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Abstract—Part-based methods have seen popular applica-
tions for face verification in the wild, since they are more
robust to local variations in terms of pose, illumination
and so on. However, most of the part-based approaches are
built on hand-crafted features, which may be not suitable
for the specific face verification purpose. In this work, we
propose to learn a part-based feature representation under
the supervision of face identities through a deep model, which
ensures the generated representations are more robust and
suitable for face verification. The proposed framework consists
of following two deliberate components: a Deep Mixture
Model (DMM) to find accurate patch correspondence and a
Convolutional Fusion Network (CFN) to extract the part based
facial features. Specifically, DMM robustly depicts the spatial-
appearance distribution of patch features over the faces via
several Gaussian mixtures, which provide more accurate patch
correspondence even in the presence of local distortions. Then,
DMM only feeds the patches which preserve the identity
information to the following CFN. The proposed CFN is a two-
layer cascade of Convolutional Neural Networks (CNN): 1) a
local layer built on face patches to deal with local variations
and 2) a fusion layer integrating the responses from the local
layer. CFN jointly learns and fuses multiple local responses
to optimize the verification performance. The composite rep-
resentation obtained possesses certain robustness to pose and
illumination variations and shows comparable performance
with the state-of-the-arts on two benchmark data sets.

Index Terms—Deep Learning, Part-based Representation,
Face Verification, Mixture Model, Feature Learning

I. INTRODUCTION

Face verification aims to distinguish whether two face
images belong to the same identity. It has long been an
active research problem of computer vision. In particular,
face verification under unconstrained settings has received
much research attention in recent years. The release of
several public data sets, e.g., YouTube Faces Database [1]
and Labelled Face in the Wild [2], has greatly boosted the
development of face verification techniques.
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Unconstrained photographic conditions bring about var-
ious challenges to face verification in the wild. Among
them, one prominent challenge is the severe local distor-
tions, such as pose variations, different facial expression.
To solve this issue, many state-of-the-art approaches for
face verification [3], [4], [5] are built on part-based face
representation to take advantages of local representation
robustness of local distortions. However, most part-based
approaches are built on hand-crafted features, such as the
local binary pattern [6], SIFT [7], and Gabor features [8].
Those generic features are not designed specifically for
the face verification tasks, and thus suffer from following
issues. Firstly of all, some characteristic visual information
may be lost in extraction (especially their quantization)
stage, which unfortunately cannot be recovered in the later
stages. Such information lost may severely damage the
face verification performance. Moreover, another weakness
of those hand-crafted features is to require faces to be
well-aligned, which is considered to be quite challenging
to obtain or even not realistic for face images captured
in the wild. These issues become even more complicated
if various combinations of different features, alignment
methods and learning algorithms are considered for choice.

Recently, the well developed deep learning methods
propose to solve the above issues by learning the feature
representation and classifiers jointly for a specific task, and
see great success for various computer vision tasks [9], [10],
[11], [12], [13]. Within a general deep neural network, the
bottom layers usually extract elementary visual features,
e.g., edges or corners, and feed forward the output to the
higher layers which then extract higher-level features, such
as object parts. The features extracted by the network are
optimized in a supervised manner to fit a specified task
and bring significant performance boosting. Inspired by the
impressive performances, we also propose a deep learning
method to solve face verification problem in this work.
Although for face verification the part-based approaches
have been proven effective with hand-crafted features [5],
[3], the power of part based model may be weakened by the
improper hand-crafted features, as aforementioned. There-
fore, how to learn a suitable local feature representation
is a critical problem for face verification, which however
has not been explored much yet. Most of the existing deep
learning networks [14] [15] [16] aim to learn global features
from the full face images, instead of robust local ones as
advocated in this work. Moreover, most aforementioned
works are built on well-aligned faces, while approaches for
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Fig. 1. Flowchart of the proposed framework. A deep mixture model (DMM) is firstly trained with unlabeld local patches to capture the spatial and
appearance distribution over faces. For each image pair, a pair of local patches is acquired for each mixture component in DMM with regard to the
corresponding responses. The selected patch pairs are then pre-processed with several illumination correction methods and fed into multiple sub-CNNs
for supervised pre-training. The pre-trained sub-CNNs are finally fused together with a holistic fusion layer.

verifying faces with natural mis-alignment are still rare.
In this work, we introduce a novel two-stage deep model

to automatically learn robust local face representations for
face verification in the wild. In contrast to previous works,
our proposed model does not require the faces to be well
aligned, and deals with the more realistic wild setting where
there exists significant mis-alignment between faces. This
makes our proposed model more appealing for practical ap-
plications. The proposed deep model automatically matches
the local face patches via a novel Deep Mixture Model
(DMM), and then adopts Convolutional Fusion Network
(CFN) to learn a part-based face representation. Benefited
from these two stages, the output face representations are
more robust to local variations in terms of pose, illumina-
tion and so on.

More concretely, the first layer of CFN (local layer) is
pre-trained on local patches of different scales, geometric
positions and illuminations. The following layer (holistic
layer) learns a fully-connected classifier built on the local
responses forwarded from the local layer. Conventional
CNN assumes that the feature distribution is uniform over
the face, thus extracts features with the same convolutional
kernels for different face regions. This assumption usually
does not hold in practice. In contrast, our network models
the explicitly non-stationary feature distribution. Each sub-
CNN in the local layer captures features that are specific
for patches in the given face regions with the given illumi-
nation. Such composite structure leads to representation of
tolerance to local distortions, and meanwhile captures the
holistic information with the global fusion.

