
Iterative Hough Forest with Histogram of Control
Points for 6 DoF Object Registration from Depth

Images

Caner Sahin, Rigas Kouskouridas and Tae-Kyun Kim ∗

Abstract

State-of-the-art techniques for 6D object pose recovery depend on occlusion-
free point clouds to accurately register objects in the 3D space. To reduce this
dependency, we introduce a novel architecture called Iterative Hough forest with
Histogram of Control Points that is capable of estimating occluded and cluttered
objects’ 6D pose given a candidate 2D bounding box. Our iterative Hough forest is
learnt using patches extracted only from the positive samples. These patches are
represented with Histogram of Control Points (HoCP), a “scale-variant” implicit
volumetric description, which we derive from recently introduced Implicit B-
Splines (IBS). The rich discriminative information provided by this scale-variance
is leveraged during inference, where the initial pose estimation of the object is
iteratively refined based on more discriminative control points by using our iterative
Hough forest. We conduct experiments on several test objects of a publicly available
dataset to test our architecture and to compare with the state-of-the-art.

1 Introduction

Object registration is an important task in computer vision that determines the translation and the
rotation of an object with respect to a reference coordinate frame. By utilizing such a task, one can
propose promising solutions for various problems related to robotics [Kouskouridas et al., 2014],
scene understanding, augmented reality etc. Recent developments on visual depth sensors and their
increasing ubiquity have allowed researchers to make use of the information acquired from these
devices to facilitate the registration.

When the target point cloud is cleanly segmented, Iterative Closest Point (ICP) algorithm
[Besl and McKay, 1992], point-to-model based methods [Rouhani and Sappa, 2011, Rouhani
and Domingo Sappa, 2013, Doumanoglou et al., 2015, Kouskouridas et al., 2016, 2013] and
point-to-point techniques [Rusu et al., 2009, Kim and Medioni, 2011] demonstrate good results.
However, the performance of these approaches is severely degraded by the challenges such as heavy
occlusion and clutter, and similar looking distractors. In order to address these challenges, several
learning based methods formulate occlusion aware features Bonde et al. [2014], derive patch-based
(local) descriptors [Tejani et al., 2014] or encode the contextual information of the objects with
simple depth pixels [Brachmann et al., 2014] and integrate into random forests. Particularly, iterative
random forest algorithms such as Latent-Class Hough forest (LCHF) [Tejani et al., 2014] and iterative
Multi-Output Random forest (iMORF) [Zhao et al., 2014] obtain the state-of-the-art accuracy on pose
estimation. On the other hand, these methods rely on the scale-invariant features and the exploitation
of the rich discriminative information that is inherently embedded into the scale-variability is one
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Figure 1: Sample result of our system: the initial registration roughly aligns the test object and the iterative pose
refinement further refines this alignment (The RGB correspondence is for visualization purposes).

important point overlooked.

Unlike the aforementioned learning-based methods, Novatnack et al. [Novatnack and
Nishino, 2008, Bariya and Nishino, 2010] utilize the detailed information of the scale variation in
order to register the range images in a coarse-to-fine fashion. They extract and match conventional
salient 3D key points. However, real depth sensors have several imperfections such as missing depth
values, noisy measurements, foreground fattening, etc. Salient feature points tend to be located on
these deficient parts of the depth images, and hence, they are rather unstable [Zach et al., 2015]. In
such a scenario, 3D reconstruction methods that provide more reliable shape information can be
utilized [Bonde et al., 2014]. Implicit B-Splines (IBS) [Rouhani and Domingo Sappa, 2013, Rouhani
et al., 2015] are yet other techniques that can provide shape descriptors through their zero-sets
and reconstruct surfaces. These techniques are based on the locally controlled functions that are
combined via their control points and this local control allows patch-based object representation.

