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State-of-the-art techniques for 6D object pose recovery depend on occlusion-free point clouds to accurately
register objects in 3D space. To deal with this shortcoming, we introduce a novel architecture called Iterative
Hough Forest with Histogram of Control Points that is capable of estimating the 6D pose of an occluded and
cluttered object, given a candidate 2D bounding box. Our Iterative Hough Forest (IHF) is learnt using parts
extracted only from the positive samples. These parts are represented with Histogram of Control Points
(HoCP), a “scale-variant” implicit volumetric description, which we derive from recently introduced Implicit
B-Splines (IBS). The rich discriminative information provided by the scale-variant HoCP features is lever-
aged during inference. An automatic variable size part extraction framework iteratively refines the object’s
roughly aligned initial pose due to the extraction of coarsest parts, the ones occupying the largest area in
image pixels. The iterative refinement is accomplished based on finer (smaller) parts, which are represented
with more discriminative control point descriptors by using our Iterative Hough Forest. Experiments con-
ducted on a publicly available dataset report that our approach shows better registration performance than
the state-of-the-art methods.
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1. Introduction

Object registration is an important task in computer vision that
determines the position and the orientation of an object in camera-
centered coordinates [28]. An object of interest that was detected
beforehand in a coarse 2D bounding box is fed into a registration sys-
tem that can superimpose the desired translation and rotation of the
object onto the raw camera image. By utilizing such a system, one can
propose promising solutions for various problems related to scene
understanding, augmented reality [25], control and navigation of
robotics [26], etc. Recent developments on visual depth sensors and
their increasing ubiquity have allowed researchers to make use of
the information acquired from these devices to facilitate challenging
registration scenarios.

Iterative Closest Point (ICP) algorithm [1], point-to-model based
methods [2,3], and point-to-point techniques [4,5] demonstrate
good registration results. However, the performance of these
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approaches is severely degraded in cases of heavy occlusion and
clutter, and similar-looking distractors. In order to address these
challenges, several learning-based methods formulate occlusion
aware features [6], derive patch-based (local) descriptors [15], or
encode the contextual information of the objects with simple depth
pixels [8], and integrate them into the random forests. Most par-
ticularly, iterative random forest algorithms such as Latent-Class
Hough forest (LCHF) [15] and iterative Multi-Output Random forest
(iIMORF) [9] obtain state-of-the-art accuracy on pose estimation.
On the other hand, these methods rely on scale-invariant features,
while the exploitation of rich discriminative information inherently
embedded into the scale-variability is one important point been
overlooked.

Unlike the aforementioned learning-based methods, the ones
presented by Novatnack et al. [10,11] utilize the detailed information
of the scale variation in order to register range images in a coarse-
to-fine fashion. Although promising, they extract and match con-
ventional salient 3D key points. However, real depth sensors have
several imperfections, such as missing depth values, noisy measure-
ments, and foreground fattening. As a result, salient feature points
used in Ref. [10] tend to be located on these deficient parts of the
depth images, and hence, they are rather unstable [12]. In such a sce-
nario, 3D reconstruction methods that provide more reliable shape
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information can be utilized [6]. Implicit B-Splines (IBS) [7,13] are
techniques that can provide shape descriptors through their zero-
sets and reconstruct surfaces. They are based on locally controlled
functions that when combined with their control points produce a
rich part-based object representation.

Our architecture is originated from these observations. We inte-
grate the coarse-to-fine registration approach presented in Ref. [10]
into the random forest framework [9,15] using Histogram of Con-
trol Points (HoCP) features that we adapt from recently introduced
IBSs [13]. We train our forest only from positive samples and learn the
detailed information of the scale-variability during training. We nor-
malize every training point cloud into a unit cube and then generate
a set of scale-space images, each of which is separated by a constant
factor. The parts extracted from the images in this set are represented
with the scale-variant HoCP features. During inference, the parts cen-
tered on the pixels that belong to the background and foreground
clutters are removed iteratively using the most confident hypotheses,
and the test image is updated. Since this removal process decreases
the standard deviation of the test point cloud, subsequent normal-
ization applied to the updated test image increases the relative scale
of the object (foreground pixels) in the unit cube. More discrimina-
tive control point descriptors are computed at higher scales, and this
ensures the refinement of the object pose. In our prior work [14], we
have evaluated the registration performance of the proposed archi-
tecture by only using fixed size parts. We extend the work engineering
an automatic variable size part extraction framework in such a way
that we can further exploit the discriminative information provided
by the HoCP features. This framework first roughly aligns the object
of interest by extracting coarsest parts, the ones occupying the largest
area in image pixels, and then iteratively refines its alignment based
on finer (smaller) parts that are represented with more discrimina-
tive control point descriptors. Note that, we employ a compositional
approach, i.e., we concurrently detect the object in the target region
and estimate its pose by aligning the parts in order to increase robust-
ness across clutter. Fig. 1 depicts a sample result of our architecture.
To summarize, our main contributions are as follows:

o To the best of our knowledge, this is the first time an implicit
objectrepresentation, Implicit B-Spline, is adapted into a “scale-
variant” part descriptor and is associated with the random
forests.

e We introduce a novel iterative algorithm for the Hough
forests: it finds out an initial hypothesis and improves
its confidence iteratively by extracting more discriminative
“scale-variant” descriptors due to the elimination of the
background/foreground clutter.

o We engineer an automatic variable size part extraction frame-
work for the random forests: it first roughly aligns the object of
interest by extracting coarsest parts and iteratively improves
its confidence based on finer (smaller) ones.

The rest of the paper is organized as follows: In Section 2, we
present a review on the object registration. Section 3 demonstrates
the computation procedure of the HoCP features as a scale-variant
part representation, their combination with the Iterative Hough
Forest (IHF), and the registration process. Experimental results are
provided in Section 4, and finally, the paper is concluded in Section 5
with several remarks, and discussions.

2. Related work

A large number of studies have been proposed for object regis-
tration, ranging from point-wise correspondence based methods to
learning-based approaches. Iterative Closest Point (ICP) algorithm,
originally presented in Ref. [1], requires a good initialization in order
not to be trapped in a local minimum during fine tuning. This issue is
addressed in Ref. [21] providing globally optimal registration by the
integration of a global branch-and-bound (BnB) optimization into the
local ICP. The point-wise correspondence problem is converted into
a point-to-model registration in Ref. [2]. The object model is repre-
sented with implicit polynomials (IP), and the distance between the
test point set and the object model is minimized via the Levenberg-
Marquardt algorithm (LMA). Zheng et al. [22] propose a 6 DoF pose
estimation technique utilizing 3D IPs on ultrasound images. In the
off-line phase, object model is represented with 3D IPs, and by uti-
lizing its gradient flow, 2D ultrasound image is registered in the on-
line process. In Ref. [23], a coarse-to-fine fast IP-driven registration
method is presented. A rough pose estimation is quickly acquired
with a coarse IP model (low degree curve fitting), and finer models
refine the parameters of this rough estimation (high degree curve
fitting). Hinterstoisser et al. [36] extract holistic templates from 3D
models of the objects and match to the scene at test time. These
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Fig. 1. Sample result of our architecture: the object of interest (lower-left corner) is first roughly aligned by extracting coarsest parts, the ones occupying the largest area in image
pixels. This alignment is then iteratively refined based on finer (smaller) parts that are represented with more discriminative descriptors (The RGB image of the object of interest
is for visualization purposes, the color-coded parts are centered on the same pixels).
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studies have demonstrated good registration results on occlusion-
free target point sets, and/or when the points sets are subjected to
the artificial Gaussian noises and outliers.