The problem of large pose variations is further ad-
dressed via exploring the semantic patch correspondence.
Recent works [5], [17] indicate that semantically normal-
ized patches usually improve the performance for face
matching problems with various pose. In this paper, a deep
mixture model (DMM) is proposed to acquire the patch cor-

respondence. Different from previous approaches relying
on manually designed features, both the representation and
the mixture component parameters are optimized together
by maximizing the posterior probability of the model. With
the deep mixture model, patches of highest responses to the
same component are taken as matched within each pair of
images. The matched pairs are further ranked in terms of
their discriminative scores, and those top ranked patches
are chosen as the inputs for CFN. The screening process
results in higher efficiency of the proposed network while
retaining the verification performance.

In general, our contributions can be summarized as
follows.

1) We propose a novel way of learning a part-based face
representation with Convolutional Fusion Network
built on multiple CNN models. Different represen-
tations are learnt for different facial regions to adapt
to the geometrically non-stationary distribution. The
independence leads to a better generalization perfor-
mance with the holistic fusion.

2) We propose a Deep Mixture Model to obtain the
semantic correspondence of patches to handle pose
variation. Within the DMM network, the mixture
components and the representation are jointly opti-
mized, which is proven to be effective by extensive
experiments.

3) We propose a new patch selection procedure to
maintain only the discriminative patches for face ver-
ification. Such selection largely reduces the number
of patches needed in CFN and leads to considerate
improvement of accuracy over manually selected
approach.

The proposed network is evaluated on two benchmark
databases for face verification – YouTube faces database
(YTF) and Labelled Face in the Wild (LFW), and achieves
competitive results with the state-of-the-arts.
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II. RELATED WORK

Due to the enormous number of related topics and space
limitation in this paper, we only list the most relevant works
in the following two aspects.

A. Part-based Representation for Face Images

Face related tasks have attracted considerable attention
due to their application potential. Seeking for a good
representation of face images has long been an interesting
topic for researchers.

Many methods on face representation [18], [19], [20]
have been proposed during the past few decades. These
methods can be roughly categorized into holistic and local
approaches. Classic works on holistic features, such as
Principal Component Analysis [21], are mainly subspace-
based approaches that try to represent face images with
the subspace basis. Compared with holistic features, local
features are more robust and stable to local changes and
have been widely used recently. Gabor [8], Local Binary
Pattern (LBP) [6] and Bag of Words (BoW) [22] features
are classic representations capturing the local information.
Gabor feature captures the spatial-frequency information
and is found to be robust to the illumination variation. LBP
captures contrast information for each pixel by referring to
its neighboring points. BoW represents the image as an
orderless collection of local features extracted in densely
sampled patches.

Part-based face representation [23], [24] is a popular way
of capturing the local information and has been successfully
applied to facial expression recognition [22], [25], face
parsing [26], face identification [27] and face verification
[3]. Karan et al. [22] proposed a BoW representation of face
images for facial expression recognition. They extracted
SIFT descriptors on densely sampled patches of multi-scale
and then built the codebook. Luo et al. [26] introduced a
hierarchical face parser. The parser combines the results
of part detectors and component detectors to transform the
face image into a label map. Zhu et al. [27] targeted at
face recognition problems with a small number of training
samples. They conducted collaborative representation based
classification on the face patches and combined the results
of all the multi-scale patches.

There have also been some recent works with part-based
representation on face verification, which refreshed the
state-of-the-art performance, especially for unconstrained
face verification in the wild. To name a few, Li et al.
[5] built a Gaussian Mixture Model (GMM) in terms of
both appearance and spatial information to discover the
correspondence between the patches in pair. The model is
trained with LBP and SIFT features extracted from densely
sampled patches. Their approach improved the state-of-the-
art performance by around 4% on LFW with the most strict
setting. In [3], Fisher Vector (FV), a typical descriptor for
object recognition, was applied on LFW, and improved the
performance further. FV in their work is built on SIFT
feature extracted from the patches scanned densely through
the images.

The aforementioned methods extract the same features
from the different facial parts. However, we consider the
feature distribution is not stationary over the whole face
in this paper, and the learnt filters are different for differ-
ent face regions. Without the hand-crafted features as in
mentioned works, the proposed fusion network learns the
feature representation automatically with direct guidance of
the face identification.

B. Deep Learning

The breakthrough by Hinton and Salakhutdinov [28]
triggered the enthusiasm for deep learning in both academia
and industry. By stacking multiple non-linear layers, deep
neural networks are able to extract more abstract features
automatically than the hand-crafted features.

Over the past few years, such a deep structure has been
successfully applied in many computer vision fields [9],
[10], [11], [13], [12]. To name just a few, Krizhevsky
et al. [9] won the ImageNet contest in 2012 by train-
ing deep CNNs fine-tuned with multiple GPUs. Sun et
al. [12] proposed a three-level cascade of convolutional
networks for facial keypoints detection and outperformed
the state-of-the-art methods in both detection accuracy and
reliability. Ouyang and Wang [29] proposed joint deep
learning framework to address pedestrian detection. Feature
extraction, deformation handling and occlusion handling are
incorporated in a unified framework and achieves the best
performance on the Caltech dataset.