Our architecture is originated from these observations. We integrate the coarse-to-fine reg-
istration approach presented in [Novatnack and Nishino, 2008] into the random forests [Tejani et al.,
2014, Zhao et al., 2014] using the Histogram of the Control Points (HoCP) that we adapt from
recently introduced IBSs [Rouhani et al., 2015]. We train our forest only from positive samples and
learn the detailed information of the scale-variability during training. We normalize every training
point cloud into a unit cube and then generate a set of scale-space images, each of which is separated
by a constant factor. The patches extracted from the images in this set are represented with the
scale-variant HoCP features. During inference, the patches centred on the pixels that belong to the
background and foreground clutters are removed iteratively using the most confident hypotheses
and the test image is updated. Since this removal process decreases the standard deviation of the
test point cloud, subsequent normalization applied to the updated test image increases the relative
scale of the object (foreground pixels) in the unit cube. More discriminative descriptors (control
points) are computed in higher scales and this ensures further refinement of the object pose. Note that
we employ a compositional approach, that is, we concurrently detect the object in the target region
and estimate its pose by aligning the patches in order to increase robustness across clutter. Figure 1
depicts a sample result of our architecture. To summarize, our main contributions are as follows:

• To the best of our knowledge this is the first time we adapt an implicit object representation,
Implicit B-Spline, into a “scale-variant” patch descriptor and associate with the random
forests.

• We introduce a novel iterative algorithm for the Hough forests: it finds out an initial
hypothesis and improves its confidence iteratively by extracting more discriminative “scale-
variant” descriptors due to the elimination of the background/foreground clutter.

2 Related Work

A large number of studies have been proposed for the object registration, ranging from the point-wise
correspondence based methods to the learning based approaches. Iterative Closest Point (ICP)



algorithm, originally presented in [Besl and McKay, 1992], requires a good initialization in order
not to be trapped in a local minimum during fine tuning. This requirement is reduced in [Yang
et al., 2013] providing globally optimal registration by the integration of a global branch-and-bound
(BnB) optimization into the local ICP. The point-wise correspondence problem is converted into a
point-to-model registration in [Rouhani and Sappa, 2011, Rouhani and Domingo Sappa, 2013]. The
object model is represented with implicit polynomials (IP) and the distance between the test point set
and this model is minimized via the Levenberg-Marquardt algorithm (LMA). The study [Zheng et al.,
2008] that utilizes 3D IPs for 6 DoF pose estimation on ultrasound images is further extended in
[Zheng et al., 2013] by a coarse-to-fine IP-driven registration strategy. The point-to-point techniques
build point-pair features for sparse representations of the test and the model point sets [Choi et al.,
2012]. Rusu et al. align two noisy point clouds of real scenes by finding correct point-to-point
correspondences between the Point Feature Histograms (PFH) and feed this alignment to an ICP
algorithm for fine tuning [Rusu et al., 2008]. The votes of the matching features are accumulated in
[Drost et al., 2010] to hypothesise the poses of the cluttered and partially occluded objects. Choi
et al. [Choi and Christensen, 2012] propose point-pair features for both RGB and depth channels
and they are conducted in a voting scheme to hypothesise the rotation and translation parameters
of the objects in the cluttered scenes. Despite achieving good registration results, these techniques
underperform when the scenes are under heavy occlusion and clutter, and the target objects’ geometry
are indistinguishable from background clutter.

Learning-based methods have good generalization across severe occlusion and clutter. The
state-of-the-art accuracy on registration is acquired by the iterative random forest algorithms,
particularly [Tejani et al., 2014] and [Zhao et al., 2014], which form a basis for our iterative Hough
forest architecture. Tejani’s patch-based strategy [Tejani et al., 2014] refines the initially hypothesised
object pose by iteratively updating the object class distributions in the leaf nodes during testing.
Iterative Multi Output Random forest (iMORF) [Zhao et al., 2014] jointly predicts the head pose, the
facial expression and the landmark positions. The relations between these tasks are modelled so
that their performances are iteratively improved with the extraction of more informative features.
Whilst these approaches rely on the scale-invariant features to improve the confidence of a pose
hypothesis, inspired by [Novatnack and Nishino, 2008], we design scale-variant features getting
more discriminative with the increase in the scale. Novatnack et al. [Novatnack and Nishino, 2008,
Bariya and Nishino, 2010] introduce a framework that registers the range images in a coarse-to-fine
fashion by utilizing the detailed information provided by the scale variation. The shape descriptors
with the coarsest scale are matched initially and a rough alignment is achieved since fewer features
are extracted in coarser scales. The descriptor matching at higher scales results improved predictions
of the pose.