Unlike the abovementioned methods, more realistic registration
scenarios have been addressed by the point-to-point techniques that
build point-pair features for sparse representations of the test and
the model point sets [27,30,31]. Rusu et al. align two noisy point
clouds of real scenes by finding correct point-to-point correspon-
dences between the Point Feature Histograms (PFH), and feed this
alignment to an ICP algorithm for fine tuning [29]. The cluttered and
partially occluded objects’ poses are hypothesized by accumulating
the votes of the matching features in Ref. [30]. Choi et al. [31] pro-
pose point-pair features for both RGB and depth channels. These
features are conducted in a voting scheme to hypothesize the rota-
tion and translation parameters of the objects in the cluttered scenes.
The features proposed in Ref. [5] make use of the visibility context
of the scene to tackle the registration. Despite achieving good reg-
istration results, these techniques underperform when the scenes
are under heavy occlusion and clutter, and the objects’ geometry are
indistinguishable from the background.

Learning-based methods have good generalization across severe
occlusion and clutter [6,8,24,32,33]. The method presented in Ref. [6]
formulates the recognition problem globally and derives occlusion
aware features. A set of principal curvature ratios are computed for
all pixels in depth images to extract the edgelets. In Ref. [8], the
contextual information of the objects is encoded with simple depth
and RGB pixels. This technique improves the confidence of a pose
hypothesis using a Ransac-like algorithm. Cabrera et al. [33] back
project the parts inside the initially found coarse bounding box to
the image and pass down the forest again. The parts with the lowest
contributions are penalized in such a way that finer registration is
produced.

The state-of-the-art accuracy on registration is acquired by the
iterative random forest algorithms [16]. The part-based strategy,
Latent-Class Hough Forest [15], refines the initially hypothesized
object pose by iteratively updating the object class distributions
in the leaf nodes during testing. Iterative Multi Output Random
Forest (iMORF) [9] jointly predicts head pose, facial expression,
and the landmark positions. The relations between these tasks are
modelled so that their performances are iteratively improved with
the extraction of more informative features. The ideas, iterative
pose refinement during testing and iterative extraction of more dis-
criminative features form a basis for our Iterative Hough Forest
(IHF) architecture: during training, we encode discriminative shape
information of the HoCP features into the forest. Despite that the
skeleton of our training procedure is similar to the methodology
in Ref. [15], our forest learns the discriminative shape information
that will be iteratively exploited at test time. In the course of infer-
ence, unlike Ref. [15], we update the test image itself and the
hypotheses confidence by a noise removal process that allows us to
extract more informative features from the test images. While these
approaches [9,15] rely on the scale-invariant features to improve the
confidence of a pose hypothesis, Novatnack et al. [10,11] introduce a
framework that registers the range images in a coarse-to-fine fashion
by utilizing the detailed information provided by the scale variation.
The shape descriptors with the coarsest scale are initially matched,
and a rough alignment is achieved since fewer features are extracted
in coarser scales. The descriptor matching at higher scales produces
improved predictions of the pose. Inspired by Ref. [10], we design
a “scale-variant” implicit volumetric part description, “Histogram
of Control Points (HoCP)”, and associate it with the random forest
framework.

Selecting the part size is important since larger parts tend to
match the disadvantages of a holistic template, while smaller ones
are prone to noise [15]. In heavily occluded and cluttered scenes, rel-
atively smaller parts perform well, while the larger ones are more

convenient in occlusion/clutter-free scenarios. Discriminative infor-
mation encoded into small-sized parts might not be fully exploited
by larger parts, most particularly when the object representation
is scale-variant. Hence, this application-specific/task-dependent part
size selection degrades the generalization and it is one of the
remaining challenges that should be addressed, apart from occlu-
sion, clutter, and/or similar-looking distractors. Beyond object pose
estimation [14,15], there are several part-based solutions proposed
for different tasks, such as human pose recognition [17,18], 3D face
analysis [19], or hand pose estimation [20] to name a few. They expe-
rience different part sizes and select the one that performs best,
however, none of these solutions investigate how extracting variable
size parts can be utilized in a single framework. In this study, we
investigate the effect of this size variation and show that the simulta-
neous utilization of the parts of varying size can improve 6D object
pose estimation, especially in heavily occluded and cluttered depth
maps, supplying a rich source of discriminative information.

3. Our registration approach

In this section, we detail our registration approach by firstly
describing the computation procedure of HoCP features as a scale-
variant part representation. We then present how to encode
the discriminative information of these scale-variant features into
the forest. Finally, we demonstrate how to exploit the learnt
shape information in a coarse-to-fine fashion to refine the pose
hypotheses. Throughout the paper, we use the terms part and patch
interchangeably.

3.1. Scale-variant part representation: histogram of Control Points

Given a positive depth image, we initially normalize it into a unit
cube and then sample new point clouds at different scales as follows:

_ Xinpx3) — Xnpx3)

Xnli = e +05 =012 ...m (1)

with

max(X) — min(X)
a = max [ max(Y) — min(Y) ] .

max(Z) — min(Z)

In Eq. (1), X = [X, Y, Z] denotes the world coordinate vector of the
original foreground point cloud, X shows the mean of X. The constant
s; takes real numbers to generate point clouds at different scales,
starting from sy = 1 that corresponds to the initial normalization. «
is the scale factor, m is the number of the scales, and n,, is the number
of the points of the relevant set. Xy = [Xy, Yn,Zy] is the matrix of nor-
malized foreground pixels. Within this context, we define the scale h
of each normalized foreground point cloud i as given below:

h; = max (Zy,) — min (Zy,) . (2)

Fig. 2 (a) shows a training image and its samples at different scales.
Once we generate a set of scale-space point clouds, we represent
each of those first globally with the control points of Implicit B-
Splines (IBS). IBS is defined through the combination of B-Spline
tensor products:

N
fO) =" mijuBi(x)Bj( ¥)Bi(2) 3)

ij k=1
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Fig. 2. Computation procedure of HoCP features as a scale-variant part representation: (a) initial normalization (so = 1) of the training depth image is the outmost point cloud,
and the inner ones are sampled by different s; values. (b) Global representation of the scale-space images. (c) Extraction process of the variable size parts (centers of these parts

are the same). (d) HoCP representation of the parts extracted in (c).

where {n;;x} are the coefficients defining a control lattice of size
N x N x N. The spline bases Bj(x), Bj(y), and By(z) are the functions
of the given point (x,y,z). This definition can be reformulated as the

following inner product:
f(x) =n"e(x) = e(x)'n (4)

where the coefficient vector n includes the control values {n;;,}, and
the basis vector e(x) depends on the given data points sorting the
spline basis function products {B;(x)B;(y)Bi(z)}. The basis vectors in
Eq. (4) are computed for the whole point cloud, and the coefficient
vector n is calculated based on the 3L algorithm [37]. Rouhani et
al. [13] construct the spline basis functions B;(x), B;(y), Bi(z) through
the following blending functions:

bo(u) = (1 —u?)/6, by(u) = (3u> —6u® +4)/6
by(u) = (=3u® + 3u® +3u+1)/6, bs(u)=1>/6 (5)

and reformulate Eq. (3) in order to determine the control point vector
n of the point clouds that are normalized into the unit cube [0 1]3:

3
fOO =2 Nistjrmiesphi(t)bm(v)bp(w) (6)
LLmp=0

where

i=[x/A], j=[y/A], k=[z/A]

_Xx_Xx _Jy_Jy _Z2_2z
“=a AJ"’ A AJ’W A AJ

A=1/(N-3).

Thus, the unit cube is split into an N x N x N voxel grid where
N is the IBS resolution. Each control point in n is defined with an
index-weight pair: the index number indicates the vertex of this grid
at which the related control point is located. The weight informs

the descriptor significance about the control of the geometry to
be represented. The scale-space images in Fig. 2 (a) are globally
represented in Fig. 2 (b) with the control point descriptors. We use
all control points to represent the structures, but one can sort these
descriptors based on their weights and utilize the ones higher than
a threshold. In Fig. 2 (b), the point clouds are lastly reconstructed by
using the control points to show the increase in their discriminative
power as the scale gets higher. Note that, IBS resolution N determines
the complexity of the representation (level of detail) in a unit cube,
while the scale h indicates the relative size of the object with respect
to the unit cube dimensions. In our architecture, despite sampling
point clouds at different scales h;, (e.g. i = 0,1,...,8), we fix the
complexity of the representation, (e.g. N = 50).

IBS is the combination of the locally controlled functions and
allows one to propose effective part-based solutions for object reg-
istration. We benefit from such a property and partition the globally
represented scale-space depth maps into parts. The part size g is
expressed in image pixels. It depicts the ratio between the sizes of
the extracted part and the bounding box of the global point cloud.
In our prior work [14], we have extracted and represented the parts
that have the same size, that is, the parts growing around every indi-
vidual pixel at each scale occupy the same area in image pixels. We
now extend the work extracting the parts that are different in size.
A 3D bounding box defined in metric coordinates is traversed in
the unit cube of each scale-space image, and the parts are extracted
around non-zero pixels. The total number of the data points in this
3D bounding box varies for the point clouds at different scales, and
consequently, the size of the extracted parts differs. Fig. 2 (c) shows
an example of variable size part extraction process in which the red
parts are grown around the same data point. Note how the part
size decreases when the scale of the normalized object point cloud
gets higher, since less number of data points are deployed in the 3D

bounding box. Each part has its own implicit volumetric representa-
tion, formed by the closest control points to the part center, the ones
lying inside the 3D bounding box along depth direction. Such a part
description characterizes the locality in a cascaded fashion, growing
regions with different characteristics around a point. We encode this
information into histograms in spherical coordinates. Each of the part
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centers is coincided with the center of a sphere. The control points
of the part are described by the log of the radius t;, the cosine of the
inclination ty, and the azimuth t,. Then, the sphere is divided into
the bins, and the relation between the bin numbers v, v, V4 and the
histogram coordinates tr, ty, ty, is given as follows [34]:

t=—"" gL
T log (m) g(rmin)

Tmin

z
ty = Ve?d (7)

v
ty = ﬁ tan ! (iﬁ)
d

where 1, and rmax are the radii of the nested spheres with the
minimum and the maximum volumes, X4,y,4,2z4 are the Cartesian
coordinates of each descriptor with radius r. rmax equals to the dis-
tance between the patch center and the farthest descriptor of the
related patch. The numbers of the control points in each bin are
counted and stored in a d = v, * Vg * Vg dimensional feature vector f.
Fig. 2 (d) illustrates the HoCP representations of the parts extracted
in Fig. 2 (c). Note that the control points computed at higher scales
capture more detailed part geometry.

3.2. Combination of HoCP and Iterative Hough Forest

The proposed IHF is the combination of randomized binary deci-
sion trees. It is trained only on foreground synthetically rendered
depth images of the object of interest. We generate a set of scale-
space images from each training point cloud. Then, we sample a set
of parts {P;} as explained in Section 3.1 and annotate those as follows:

P ={P} = {(C,‘,AX,‘,oi,fi,Di)} (8)

where ¢; = (cx,, Cy,) is the part center in pixels, AX; = (Ax;, Ay;, Az;)
is the 3D offset between the centers of the part and the object, 6; =
(6r,,6p,, By,) is the rotation parameters of the point cloud from which
the part P; is extracted, and D; is the depth map of the part.

Each tree is constructed by using a subset S of the annotated
training parts S ¢ P. We randomly select a template part T from S
and assign it to the root node. We measure the similarity between T
and each part S; in S as follows:

o Depth check: The depth values of the descriptors S? and T" that
represent the parts S; and T are checked. The spatially inconsis-
tent descriptors in S are removed as in Ref. [15], generating
that includes the spatially consistent descriptors of the patch S;.

o Similarity measure: Using (), the feature vector f, is gener-
ated, and the £, norm between this vector and fr is measured:

]:(slvT) = “fﬂ - fT”Z (9)

o Similarity score comparison: Each patch is passed either to
the left or right child node according to the split function that
compares the score of the similarity measure F(S;,T) and a
randomly chosen threshold 7.

The main reason why we apply a depth check to the parts
is to remove the structural perturbations, due to occlusion and
clutter [15]. These perturbations most likely occur on parts extracted
along depth discontinuities, such as the contours of the objects. They
force a test part (occluded/cluttered) to diverge from its positive cor-
respondence by changing its representation, rmax of the sphere, and
the histogram coordinates consequently.