Several recent works also apply deep learning to face ver-
ification task. Huang et al. [11] developed a convolutional
Restricted Boltzman Machine (RBM) and evaluated it on
the LFW-a database (with face alignment). The proposed
method achieves comparable result to those with hand-
crafted features. Chopra et al. [30] defined a mapping from
input space to the target space to approximate the semantic
distance in the original space. The mapping is learned with
two symmetric neural networks that share the same weights
to tackle face verification problem. Liao et al. [31] proposed
a three-layered hierarchy without explicit detection and
alignment stages in testing. However, these networks are
trained with full face images only and do not specifically
handle local variations. Different from the aforementioned
papers, our network learns a composite representation from
both the holistic faces and local patches by integrating the
responses of discriminative local sub-nets.

A gradual increase in the amount of data significantly
improves the verification accuracy of deep models. Sun
et al. [14] learnt a set of high-level features through a
multi-class identification task. The network is trained on
pre-defined face patches based on the landmark positions.
The performance is further improved by Sun et al. [15],
in which the network is trained by jointly optimizing the
identification and verification objectives. Taigman et al. [16]
introduced the largest facial dataset to-date, which is used
to learn an effective representation. The learnt presentation
is directly applied on LFW and achieves close accuracy to
that of human beings. The above deep networks are trained
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with an assumption that face images are well aligned.
In contrast, the proposed framework is learnt with the
existence of mis-alignment. To handle such mis-alignment,
a deep mixture model network is proposed to capture
the spatial-appearance distribution over faces. The DMM
network automatically retrieves the patch correspondence,
which is proven to be effective for unconstrained face
verification.

III. CONVOLUTIONAL FUSION NETWORK

Most state-of-the-art approaches evaluated on benchmark
datasets for face verification are built on hand-crafted
features [5], [3], [32]. Instead, we address the problem
of face verification in the wild by learning a part-based
face representation automatically with deep convolutional
neural network (CNN). Conventional CNN is built by stack-
ing multiple convolutional layers and pooling layers. The
cascade of convolution-pooling structure provides certain
robustness to shifting and rotation variations. However, the
final features captured are mainly holistic. Compared with
holistic features, local features are more robust to local
facial distortions which are common in face images in
the wild. Thus, we aim at designing a network capturing
both holistic and local facial properties. Introducing local
information to CNN enables the network to learn a more
diverse and complex presentation and leads to potential
improvement.

Accordingly, the proposed Convolutional Fusion Net-
work, illustrated in Fig. 1, has a structure of two layers – the
local layer and the fusion layer. The local layer is composed
of several parallel sub-CNNs corresponding to the local
face patches (the full-face images are resized and treated
the same as local patches) , and thus captures features with
regard to the local variations. The fusion layer contains a
fully-connected layer followed by a softmax classifier. It
integrates the local responses to acquire a holistic view of
the original image. Sub-CNNs are pre-trained separately to
guarantee a certain level of independence. Such indepen-
dence leads to a mutual complementary ability among sub-
CNNs, resulting in a considerate improvement with fusion
layer.

Illumination is also a significant factor degrading the
performance of unconstrained face verification. Hua and
Akbarzadeh [33] included the illumination pre-processing
step and reported a considerate performance improvement.
In this paper, the face images are pre-processed with
several standard illumination correction methods. The local
patch are then cropped from lighting-corrected images, and
passed to corresponding sub-CNNs.

We denote the output of sub-CNN i as h(i)(·), and
the forward propagation of the final fusion layer can be
represented as

y = softmax(

N∑
i=1

W
(i)
f · h(i)(·) + bf ), (1)

where W (i)
f and bf are the corresponding weights and bias

in the fusion layer, and N is the number of sub-CNNs.

A. Siamese Architecture

Each sub-CNN in CFN has a composite structure of
two identical sub-networks as illustrated in Fig. 2. Such
a structure is termed as Siamese Architecture in [30], [13].
The two networks share the same weights, and define a
mapping from the input feature space to a low-dimensional
space where faces are close in terms of L1 distance if they
are of the same identity.

Each sub-network in the composite structure is a Convo-
lutional Neural Network, for which we follow the standard
configuration in [9]. Each CNN contains two convolution
layers C1 and C2, each of which is followed by a max-
pooling layer. The output of convolutional layer is passed
through a non-linear activation function before being for-
warded to the pooling layer. In our networks, we use
rectified linear unit (ReLu). And the forward function can
be represented as

h(xi) = max(0,W T
c xi + bc), (2)

where Wc and bc represent the weight and bias of the
corresponding convolutional layer. The last layer before
softmax is a mapping layer L consisting of two fully-
connected linear layers. And the output of this linear layer
is the final representation for each face pair and can be
computed as

L(xi) = ||g(F (1)
i )− g(F (2)

i )||1, (3)

where g(·) represents the mapping from the input space to
the final feature space, and F (1)

i and F (2)
i are the two faces

in a pair.
The output of L(xi) is finally forwarded to a softmax

layer denoted as S. As a binary classification problem,
the learnable weight of S is a two column vector ws =

{w(1)
s ,w

(2)
s }. The posterior probability of xi labeled as yi

is

Pr(y = yi|ws,bs,xi) =

exp(−w(yi)
s · L(xi) + bs)∑2

j=1 exp(−w
(j)
s · L(xi) + bs)

.
(4)

Accordingly, the cost function is formulated as follows

L = −
n∑

i=1

log Pr(y = yi|ws, bs,xi). (5)

IV. POSE-INVARIANT PATCH SELECTION

To acquire the local information, sub-CNNs of CFN are
pre-trained on the discriminative facial parts, and thus the
selection of patches will largely affect the performance.
A typical part-based approach is built on patches that are
densely sampled with overlap as in [5], [3]. Intuitively, we
can generate patches following the same strategy. However,
there are mainly two reasons prohibiting us from doing
so. First, such an approach will generate a huge network
with an unaffordable number of sub-CNNs since each local
patch requires one sub-network in Fig. 2. The unaffordable
computation cost makes it infeasible to adopt this approach.
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patches extracted from input images or videos. The encoded features are augmented with the corresponding location vectors and applied to train the
mixture model. The mixture component and the encoding function are jointly learnt within the unified framework.

