gallery

silhouette can be measured by the χ2-distance between their

random forest prediction histograms.

4.3. Numerical Results of Phenotype Recognition

We perform cross validations by randomly selecting 5

different instances, where we use their canonical posed im-

ages as the galleries and any other poses as the query. The

results of the proposed approach (G+D) and its variants

are reported to show the effect of components and inter-

nal parameters. To evaluate the benefit of using the feature

correction (Section 3.1) and similarity-based criteria func-

tion (Section 3.2), we present the results of our approach

without error modeling (G+D-E) and using standard diver-

sity index [7] as the criteria function (G+D-S) in Fig. 5(a).

It shows that both schemes help improve the recognition

performance of our approach to some extent in all three

datasets. We also investigate how the maximum tree depth

dmax and the tree number NT of random forests FS , FA,

and FC affect the performance. As shown in Fig. 5(b) and

5(c), the accuracy does not vary much at over 25 depths,

but increasing the number of trees of each forest gradually
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Figure 5. Phenotype recognition accuracy on human and shark datasets. (a) Comparison over 8 different approaches; (b) performance

under different maximum tree depths dmax; and (c) different tree numbers NT of the random forests FS , FA, and FC .

improves the recognition rate.

Fig. 5(a) provides the recognition rates of different ap-

proaches. In general, the 3D-based approaches (single RF,

HoSC-MoE-Chamfer and the proposed method G+D) out-

perform those 2D-based ones (OCM, HoSC-χ2, and IDSC)

in the phenotype recognition tasks. The best 2D shape mea-

surement IDSC achieves a close performance to that of 3D

approaches. This indicates the benefit of using 3D shape

priors to handle pose deformations and camera viewpoint

changes. On the other hand, given the same training data,

our approach (G+D) performs best among three 3D ap-

proaches under all contexts. Compared to the single shape

RF, our framework that factorizes three types of variations

in the training stage, better captures subtle shape variations.

In most cases, object pose and camera viewpoint changes

are more dominant factors that affect the silhouette appear-

ance than phenotype variations, and hence they greatly dis-

tract the discriminative power of the single RF which is di-

rectly learnt on the mixed variation data set D2 with the

shape labels. Instead, we learn the phenotype classifier FS

on a canonical-posed dataset D1, which does not include

large pose and camera viewpoint changes. For the pose and

camera classifiers, we use the the mixed variation data set

D2 but with the pose and camera labels respectively. The

pose and camera parameters are much more reliably esti-

mated than the shape parameter for given the same training

data. The comparison between our approach and HoSC-

MoE-Chamfer shows that given the same training data, the

random forests and rectangle features we used also outper-

form the combination of MoE and HoSC features in the set-

ting of phenotype discrimination. This could partially be

owing to the feature selection process during the RF train-

ing stage and the scheme of generating multiple hypotheses

for a single input in the RF prediction stage.

4.4. Approximate Single View Reconstruction

In our framework, these intermediate 3D shape candi-

dates V obtained during the recognition process can be

used for approximate 3D reconstruction from a single sil-

houette input, as mentioned in Section 2.2. In Fig. 6, we

show some qualitative 3D outputs of different phenotypes

using our framework in contrast with those generated us-

ing the approach in [3]. In general, these highest-weight

shape candidates generated by random forest classifiers of-

ten include meaningful shapes which can be used as fairly

good approximate reconstruction results, albeit relatively

lower silhouette coherency and less accurate pose estima-

tion. However, we also notice that some results may still

be in wrong phenotype (e.g., instance 5) or in a wrong pose

or camera viewpoint (e.g., instance 9). This is mainly due

to the silhouette ambiguity or a limitation on the discrimi-

native power of random forest classifiers given our training

set. We also compute the running time of both approaches

under a 2.8GHz CPU. The average time for generating a 3D

shape using our new generative+discriminative framework

is less than 10 seconds using unoptimised Matlab codes,

while using the approach in [3] takes about 10 to 15 minutes

for generating 10 candidates. This improvement in compu-

tational efficiency owes much to using RFs for hypothesiz-

ing xS, xA, and γ, which greatly narrows down the search

space of the algorithm.

5. Conclusions

The paper presents a probabilistic framework which

combines both generative and discriminative cues for recog-

nizing the phenotype class of an object from a single silhou-

ette input and reconstructing its approximate 3D shape. We

learn 3D probabilistic shape priors of the object category by

GPLVM to handle the difficulties in the camera viewpoint

changes and pose deformation, and use random forests for

efficient inference of phenotype, pose, and camera param-

eters. Experiments on human and shark silhouettes have

shown the advantage of our approach against both standard

2D-based methods and relevant 3D-based methods.

The present accuracy on the datasets we provide, espe-

cially on the shark dataset, is limited due to the descriptive

power of the shape and pose generators we used to synthe-

size silhouettes and insufficient number of 3D shapes and

motion data used for training. Using more extensive 3D

training data would improve the accuracy. Another major

problem which limits the application of the current frame-

work is in the requirement of silhouette segmentation. This
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Figure 6. Approximate single view reconstruction using the shape candidates from the random forest classifiers. (a) Input query images

and silhouettes; (b) the highest-weight 3D shape candidates from FS and FA for each query silhouette (in two different views); (c) results

generated by the approach in [3] ( in two different views).

could be helped by e.g. Kinect camera which yields reliable

foreground-background segmentation in real time. Also, as

our future work, we plan to build up a larger-scale pheno-

type recognition dataset of different categories of objects

and make it available to public. It would help evaluate our

approach and do comparative studies.
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