A group of candidate split functions are produced at each node by
using a set of randomly assigned patches {T;} and thresholds {7;}. The

one that best optimize the offset and pose regression entropy [35]
is selected as the split function. Each tree is grown by repeating this
process recursively until the forest termination criteria are satisfied.
When the termination conditions are met, the leaf nodes are formed,
and they store votes for both the object center Ax = (Ax, Ay, Az) and
the object rotation 6 = (6, 6), 0y).

Depending on the part extraction approach, all parts in P (see
Eq. (8)) can either be of the same size or of the variable size. From
now on, we will refer to the forests trained on variable size parts as
the IHF-variable size, and to the ones learnt by using fixed size parts
as the IHF-fixed size.

3.3. 6D object pose estimation

Once we encode the discriminative information of the scale-
variant HoCP features into the forest, we next demonstrate 6D pose
estimation of objects considering that the learnt forest is IHF-variable
size.

The proposed architecture registers objects in two steps: the
initial registration and the iterative pose refinement. The initial
registration roughly aligns the test object, and this alignment is
further improved by the iterative pose refinement.

Consider an object that was detected by a coarse bounding box,
Iy, as shown in the leftmost image of Fig. 3 (a). At an iteration instant
k, the following quantities are defined:

o AX%F = (AX0 AX!, ..., AxK} = {AXO, AX"k}: the history of the
object position predictions.

o 0% = (600",... 6" =
rotation estimations.

o VK = 142 . vk} the history of the inputs (noise
removals) applied to the test image.

o MOk = {MO.Ml,...,M"} = (MO, M ¥}: the history of the
set of the feature vectors where MK = (f;}.

o h*: the object scale (the scale of the foreground pixels) in the
unit cube at iteration k (see Eq. (2)).

e gk: the size of the parts extracted at iteration k.

(6°,6"%1: the history of the object

We formulate the initial registration as follows:

(Axo,eo) = arg max p (Ax°,0°|1b,/\/l°,h°,g0) ) (10)
Ax0,60
Initial registration N 2N
- AN A A
‘ PSS DOSEBIBES
@) N A N Nt
aVayaWa
|
Iterative pose refinement PN /NN
s /ANCA A A
0) 5

<
last iteration

Fig. 3. Object of interest is first roughly aligned by extracting coarsest parts, and this
alignment is then iteratively refined based on finer (smaller) ones.
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We find the best parameters that maximize the joint posterior
density of the initial object position AX? and the initial object rota-
tion 6°. The initial registration process is illustrated in Fig. 3 (a).
The test image is firstly normalized into a unit cube. Unlike train-
ing, this is a “single” scale normalization that corresponds to sg = 1
(see Eq. (1)). The parts extracted from the globally represented point
cloud are described with the HoCP features and are passed down
all the trees. At this stage, we extract the coarsest parts from the
test image, i.e., the ones occupying the largest area in image pixels.
We determine the effect that all patches have on the object pose by
accumulating the votes stored in the leaf nodes as in Ref. [15] and
approximate the initial registration given in Eq. (10).

Once the initial hypothesis X0 = (Ax?,6°) is obtained, the set of
pixels that belong to the background/foreground clutter are removed
from I, according to the following criterion:

Y1 < Dy, (pj) < B
otherwise

vk — IIb(pj) = Dy, (pj) an

Iy(pj)) =0,

with
v = min (D}f,) , B =max (D};) :

In Eq. (11), Dy, depicts the depth map of the test image Iy, and Dy, (p;)
shows the depth value of the pixel p;. D}f, denotes the depth map
of the hypothesis H at iteration k, that is, it is the depth map of the
model superimposed onto the image at iteration k. iy; and s, are
the scaling coefficients. y and 3 are the minimum and the maximum
values of the model’s depth map at estimated position (Ax) and
rotation (6). Thus, this criterion defines lower yi; and upper iy,
bounds, and then it removes the pixels from the test image I, if their
depth values are out of these bounds.

The efficacy of vk is illustrated in Fig. 3. In the rightmost image
of Fig. 3 (a), the test image and the initial hypothesis H are super-
imposed. Using this hypothesis, the test image is updated by v!
as in Eq. (11). The updated image is assigned as the input for the
1st iteration (shown in Fig. 3 (b)). It is normalized and represented
globally. The object “scale” (h!) in the unit cube is relatively increased
(compare with the initial registration), and more discriminative con-
trol point descriptors n are computed. This is mainly because of the
fact that the standard deviation of the input image decreases, since
we removed foreground/background clutter. As a follow up step, we
traverse the 3D bounding box in the unit cube during part extraction
while the increase in the normalized object scale gives rise to extract
parts whose size are smaller (finer) than the ones extracted during
the initial registration. The resulted hypothesis H of the 1st itera-
tion is shown on the right. The extraction of finer parts represented
with more discriminative control point descriptors along with the
noise removal process result in more accurate and confident hypoth-
esis. This pose refinement process is iteratively performed until the
maximum iteration is reached (see Fig. 3 (c)):

(Ax",O") = arg max p(AxK, 0K | MUk vk x0 pk ghy, (12)
A

xk gk

We approximate the registration hypothesis at each iteration by
using the stored information in the leaf nodes as we did in the initial
registration. If we would demonstrate the 6D object pose estimation
considering that the learnt forest is the IHF-fixed size, the only dif-
ference in the formulation would be the part extraction viewpoint.
Instead of traversing 3D bounding box in the unit cube, we would
extract the parts with a predefined size in pixels, and at an iteration
instant k, g would remain the same as g°. In the next section, we
will compare the registration performances of the forests that are
separately trained on fixed and variable size parts.

4. Experimental results

There are several publicly available datasets [15,36] to test the
performances of the object registration methods. For each object
type in these datasets, a set of RGB-D test images are provided
with ground truth object pose parameters. We have analysed these
images and have found that “Coffee Cup”, “Camera”, and “Shampoo”
(included in the ICVL dataset [15]) are some of the best demonstrable
objects to test and to compare our registration architecture with the
state-of-the-art methods, since they are located in highly occluded
and cluttered scenes. We further process the test images of these
objects to generate a new test dataset according to the following
criteria:

o Since the HoCP features are scale-variant, the depth values of
the training and the test images should be close to each other
up to a certain degree. In this study, we train the forests at a
single depth value, f; mm, and test with the images at the range
of [ f; +#50] mm.

e The test object instances located at the range of [f; + 50]
mm are assumed as detected by coarse bounding boxes (see
Fig. 4). The image regions included in these bounding boxes are
cropped, and the new test dataset is generated.

The generated dataset includes 276 “Coffee Cup”, 360 “Camera”,
and 200 “Shampoo” images each of which is at the range of [750
50] mm, since we train the forests used in all experiments with the
positive samples at f; = 750 mm depth.