Second, large networks are difficult to train even if we
ignore the computation cost. With too many parameters to
learn, it is hard for the network to converge. Moreover, the
optimization of the deep network is non-convex, and thus
sensitive to the initialization of parameters. It easily falls
into the “basin” of poor local minimum without a proper
initialization.

Another way to utilize local information is to extract
patches with regard to the key facial landmarks, such as
eyes, nose, mouth, etc. This kind of approaches largely
relies on the precision of landmark detectors. However,
the unconstrained photography conditions still remain chal-
lenging for most existing landmark detectors. Moreover,
accurate landmark detectors usually demand a large set of
outside training samples, which are not always available.
Thus, this strategy is prohibited for some datasets in the
wild, e.g., LFW under the most restricted condition.

Our approach is built on the assumption that the face

images are captured in the wild and no accurate land-
marks are available, and thus the faces are only roughly
aligned. The pose variation has proven to be an important
factor impacting the face recognition accuracy. We propose
to learn a Deep Mixture Model (DMM) to capture the
spatial-appearance distribution over faces. By learning the
mixture components, the correspondences of local patches
are acquired to address the mis-matching brought by pose
difference. Different from APEM [5], our deep network
learns both the representation for appearance and the mix-
ture components jointly without reference to any manually
designed features.

A. Deep Mixture Model

Given a set of unlabeled images, we divide each
image into multiple overlapped grids. The image set
then can be represented as a collection of local patches
{p1,p2, ...,pN}. Each local patch pi is represented as a
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spatial and appearance pair [xpi
, lpi

]T , where xpi
is the

raw-pixel representation and lpi (each element is in [0, 1])
is the normalized location vector .

Different from most existing works for learning a mix-
ture model, our approach does not rely on hand-crafted
features. Instead, the representation is learnt together with
the mixture components. Similar to Autoencoder, the DMM
network contains an encoder and a decoder as shown in
Fig. 3. The encoder maps the high-dimension data to a low-
dimension code, and the decoder recovers the original input
from the compressed code. In this work, the encoder is of
a two layered structure: 800 hidden units for the first layer
and 200 hidden units for the second layer. The decoder has
a symmetric structure to the encoder. Also, the encoder and
decoder have “tied” weights, i.e. the weight matrix for the
decoder layer is the transpose of that for the corresponding
decoder layer. The “encoded” feature is forward into the
third layer, i.e. the mixture layer. The mixture layer is
composed of multiple branches, each of which corresponds
to a mixture component. The output of each component
sub-net is the probability of certain patch committed to the
corresponding component.

Assume the encoding function defined by the deep
network is F(· ;We, be), where We and be stand
for the encoding weight and bias. By augmenting the
compressed code and the location vector, the com-
bined spatial-appearance feature is represented as fpi

=
[F(xpi

;We, be)
T , lTpi

]T , which is then forwarded to the
following mixture layer. We formulate the deep mixture
model in terms of Gaussian components as follows,

Pr(fpi
|θ) =

C∑
j=1

ωj · N (fpi
|µj , σj), (6)

where θ = {µi, σi|i = 1, 2, ..., C}, and µi and σi are the
mean and variance of the i-th component. N (·) represents
a normal distribution for the component with corresponding
mixture weight wi.

The DMM network is optimized by minimizing the
following cost function

L(W, b,θ) = −
N∑
i=1

ln(P (fpi |θ))

−
N∑
i=1

ln
maxj N (fpi |µj , σj)∑C

j=1N (fpi |µj , σj)

+

N∑
i=1

α||xpi − x′
pi
||2, (7)

where α is a parameter controlling the contribution scale
of the third term, and x′

pi
is the reconstruction of xpi

and
is computed as

x′
pi

= F ′(F(xpi ; We, be) ; W
′
e, b

′
e), (8)

where F ′(· ; W ′
e, b

′
e) is the decoding function with the

corresponding decoder weight W ′
e and bias b′e.

The cost in Eqn. 7 is defined based on considerations on
the following three aspects. Same as the standard Gaussian
Mixture Model, the first term is defined as the log likeli-
hood function. For the second term, the proposed DMM
aims to regularize that the spatial-appearance components
correspond to different semantic facial parts, such as eyes,
nose, etc. In other words, the learnt mixture components
are expected to follow a spatially scattering distribution.
Therefore, we introduce the second term to constrain that
each sample is only committed to one component and its
contribution to other components are neglectable. It is also
important to note that, in DMM, the encoding of patches is
jointly optimized with the component parameters. Directly
optimizing with regard to the first and second terms will
result in an undesired global minimum where both We and
be are all zero for the encoder. Therefore, the third term
is introduced to penalize the construction error such that
the representations of face patches are not mapped into the
undesirable all-zero space.