Our experiments are two folds: parameter optimization and
comparative study. The architecture parameters have an important
impact upon the registration and include the size of the parts
extracted during the initial registration g2, the IBS resolution N, the
HoCP feature dimension d (the number of the bins or quantization
parameter), and the iteration number. Once the best parameters are
acquired, we compare the performance of our architecture with the
state-of-the-art methods in the comparative study.

Both experiments use the metric proposed in Ref. [36] to deter-
mine whether a registration hypothesis is correct. This metric out-
puts a score o that calculates the distance between the ground truth
and estimated poses of the test object. The registration hypothesis
that ensures the following inequality is considered as correct:

O < Zpd (13)

Fig. 4. Dataset generation: input of the proposed architecture is the depth image of a
coarsely detected object (RGB correspondence is for better visualization).
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where @ is the diameter of the 3D model of the test object, and z,
is a constant that determines the coarseness of an hypothesis that is
assigned as correct. We set z, to 0.08 when we refine the parameters
of the proposed architecture, and the effect of various z, values is
separately examined in the comparative study.

Forest Termination Criteria. The maximum depth of a forest
should be less than log,(S) 4+ 1 where S is the number of the data
points used during training. Every forest in this study is trained
using over 10 M parts extracted from synthetically rendered images.
According to this rule, we set the maximum depth to 25 and limit
the minimum number of samples at each leaf node to 15 for each
tree. Once we set the tree depth, we train 3 different forests each
of which is the ensemble of 3, 5, and 10 trees. We test these forests
on the validation dataset which is created by selecting a subset of
the original dataset used in this paper. The F1 scores produced by
each forest is 0.8526, 0.8848, and 0.8867, respectively. We observe
that the forests generate higher F1 scores as the number of the trees
increases. However, taking into account both training effort and run-
time performance, we build every forest using 3 trees. We find that
the determined forest termination criteria are coherent with the
ones used in Refs. [15,16,24].

4.1. Parameter optimization

The parameters of the proposed architecture are optimized only
by training several IHFs based on fixed size parts. These experiments
are performed on the “Coffee Cup” dataset.

4.1.1. Size of the parts extracted during initial registration

The initial registration hypothesis is used by the iterative pose
refinement in order to improve the alignment’s confidence (see
Eq. (12)), and hence, g° is one of the important parameters that have
adirect impact on the success of the complete architecture. IHF-fixed
size uses the parts that are of the same size during both the initial reg-
istration and the iterative pose refinement. IHF-variable size roughly
aligns the object of interest during the initial registration extracting
coarsest parts, the ones occupying the largest area in image pix-
els. It iteratively refines this alignment based on the automatically
extracted finer (smaller) parts, that is, it works in a size range. Thus,
evaluating the performances of the initial registrations for different
part sizes is a crucial experiment that determines not only the opti-
mum g° values, but also the range of the part sizes at which the
[HF-variable size works in the most feasible way. The effect of the
part size is examined by setting the IBS resolution N to 80, the HoCP
feature dimension d to 128 in addition to the previously defined
forest parameters. We change the part size g% 0.20, 0.25, 0.33,
0.50, 0.66, and 0.75 times of the object bounding box, and for each,
we train separate IHF-fixed size. The resultant Precision-Recall (PR)
curves of the initial registrations are shown in Fig. 5 (a), and the cor-
responding F1 scores are demonstrated in Table 1. According to this
figure and their corresponding F1 scores, we can choose any part size
apart from the ones smaller than % times of the bounding box. Con-
sidering both the computational load and the accuracy, we choose
% as the optimal part size for the [HF-fixed size. On the other hand,
[HF-variable size uses the parts at various sizes, beginning with the
coarsest (largest) ones extracted during the initial registration, and
ending with the finest (smallest) ones extracted at the last iteration
of the iterative pose refinement. We reanalyse the F1 scores presented
in Table 1 taking into account this size variation. When we increase
the part size from % to %, the F1 score ranges between 0.6 and 0.7.
Despite the significant variation of the part size, the deviation in the
F1 scores is negligible. We choose % as the size of the parts extracted
during the initial registration phase of the IHF-variable size. One could
suggest to train both IHF-fixed and IHF-variable size separately in
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Fig. 5. Precision-Recall curves for parameter optimization: (a) compares the per-
formance of the forests with different patch sizes. (b) illustrates the registration
performance for different IBS resolutions N and feature dimensions d. (c) shows the
effect of the iteration number. For the corresponding F1 scores see Table 1.

order to find the best corresponding g° values, however, it does not
make sense. Because, the positive impact of the training on vari-
able size parts is much observed during the iterative pose refinement
phase. Hence, training only on the fixed size parts and the examina-
tion through the resultant F1 scores are reasonable to infer the best
g% for each approach.

Table 1
F1 scores of the initial registrations determined for different part sizes (g), IBS
resolution (N) & feature dimension (d), and number of iteration.

Part F1 N&d F1 # F1
size, g score score iter score
% 0.5966 80& 128 0.7068 0 0.7510
}T 0.6096 80 & 256 0.7368 1 0.7742
1 0.6532 80 &512 0.7425 3 0.7745
% 0.7068 100 & 128 0.6870 5 0.7932
% 0.6341 100 & 256 0.7510

% 0.6539 100 & 512 0.7438
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4.1.2. IBS resolution and HoCP feature dimension

We next tune the IBS resolution N and the HoCP feature dimen-
sion d by setting the part size to % . We test the combinations of N =
80,100 and d = 128,256,512, the ones that are the most applicable
N-d pairs to represent % patch size. The PR curves of these combina-
tions are depicted in Fig. 5 (b), and the corresponding F1 scores are
illustrated in Table 1. According to these results, we infer that the
combinations composed by d = 128 relatively underperform, while
the remaining have approximately the same F1 scores. We take into
account both the memory consumption and the accuracy, and agree
on the values of N = 100 & d = 256.

4.1.3. Effect of iteration

The last parameter we optimize is the iteration number. We test
several IHFs-fixed size [14] each of which has k = 0,1,3, and 5
iterations, respectively. Their PR curves are shown in Fig. 5 (c). As
expected, the forests that use greater number of iterations show bet-
ter performances (see Table 1), since more discriminative features
are extracted due to the noise removal process.