The mixture parameters are only present in the mixture
layer, and thus are independent of the reconstruction error.
Accordingly, µk and σk can be updated directly as follows.

∂L
∂µk

= (− wk

P (fpi
|θ)

+
1∑C

j=1N (fpi
|µj , σj)

− 1j=k

maxj N (fpi
|µj , σj)

) · ∂N (fpi |µk, σk)

∂µk
, (9)

∂L
∂σk

= (− wk

P (fpi
|θ)

+
1∑C

j=1N (fpi
|µj , σj)

− 1j=k

maxj N (fpi
|µj , σj)

) · ∂N (fpi |µk, σk)

∂σk
. (10)

The optimization of W and b can be easily achieved with
the standard back-propagation algorithm.

B. Local Patch Matching

The acquired DMM reflects the distribution of spatial
and appearance feature over the faces. By assigned each
face patch to its “Nearest” mixture component, we are able
to cluster the patches in terms of the encoded similarity.
Within each face pair, face patches with the maximal
responses to the same mixture component are considered as
matched. Therefore, the number of components determines
the number of sub-nets that need to be pre-trained. Large
number of chosen patches will result in a huge computation
cost. Instead, we consider that not all the patches will
contribute to the final verification problem. Therefore, it is
desirable to retain only those discriminative patches without
impacting the generalized performance.

This task can be interpreted as a feature selection prob-
lem [34], [35], which selects a subset of features while pre-
serving or improving the discriminative ability of the clas-
sifier. Suppose we are given n training samples {(x1, y1),
..., (xn, yn)}, where xi ∈ Dd and yi ∈ {−1,+1} is the
label of xi. For face verification, the training samples are
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Full Face Patch 1

Patch 3

Patch 2

Patch 5Patch 4

Fig. 4. Convolutional kernels computed. Each block corresponds to a selected patch with its learnt convolutional kernels in the first layer. Clearly,
the learnt kernels are different for different facial patches.

given in pairs. The task is to tell whether or not the paired
samples (probe and gallery) are of the same identity. We
denote F (1)

i and F (2)
i as the first and second face in the

i-th pair. The input vector for the feature selection process
is computed by xi = |F (1)

i − F (2)
i |, where | · | computes

the element-wise absolute value.
In both [35] and [34], an indicator vector δ =

{δ1, ..., δd} ∈ {0, 1}d is introduced to define whether a
certain feature x(j)

i is selected, i.e. δj = 1 indicates it
is a “support feature”. Instead of finding the pixel-wise
discriminative features as in [34], [35], we aims to select
the discriminative patches. With the learnt C-component
DMM, each face pair is represented as a concatenated
vector Ai = {p(1)i ,p

(2)
i , ...,p

(C)
i }.

pji = argmax
pk

(N (fpk
|µj , σj)) ∀pk ∈ xi, (11)

Accordingly, the weight vector of SVM is divided as w =
{w(1), ...,w(C)}T . In this work, we simplify the problem
by eliminating the indicator vector. Now the problem is
transformed into a classic SVM issue. The classifier is

f(Ai) = w
T Ai + b, (12)

where b is the bias.
Note that a pixel in the original image may be included

in multiple patches. By minimizing the L2 term ||w||2 in
the cost function, the corresponding duplicate pixels are
assigned with the same weight if no individual normaliza-
tion within each patch. Therefore, the discriminative scores
of the duplicates in different patches are consistent. We
define the discriminative score as the overall contribution
of pixels within the patch to the decision boundary. The
discriminative score S(i) of patch p(i) is computed as

S(i) = ||w(i)||1. (13)

Patches are then sorted in terms of the corresponding
discriminative scores, and the top K patches are chosen
as support patches.

Support patches tend to be those containing key facial
components closely related to face identification, such as
eyes and forehead. While, least informative patches include

little information on either the outline of faces or key facial
landmarks.

V. TRAINING THE NETWORKS

The whole framework can be largely divided into two
parts: 1) Deep Mixture Model to find the patch correspon-
dence and 2) Convolutional Fusion Network for face veri-
fication. Both networks are large and hard to train directly
without getting stuck at undesired local minimum. Erhan
et al. [36] mentioned that pre-training provides a prior
knowledge that can help reduce the strong dependencies
between parameters across layers and locates the network
in a region within the parameter space, such that a better
optimum is found for the training criterion. We include
some details on the training strategies for both networks as
follows.

DMM. An initial representation is essential to avoid un-
desired clustering performance for appearance-wise DMM.
This paper follows standard unsupervised pre-training
methods used for Autoencoder. The network is pre-trained
layer-by-layer with regard to the squared reconstruction
error, i.e. the third term in Eqn. 7. For training the DMM
network, we also need proper initialization for the loca-
tion vectors. The location related part in µi is initialized
randomly with regard to a uniform distribution over [0, 1].
Moreover, for the starting 5 iterations, the encoder parame-
ters (We and be in the 1st and 2nd layer) are not updated.
In such a way, we acquire a proper geometric initialization
for the mixture components.

CFN. Convolutional Fusion Network is initialized with
the supervised pre-training. Selecting local patches can be
viewed as a way of obtaining a good prior for the later
fine-tuning stage. The pair of local patches shares the
same label as the full-face pair, i.e. patches generated from
the “matched” face pairs are also labeled as “matched”.
Therefore, each sub-CNN in the local layer can be pre-
trained with the label information. After the supervised pre-
training, the outputs of all the sub-CNNs are concatenated
as a super-vector for each face instance, which is then fed
forward to the fusion layer. A universal fine-tuning is then
applied with back propagation through the whole network.
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YTF LFW

Matched Mis-matched

Fig. 5. Examples from YTF (left) and LFW (right). Both datasets
include variations on pose, illumination and facial expressions that has
large influence on the matching performance. Moreover, occlusion, frame
blur and scene transition, which are common in videos, make YTF even
more challenging.

Experiments show that the final fusion stage results in a
considerate performance improvement.

VI. EXPERIMENTS

The proposed network is aimed at face verification under
the unconstrained conditions with considerate variations on
pose and illumination. Extensive experiments are conducted
on two benchmark datasets for face verification in the wild
– YouTube Faces Dataset (YTF) and Labeled Face in the
Wild (LFW). Examples of YTF and LFW is shown in
Fig. 5. The results are compared with several state-of-the-
art approaches.

A. YouTube Faces Database

YTF is a dataset designed for studying the problem of
unconstrained face verification in videos. YTF contains
3, 425 unconstrained videos of 1, 595 celebrities. In the
standard protocol, the evaluation set is composed of 5, 000
pre-defined video pairs and is divided into 10 mutually
exclusive folds. The average verification accuracy of 10
folds is reported for comparison.

1) Experiment Settings: We address the problem of
verification of two face videos as the matching problem
of two sets of frames. Specifically speaking, 20 frames are
drawn randomly from each video within the pair to generate
20 frame pairs. The average matching score of the 20 frame
pairs is taken as the matching score of the corresponding
video pair. In the following experiments, we directly take
the roughly aligned faces provided. Within each frame, the
face is cropped from the center down-scaled by 2.2 and is
of size 144×144. The face images are then processed with
two common illumination correction methods – Histogram
Equalization (HE) and Local Ternary Pattern (LTP) [18].
For LTP, the gamma parameter is set as 0.2, and the sigma
values for inner and outer Gaussian filter are set as 0.2 and
1, respectively. Together with RGB images, three copies of
each images are adopted as inputs.

Manual DMM

Fig. 6. Illustration on manual patches (Left) and DMM patches (Right).
Since faces are aligned roughly, we extract patches around eyes, nose
and mouth corners with fixed locations. For DMM, the locations are
learnt automatically w.r.t the spatial-appearance distribution. Compared
with manual approach, DMM demonstrates a better tolerance to pose
changes.

Pre-processed face images are scanned by sliding win-
dows of size 40×40 and 60×60. The corresponding sliding
strides are 20 and 30 pixels, respectively. Thus, we extract
44 local patches in each face image. These patches are
resized to 32×32, and used as inputs of the DMM network.

CFN Structure. The whole network contains 18 sub-
nets of Siamese Architecture in the local layer and a linear
layer followed by a softmax layer in the fusion layer. Each
sub-network i has a four-layer structure consisting of two
convolutional layers C(i)

1 and C
(i)
2 , one linear layer L(i)

and one softmax layer S(i). C(i)
1 contains 40 convolutional

kernels with size 7 × 7, and C
(i)
2 has 40 kernels of size

5× 5, and L(i) has 100 neurons. Both convolutional layers
are followed by max-pooling of shape 2 × 2 with pooling
stride 2× 2.

Examples of learnt convolution kernels are shown in
Fig. 4. The convolutional kernels are learnt to reflect the
discriminative information for the given local regions. For
patches with complex facial structure (Full Face and patch
2), there are more high frequency kernels. While, for less
complex patches (Patch 3, 4 and 5), the learnt kernels are
mostly edge-like filters.

To further reduce over-fitting, drop-out [37] is applied on
each layer of sub-CNNs, except for the softmax layer. The
drop-out rate is 0.2 for convolutional layers C(i)

1 , C(i)
2 and

the linear layers L(i). We also include random noises in
the input images, and the corruption probability of a single
pixel is 0.1.

2) Comparison with the State-of-the-arts: The proposed
approach, i.e. DMM+CFN(3), is compared with several
existing works reported on YTF in table I. Moreover, we
include the results of four approaches related to our method
for self comparison.

CNN Single shows the result of single CNN trained
only with the full face images. CFN Manual includes
the local information by fusing local CNNs trained with
manually selected patches. The patches are chosen intu-
itively around eyes, nose and mouth corners as shown in
Fig. 6. Comparison between CNN Single and CFN Manual
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TABLE I
COMPARISON OF MEAN ACCURACY AND STANDARD VARIANCE ON

YOUTUBE FACES DATABASE. THE BEST PERFORMANCE IS
ILLUSTRATED IN BOLD.

Methods Acc. ± Err.(%)

MBGS L2 mean, LBP [1] 76.4 ± 1.8
MBGS+SVM [38] 78.9 ± 1.9

APEM-FUSION [5] 79.1 ± 1.5
STFRD+PMML [4] 79.5 ± 2.5

VSOF+OSS [39] 79.7 ± 1.8
DDML (LBP) [32] 81.3 ± 1.6

DDML (combined) [32] 82.3 ± 1.5
CNN Single 78.3 ± 1.4
CFN Manual 79.6 ± 1.2

DMM+CNN Average 79.5 ± 1.2
DMM+CFN (1) 80.9 ± 0.9
DMM+CFN (3) 82.8 ± 0.9
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Fig. 7. Comparison of ROC curves with the state-of-the-arts on YouTube
Faces Database.

indicates that the local information can bring considerate
improvements (1.3% in our experiments) over holistic only
approach. DMM+CNN Average simply averages over pre-
trained local CNNs. Different from CFN Manual, local
CNNs in this methods are learnt from patches acquired
with the deep mixture model. As shown in the table, such
simple approach can achieve almost the same performance
as CFN Manual. The performance is further improved
by including the fusion stage into the learning process.
DMM+CFN(1) is conducted on the images with only
histogram equalization and improves DMM+CNN Average
by 1.4%. Fusion of more models is shown to be effective.
The images used in DMM+CFN(3) are pre-processed with
HE and LTP, respectively. Together with the original RGB
images, the fusion model improves over single illumination
based method DMM+CFN(1) by 1.9%.