Fig. 6 demonstrates the registration results of several test objects
comparing the IHFs that are trained on both the fixed size and the
variable size parts. The RGB correspondences of the test objects
are shown at the top, and each “iterative pose refinement” module
illustrates the 1st, 3rd, and 5th iteration at its 1st, 2nd, and the
3rd columns, respectively. The sample parts shown in the “part
extraction” rows are grown around the same data point. We first
discuss the “image id: 650”. The object is initially aligned by
extracting the parts that are of size % for the fixed size and % for

Image id:{ >
650 "

b ]

Initial
registration

Initial

registration Iterative pose refinement

Image id:
979

lterative pose refinement

the variable size approach. By using the initial registration output,
background clutter is removed from the test image. The amount of
the reduction is approximately the same for both approach. After
reduction, the test image is updated and is assigned as the input
for the 1st iteration. IHF-fixed size keeps on extracting the parts
that are of size % till the last iteration, while the IHF-variable
size grows finer (smaller) regions in proportion to the removed
foreground/background clutter. One can infer that the variable
size approach registers the object of interest slightly better than the
IHF-fixed size. For the “image id: 979” and the “image id: 1494”, the
same regions of the test images are removed as the iteration pro-
gresses. However, the IHF-variable size demonstrate better results
for both objects. This comparison also verifies that we have selected
the optimum g° value for each approach. As the iteration progresses,
we observe smooth transitions between the estimated translation
and rotation parameters.

4.2. Comparative study

These experiments are conducted on the “Coffee Cup”, “Camera”,
and “Shampoo” datasets to compare our approach with the state-of-
the-art methods including the Latent-Class Hough forests (LCHF) [15]
trained separately on the surface normal (LCHF-Depth (D) channel)
and the color gradient + the surface normal (LCHF-RGBD channel)
features. In order to make a fair comparison between methods, we
train and test the LCHFs by using the authors’ software. The forest
parameters of all approaches are the same. For both datasets, we
generate PR curves at various z, values, beginning with the value
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Fig. 6. Variable size and fixed size part extraction processes are compared, and their effect on the registration results are shown. Iterative pose refinement modules illustrate 1st,
3rd, and the 5th iteration from left to right (RGB correspondences of the test objects are for better visualization).
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Fig. 7. Precision-Recall curves of the ‘Coffee Cup’ dataset: each image compares the IHF-fixed size (initial registration), the IHF-fixed size (initial registration + iterative pose
refinement), and the [HF-variable size (initial registration + iterative pose refinement) with the LCHFs [15] trained separately on Depth, and on RGB-D channels. Greater values
of z, result higher precision and recall values. F1 scores are presented in Table 2.

Table 2
F1 scores of the ‘Coffee Cup’ dataset are shown at different z,, values.
Zw LCHF-D LCHF-RGBD IHF-fixed size (fs) IHF-fixed size (fs) IHF-variable size (vs)
value [15] [15] (InitReg) (InitReg + Ref) (InitReg + Ref)
F1 scores
0.05 0.4867 0.3818 0.4375 0.5297 0.5095
0.07 0.7202 0.6639 0.6985 0.7595 0.7891
0.09 0.7984 0.7683 0.7633 0.7975 0.8150
0.11 0.8344 0.8199 0.8000 0.8312 0.8565
0.13 0.8548 0.8554 0.8163 0.8481 0.8773
0.15 0.8589 0.8595 0.8353 0.8608 0.8940

that strictly limits the deviations between the ground truth and the

The PR curves of the coffee cup dataset are depicted in Fig. 7 for
several z, values, and their corresponding F1 scores are presented
in Table 2. A short analysis on the images of Fig. 7 reveals that the
increase in z, value generates higher F1 scores for each approach.

estimated pose parameters, 0.05, going up in 0.01 increments, and
ending with the value that accepts relatively rough estimations as
correct, 0.15.
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Fig. 8. Precision-Recall curves of the ‘Camera’ dataset: each image compares the IHF-fixed size (initial registration), the IHF-fixed size (initial registration + iterative pose
refinement), and the IHF-variable size (initial registration + iterative pose refinement) with the LCHFs [15] trained separately on Depth, and on RGB-D channels. Greater values
of z, result higher precision and recall values. F1 scores are presented in Table 3.
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Table 3
F1 scores of the ‘Camera’ dataset are shown at different z,, values.
Zw LCHF-D LCHF-RGBD [HF-fixed size (fs) IHF-fixed size (fs) [HF-variable size (vs)
value [15] [15] (InitReg) (InitReg + Ref) (InitReg + Ref)
F1 scores
0.05 0.1003 0.0736 0.2071 0.1538 0.3963
0.07 0.2696 0.2240 0.3954 0.3878 0.6706
0.09 0.3723 0.4121 0.4761 0.5047 0.7680
0.11 0.3991 0.4674 0.5140 0.5710 0.8035
0.13 0.4304 0.5246 0.5494 0.6091 0.8242
0.15 0.4551 0.5500 0.5731 0.6388 0.8596
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Fig. 9. Precision-Recall curves of the ‘Shampoo’ dataset: each image compares the IHF-fixed size (initial registration), the IHF-fixed size (initial registration + iterative pose
refinement), and the IHF-variable size (initial registration + iterative pose refinement) with the LCHFs [15] trained separately on Depth, and on RGB-D channels. Greater values
of z,, result higher precision and recall values. F1 scores are presented in Table 4.

According to Table 2, the LCHF trained on the color gradient + sur-
face normal features underperforms the LCHF trained merely on the
surface normals. The main reason of this underperformance is the
distortion along the object borders arising from the occlusion and
the clutter, that is, the distortion of the color gradient information

in the test process. The performance of the initial registration of
the IHF-fixed size is similar to the ones LCHFs have. When this ini-
tial registration (see the 3rd column of Table 2) acquired from the
[HF-fixed size is iteratively refined, more accurate registrations are
resulted (see the 4th column of Table 2). Because, the iterative pose

Table 4
F1 scores of the ‘Shampoo’ dataset are shown at different z,, values.
Zw LCHF-D LCHF-RGBD [HF-fixed size (fs) IHF-fixed size (fs) [HF-variable size (vs)
value [15] [15] (InitReg) (InitReg + Ref) (InitReg + Ref)
F1 scores
0.05 0.2168 0.197 0.2051 0.1597 03125
0.07 0.5094 0.5067 0.2983 0.2811 0.50
0.09 0.7728 0.7439 0.3306 0.3819 0.5862
0.11 0.8720 0.8463 0.3878 0.4785 0.6379
0.13 0.8825 0.8670 0.4437 0.5436 0.6724
0.15 0.9033 0.8723 04713 0.5692 0.6898
Table 5

F1 scores of the ‘Coffee Cup’, ‘Camera’, and the ‘Shampoo’ datasets are shown. These scores are the average of all z, that take each value
in the range of [0.05-0.15].