Comparing with the state-of-the-art method on YTF –
DDML (combined), our approach improves the performance
by 0.5%. DDML (combined) is also based on deep learning,
but the networks learn a Mahalanobis distance metric
from the hand-crafted features (LBP, DSIFT and SSIFT).
However, our fusion network is directly learnt on the raw-

pixel images.
The ROC curve is illustrated in Fig. 7. Consistent with

the comparisons in Table I, our approach outperforms the
existing methods reported on YTF.

Here we also list some of the latest results published
after our submission. Li et al. [40] proposed the Eigen-PEP
model for video face recognition, and achieved 85.04±1.49
on YTF and 88.97 ± 1.32 on LFW. In [40], the perfor-
mance is largely improved by including flipped frames and
corrected labels, which are not used in our method. The
accuracy without flipping is 82.40± 1.7, which is close to
our results. Hu et al. [41] learnt the distance metrics form
multiple features and achieved 81.28± 1.17 on YTF. Lu et
al. [42] applied a reconstruction criterion to metric learning
and achieved 81.86± 1.55.

B. Labeled Face in the Wild

LFW is a standard database collected to evaluate bench-
mark algorithms for face verification. It contains 13, 000
images of 5, 749 individuals downloaded from the Internet.
LFW has the similar evaluation protocols as YTF: 6, 000
pre-defined image pairs are divided into 10 mutually exclu-
sive folds and the average precision is reported.

1) Experiment Settings: In this paper, the experiments
are conducted in the image-restricted scenario, i.e. only
the given 6, 000 pairs are allowed for training. We follow
the most strict setting, i.e. no outside training data are
used, even for landmark detection. The face images are
only roughly aligned with an unsupervised method – deep
funnel [43]. We crop the central 144×144 region from the
full-face image. DMM follows the same patch extraction
strategy as that used for YTF.

Three general approaches of illumination correction are
applied – Self-Quotient Image (SQI) [32], Local Ternary
Pattern (LTP) [13] and Histogram Equalization (HE) . In
SQI, the images are filtered with 7x7 Gaussian filter with
bandwidth set as 2 and then normalized. The parameters
for LTP are the same as those in YTF.

CFN Structure. The local networks are also of four
layered structure – 20 convolutional kernels in C

(i)
1 , 40

kernels in C
(i)
2 , 100 hidden units in L(i) and a Softmax

layer S(i). For LFW, we select the top-6 patches, and thus
the final CFN is composed of 21 CNNs in the local layer.

2) Comparison with the State-of-the-arts: In this sub-
section, our approach is compared with some existing
methods with the same setting, i.e. the image-restricted
setting without outside training data. The only exception
is NReLu [13], in which face images are well-aligned and
outside data are used for unsupervised pre-training. This
approach built a DBN of siamese architecture, and thus is
closely related to our method.

Table II shows the results of five different settings related
to the proposed network. The number after each setting
indicates the number of illumination correction methods in-
cluded – for the 2-correction case images are pre-processed
with only SQI and LTP. CNN Single(2) reports the result
of training CNNs only on the full-face images. Under this
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TABLE II
COMPARISON OF MEAN ACCURACY AND STANDARD VARIANCE ON

LABELED FACE IN THE WILD. THE BEST PERFORMANCE IS
ILLUSTRATED IN BOLD.

Methods Acc. ± Err.(%)

NReLu [13] 80.73 ± 1.34
NReLu without Outside Data [13] 79.25 ± 1.73

Hybrid descriptor-based [44] 78.47 ± 0.51
V1/MKL [45] 79.35 ± 0.51

APEM(LBP) [5] 81.97 ± 1.90
APEM(SIFT) [5] 81.88 ± 0.94
APEM(fusion) [5] 84.08 ± 1.2
Fisher Vector [3] 87.47 ± 1.49
CNN Single(2) 80.59 ± 1.54
CFN Manual(2) 82.05 ± 1.6

DMM+CNN Average(2) 83.93 ± 1.75
DMM+CFN (2) 85.48 ± 1.64
DMM+CFN (3) 85.60 ± 1.67

CFN+APEM 87.50 ± 1.57

scenario, the fusion network only has two sub-CNNs on
the full-face images after SQI and LTP respectively. The
accuracy outperforms that of NReLu without unsupervised
pre-training, and is comparable to their best performance
with unsupervised pre-training based on outside unlabeled
data. DMM+CNN Average(2) simply averages over the
confidence scores returned by pre-trained sub-CNNs. Per-
formance with such a setting is even comparable with
APEM (fusion) – only 0.1% difference. Further improve-
ment is achieved by holistic back-propagation over the
whole network, as shown by DMM+CFN(2). The increase
on mean accuracy is 1.55%, and can be up to 2.6% for
some folds. The best results are achieved by fusion with
all three illumination correction methods as shown for
DMM+CFN(3).

APEM [5] is also based on selection of patches, and our
method surpasses APEM with a single feature, either SIFT
or LBP, by around 3.6%. The advance over APEM with
feature fusion is 1.52%. There is a gap of 1.9% between
fisher vector [3] and our method alone. However, by simply
averaging with the results of APEM – CFN+APEM, we
achieve the accuracy of Fisher Vector. The improvement
by simply averaging with APEM demonstrates the features
learnt in our fusion network is different from the hand-
crafted features. Note that both APEM and Fisher Vector
are built on images of large size (100× 100 in APEM and
160×125 in FV), while our fusion network is only trained
on images of small size 32× 32.

The ROC curve in Fig. 8 illustrates the average per-
formance over 10 folds. It is clear that our method out-
performs APEM significantly and achieves a comparable
performance with Fisher Vector.

3) Fusion Result Analysis: We conduct two sets of
experiments to analyze the effect of several factors on
fusion. The first set fuses the local patches with the full-
face images. The second set studies the fusion among only
the local patches. For each experiment set, we include three
groups tested on the images after SQI, images after LTP and
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Fig. 8. Comparison of ROC curves with the state-of-the-arts on the most
strict setting of Labeled Face in the Wild.

images after both SQI and LTP (Combined in Table III),
respectively. We also examine the influence of local patches
in fusion by varying the number of patches included. These
patches are added in the descending order with regard to
their confidence scores defined by Eqn. 13.

Referring to the results in Table III, sub-CNNs trained
with full-face images have a considerate influence in fusion.
Fusion with full-face images outperforms fusion with only
local patches by approximately 1.1%. Note that the local
patches also demonstrate great influence. Generally, more
local patches lead to higher accuracy in both experiment
sets. As more patches are included, the performance gradu-
ally saturates. Fusing different pre-processing methods also
contributes to the final fusion performance, and the increase
on accuracy is around 1%.

C. Computation Analysis

The proposed framework can be divided into two parts –
DMM and CFN. Both networks are implemented based on
Theano1 and Pylearn22. All experiments are conducted on
a single-core computer with GeForce GTX TITAN Black
GPU. For both data sets, we extract 44 local patches from
each face image, and random sample 60,000 patches for
YTF and 45,000 patches for LFW as the inputs for DMM,
respectively. In YTF, the training set of CFN includes
4,500 video pairs. Within each video pair, 20 frame pairs
are randomly chosen. Accordingly, DMM takes 45s per
iteration in training and CFN takes 33s per iteration for
each sub-net. In LFW, the training set includes 5,400 image
pairs for CFN. We also include random shifting, scaling and
rotation to increase the diversity and scale of the training
samples. As a result, the network is trained with 21,600
image pairs in total. Accordingly, DMM takes 36s per
iteration in training and CFN takes 9s per iteration for each
sub-nets. For faster computation, we can fix the convolution

1http://deeplearning.net/software/theano/
2http://deeplearning.net/software/pylearn2/
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TABLE III
FUSION RESULTS. IN EACH EXPERIMENT SET, RESULTS ARE REPORTED BY VARYING THE NUMBER OF LOCAL PATCHES INCLUDED. 0 MEANS

ONLY THE FULL-FACE IMAGES ARE USED FOR TRAINING.

Patch Full-face Included Without Full-face
# SQI LTP Combined SQI LTP Combined
0 80.11 ± 1.73 81.07 ± 1.01 82.45 ± 1.40 - - -
1 81.67 ± 1.24 83.14 ± 1.61 84.48 ± 1.42 78.18 ± 1.54 77.92 ± 2.48 80.10 ± 2.10
2 83.25 ± 1.75 83.55 ± 1.49 85.18 ± 1.90 82.37 ± 2.27 81.95 ± 2011 84.35 ± 2.26
3 83.24 ± 1.72 83.67 ± 1.65 84.92 ± 1.72 82.33 ± 1.67 82.20 ± 2.02 83.98 ± 1.73
4 83.09 ± 1.94 83.7 ± 1.76 85.15 ± 1.46 82.27 ± 1.92 82.60 ± 2.33 84.18 ± 2.68
5 83.34 ± 1.89 83.74 ± 1.76 85.24 ± 1.46 82.38 ± 1.93 83.10 ± 2.35 84.50 ± 2.40
6 83.21 ± 1.95 83.74 ± 1.69 85.48 ± 1.64 82.10 ± 2.30 82.43 ± 2.43 84.20 ± 2.12

layers in the sub-nets of CFN, and only fine-tune the
later fully-connected layers as many previous papers did.
The corresponding results are only slightly degraded. The
reported results are derived by setting the maximal training
iteration number as 160 for DMM and 120 for CFN,
respectively.

VII. CONCLUSIONS

In this paper, we proposed a part-based learning scheme
for face verification in the wild by introducing Convolu-
tional Fusion Network. We fuse multiple sub-CNNs pre-
trained on the local patches to take into account both
local and holistic information. A deep mixture model is
also proposed to further address the mis-alignment brought
by pose variation. DMM captures the spatial-appearance
distribution over faces to acquire the correspondences of the
local patches. Without relying on the hand-crafted features,
the proposed framework automatically learns an effective
representation of face images to build an end-to-end system.
We achieve the state-of-the-art performance with automatic
feature learning in the two benchmark datasets in the wild.
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