Object LCHF-D LCHF-RGBD IHF-fixed size (fs) IHF-fixed size (fs) [HF-variable size (vs)
[15] [15] (InitReg) (InitReg + Ref) (InitReg + Ref)
F1 scores
Coffee Cup 0.7744 0.7410 0.7419 0.7834 0.8026
Camera 0.3441 0.3850 0.4631 0.4881 0.7323
Shampoo 0.7067 0.6870 0.3577 0.4067 0.5747
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Fig. 10. Some qualitative results. For each octonary: 1st column illustrates the test image and the initial hypothesis (initial registration), and the remaining columns demonstrate
1st, 3rd, and the 5th iterations (iterative pose refinement). Test images are updated by removing background/foreground clutter.
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refinement module of the IHF-fixed size reduces the amount of the
noise in the test depth maps removing foreground/background clut-
ter. This removal process also enables IHF-fixed size to compute
more discriminative control points for better shape representation.
The IHF-variable size with initial registration + iterative pose
refinement outperforms other approaches. The main reason of this
high performance is the utilization of the parts that are different in
size. The cascaded representation of the locality increases the robust-
ness across clutter, occlusion, missing depth pixels, and/or similar-
looking distractors. The object of interest is first roughly aligned
by extracting the coarsest parts. It is highly possible that these
initially extracted parts include the portions belonging to the back-
ground/foreground clutter, since they are the coarsest and are close
to a holistic template. Despite the fact that we apply a depth check in
order to get rid of those noise during testing, it is highly naive. On the
other hand, the proposed framework can get rid of those structural
perturbations by growing smaller regions as the iteration progresses.
Apart from that, the control point descriptors computed at later iter-
ations allows the complete framework to represent the shapes in a
more discriminative manner.

Regarding the camera dataset, we show its PR curves in Fig. 8 for
several z, values and the corresponding F1 scores in Table 3. The
approaches under comparison perform worse on this dataset with
respect to the coffee cup. Unlike the results obtained from the coffee
cup dataset, we see the positive impact of the color gradients when
they are utilized along with the surface normals at most of the z,
values (compare the 1st and the 2nd columns of Table 3). IHF-fixed
size registers objects more accurate than any versions of the LCHF
thanks to the utilization of the discriminative information embed-
ded into the scale-variant HoCP features and the iterative refinement
of the test depth maps. IHF-variable size significantly outperforms
other approaches demonstrating the importance of the simultaneous
utilization of variable size parts. The HoCP representations of the
cascaded regions grown around the same data points allow the
algorithm to be aware of occlusion, clutter, and missing depth values.
More confident registrations are hypothesized as the iteration pro-
gresses based on more discriminative representations of the smaller
parts. The registration performance of the proposed architecture is
shown in Fig. 9 for the shampoo object, and the corresponding F1
scores are demonstrated in Table 4 for varying z, values. In cases
of registering at lower z, values, our approach shows better perfor-
mance than the LCHFs, however, when we accept relatively rough
estimations as correct, i.e., higher z,s, our approach underperforms.

Since we address the registration problem rather than individual
object detection or pose estimation, we integrate the effect of the dif-
ferent error ratios into our comparisons. We average the F1 scores
that are computed at each z,, in the range of [0.05-0.15] and report in
Table 5. Fig. 10 illustrates several accurate registrations hypothesized
by the proposed architecture on the camera, coffee cup, and shampoo
objects. We further evaluate the performance of the globally opti-
mized ICP algorithm proposed in Ref. [21] on our test dataset. We
use the software kindly provided by the authors and set the default
parameters. While accurate registration results are obtained on the
clean dataset, it diverges in the case of highly occluded and cluttered
point clouds (see Fig. 11).

Run-time Performance. The proposed architecture, Iterative
Hough Forest, is capable of achieving real-time execution. It registers
the 6D pose of an object processing 34 fps on a i7-3820 CPU @
3.60 GHz, 16.0 GB computer. Histogram of Control Points (HoCP)
features are derived from the source codes of recently proposed
Implicit B-Splines and are integrated into the Iterative Hough Forest
architecture. Despite the fact that the derivation procedure of HoCP
features alleviates the run-time performance, it can be accelerated by
GPU processing. Utilization of APIs like OpenMP allows us to paral-
lelise the algorithm for multi-thread, and thus enabling the complete
architecture to simultaneously process multiple parts.
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Fig. 11. Performance of the Go-ICP [21] algorithm on our dataset: despite it achieves
good registration on the clean point cloud, it diverges on our dataset.

5. Discussion and conclusion

In this study, we have proposed a novel architecture, Iterative
Hough Forest with Histogram of Control Points, addressing 6D object
registration rather than individually estimating either the object’s
location in a 2D/3D bounding box or the object’s orientation (roll,
pitch, yaw). Any off-the-shelf detector can accurately provide a
coarse 2D or 3D bounding box for the object of interest. Various
object orientation predictors are also available, however, they
depend on clearly segmented target objects. Our architecture funda-
mentally targets to eliminate the shortcomings of these individual
detectors and orientation predictors estimating occluded and clut-
tered objects’ 6D pose given a candidate 2D bounding box. Our IHF
is learnt using parts extracted only from the positive samples. These
parts are represented with scale-variant HoCP features, which we
derive from recently introduced Implicit B-Splines (IBS).

At test time, we apply two different strategies regarding the parts
used to train the forest. The first strategy we apply roughly aligns
the object and iteratively refines this alignment based on more dis-
criminative control point descriptors that are computed due to the
elimination of background/foreground clutter. The part size is fixed
and is empirically predefined. On the other hand, the predefined
part size might not be generalizable enough across different objects,
degrading the registration performance of the proposed study on
one object while working well on another one. Besides, discrimina-
tive information encoded into small sized parts might not be fully
exploited by larger parts, most particularly when the object rep-
resentation is scale-variant. Inspired by these observations, we use
variable size parts in the second strategy. An automatic variable
size part extraction framework iteratively refines the object’s initial
pose that is roughly aligned due to the extraction of coarsest parts,
the ones occupying the largest area in image pixels. The iterative
refinement is accomplished based on finer (smaller) parts that are
represented with more discriminative control point descriptors by
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using our Iterative Hough Forest. The experimental results report
that our approach show better registration performance than the
state-of-the-art methods.

Acknowledgements

Caner Sahin is funded by the Turkish Ministry of National
Education.

References

[1]
[2]
3]

[4

[5

(6

[7

[8

9]

P.J. Besl, N.D. McKay, A method for registration of 3D shapes, IEEE Trans. Pattern
Anal. Mach. Intell. 14 (2) (1992) 239-256.

M. Rouhani, A.D. Sappa, Correspondence free registration through a point-
to-model distance minimization, ICCV, 2011.

M. Unel, O. Soldea, E. Ozgur, A. Bassa, 3D object recognition using invariants of
2D projection curves, Pattern. Anal. Applic. (2010)

R.B. Rusu, N. Blodow, M. Beetz, Fast point feature histograms (FPFH) for 3D
registration, ICRA, 2009. pp. 3212-3217.

E. Kim, G. Medioni, 3D object recognition in range images using visibility
context, IROS, 2011. pp. 3800-3807.

U.Bonde, V. Badrinarayanan, R. Cipolla, Robust instance recognition in presence
of occlusion and clutter, ECCV, 2014.

B. Juttler, A. Felis, Least-squares fitting of algebraic spline surfaces, Adv. Com-
put. Math. (2002) 135-152.

E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, C. Rother, Learning 6D
object pose estimation using 3D object coordinates, ECCV, 2014. pp. 536-551.
X. Zhao, T.-K. Kim, W. Luo, Unified face analysis by iterative multi-output
random forests, CVPR, 2014. pp. 1765-1772.

[10] J. Novatnack, K. Nishino, Scale-dependent/invariant local 3D shape descriptors

(1]
[12]
(13]
(14]

[15]

[16]

for fully automatic registration of multiple sets of range images, ECCV, 2008.
pp. 440-453.

P. Bariya, K. Nishino, Scale-hierarchical 3D object recognition in cluttered
scenes, CVPR, 2010. pp. 1657-1664.

C.Zach, A.P.Sanchez, M.T. Pham, A dynamic programming approach for fast and
robust object pose recognition from range images, CVPR, 2015. pp. 196-203.
M. Rouhani, A.D. Sappa, E. Boyer, Implicit B-spline surface reconstruction, IEEE
Trans. Image Process. 24 (1) (2015) 22-32.

C. Sahin, R. Kouskouridas, T.K. Kim, Iterative Hough Forest with Histogram of
Control Points for 6 DoF Object Registration from Depth Images, IROS, 2016.

R. Kouskouridas, A. Tejani, A. Doumanoglou, D. Tang, T.K. Kim, Latent-
class hough forests for 6 dof object pose estimation, 2016.arXiv preprint
arXiv:1602.01464.

A. Doumanoglou, R. Kouskouridas, S. Malassiotis, T.-K. Kim, Recovering 6D
Object Pose and Predicting Next-Best-View in the Crowd, CVPR, 2016.

(17]

(18]
(19]

(20]

(21]

(22]

(23]

[24]
(25]
(26]
(27]
(28]
[29]
(30]
(31]
(32]

(33]

(34]
(35]

(36]

(37]

J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, A. Blake,
Real-time human pose recognition in parts from single depth images, Commun.
ACM (2013)

M. Budiu, J. Shotton, D. Murray, M. Finocchio, Parallelizing the training of the
Kinect body parts labeling algorithm, NIPS, 2011.

G. Fanelli, M. Dantone, J. Gall, A. Fossati, L. Van Gool, Random forests for real
time 3D face analysis, Int. J. Comput. Vis. 101 (3). (2013)

G. Rogez, M. Khademi, J.S. Supancic, III, JM.M. Montiel, D. Ramanan, 3D
hand pose detection in egocentric RGB-D images, Computer Vision-ECCV 2014
Workshops, 2014.

J. Yang, L. Hongdong, J. Yunde, Go-ICP: Solving 3D registration efficiently and
globally optimally, ICCV, 2013. pp. 1457-1464.

B. Zheng, R. Ishikawa, T. Oishi, J. Takamatsu, K. Ikeuchi, 6-DOF pose estima-
tion from single ultrasound image using 3D IP models, CVPR Workshops, 2008.
pp. 1-8.

B. Zheng, R. Ishikawa, J. Takamatsu, T. Oishi, K. Ikeuchi, A coarse-to-fine IP-
driven registration for pose estimation from single ultrasound image, Comput.
Vis. Image Underst. 117 (12) (2013) 1647-1658.

A. Tejani, D. Tang, R. Kouskouridas, T-K. Kim, Latent-class Hough forests for 3D
object detection and pose estimation, ECCV, 2014. pp. 462-477.

K. Pauwels, D. Kragic, Simtrack: a simulation-based framework for scalable
real-time object pose detection and tracking, IROS, 2015.

K. Pauwels, D. Kragic, Integrated on-line robot-camera calibration and object
pose estimation, ICRA, 2016.

C. Papazov, D. Burschka, An efficient ransac for 3d object recognition in noisy
and occluded scenes, Asian Conference on Computer Vision, 2010.

M. Uenohara, T. Kanade, Vision-based object registration for real-time image
overlay, Computer Vision, Virtual Reality and Robotics in Medicine, 1995.

R.B. Rusu, N. Blodow, Z.C. Marton, M. Beetz, Aligning point cloud views using
persistent feature histograms, IROS, 2008.

B. Drost, M. Ulrich, N. Navab, S. Ilic, Model globally, match locally: efficient and
robust 3D object recognition, CVPR, 2010.

C. Choi, H.I. Christensen, 3D pose estimation of daily objects using an RGB-D
camera, IROS, 2012. pp. 3342-3349.

K. Hara, R. Chellappa, Growing regression forests by classification: applications
to object pose estimation, Computer Vision - ECCV, 2014. pp. 552-567.

C.R. Cabrera, R.L. Sastre, T. Tuytelaars, All together now: simultaneous object
detection and continuous pose estimation using a hough forest with probabilis-
tic locally enhanced voting, Proceedings BMVC, 2014. pp. 1-12.

DJ. Kroon, Segmentation of the Mandibular Canal in Cone-Beam CT
Data,(thesis). 2011, 69.

G. Fanelli, J. Gall, LV. Gool, Real time head pose estimation with random
regression forests, CVPR, 2011. pp. 617-624.

S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige, N. Navab,
Model based training, detection and pose estimation of texture-less 3D objects
in heavily cluttered scenes, ACCV, 2012.

M.M. Blane, Z. Lei, H. Civi, D.B. Cooper, The 3L algorithm for fitting implicit
polynomial curves and surfaces to data, PAMI, 2000.


http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0005
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0010
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0015
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0020
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0025
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0030
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0035
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0040
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0045
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0050
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0055
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0060
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0065
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0070
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0075
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0075
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0080
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0085
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0090
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0095
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0100
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0105
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0110
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0115
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0120
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0125
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0130
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0135
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0140
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0145
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0150
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0155
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0160
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0165
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0170
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0175
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0180
http://refhub.elsevier.com/S0262-8856(17)30086-0/rf0185

	A learning-based variable size part extraction architecture for 6D object pose recovery in depth images
	1. Introduction
	2. Related work
	3. Our registration approach
	3.1. Scale-variant part representation: histogram of Control Points
	3.2. Combination of HoCP and Iterative Hough Forest
	3.3. 6D object pose estimation

	4. Experimental results
	4.1. Parameter optimization
	4.1.1. Size of the parts extracted during initial registration
	4.1.2. IBS resolution and HoCP feature dimension
	4.1.3. Effect of iteration

	4.2. Comparative study

	5. Discussion and conclusion
	Acknowledgements
	References