3 Our Registration Approach

In this section we detail our registration approach by firstly describing the computation procedure
of the HoCP features. We then present how to encode the discriminative information of these scale-
variant features into the forest. Finally, we demonstrate how to exploit the learnt shape information in
a coarse-to-fine fashion to refine the pose hypotheses.

3.1 Histogram of Control Points (HoCP)

We demonstrate the computation procedure of the HoCP features over a positive depth image selected
from the training dataset. It is initially normalized into a unit cube and then new point clouds at
different scales are sampled as follows:

{XN}i =
Xn×3 − X̄n×3

si ∗ α
+ 0.5, i = 0, 1, 2, ...,m (1)

with

α = max

 max(X)-min(X)
max(Y )-min(Y )
max(Z)-min(Z)

 , hi = max(ZNi)−min(ZNi) (2)

where X = [XY Z] is the world coordinate vector of the original foreground point cloud, X̄ is the
mean of X, XN = [XNYNZN ] is the normalized foreground pixels, m is the number of the scales, α
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Figure 2: The initial normalization (s0 = 1) of the training depth image is the outmost (red) point cloud and the
inner ones (green and black) are sampled by different si values. The point clouds in this set are used in Fig. 3 to
further explain how to compute the descriptors.

is the scale factor and h is the scale. The constant si takes real numbers to generate the point clouds
at different scales, starting from s0 = 1 that corresponds to the initial normalization. A training
image and its samples at different scales are shown in Fig. 2.

Once we generate a set of scale-space images (Fig. 2), we represent these point clouds
with the control point descriptors first globally. The descriptor computation procedure is the same as
presented in [Rouhani et al., 2015]. The unit cube is split into an N × N × N voxel grid where
N is the IBS resolution. Each descriptor Γ is defined with an index-weight pair: the index number
indicates the vertex of this grid at which the related control point is located. The weight informs the
descriptor significance about the control of the geometry to be represented. The scale-space images
in Fig. 2 are globally represented in Fig. 3 (a). We partition the global representation at each scale
into patches. We express the patch size g in image pixels and it is a constant that depicts the ratio
between the sizes of the extracted patch and the bounding box of the global point cloud. A window
with the specified patch size is traversed in the unit cube of each scale-space image and the patches
are extracted around non-zero pixels. Each patch has its own implicit volumetric representation,
formed by the closest control points to the patch center, the ones lying inside the window along depth
direction. The patches sampled at different scales in Fig. 3 (b) represent the same shape. However,
their volumetric descriptions (blue) are getting more discriminative as the scale increases, since
the greater number of descriptors are computed at higher scales. We encode this discriminative
information into histograms in spherical coordinates. Each of the patch centres is coincided with
the center of a sphere. The control points of the patch are described by the log of the radius tr, the
cosine of the inclination tθ and the azimuth tφ. Then, the sphere is divided into the bins and the
relation between the bin numbers hr, hθ, hφ and the histogram coordinates tr, tθ, tφ is given as
follows [Kroon, 2011]:

tr =
hr

log( rmax

rmin
)
log(

r

rmin
)

tθ = hθ
z

r

tφ =
hφ
2π
tan−1(

y

x
)

(3)

where rmin and rmax are the radii of the nested spheres with the minimum and the maximum
volumes, x, y, z are the Cartesian coordinates of each descriptor with radius r. rmax equals to the
distance between the patch center and the farthest descriptor of the related patch. The numbers of the
control points in each bin are counted and stored in a d = hr ∗ hθ ∗ hφ dimensional feature vector f .
The volumetric descriptions in Fig. 3 (b) are shown with their related histograms in Fig. 3 (c). Thus,
the sample shape (patch) is represented with the scale-variant HoCP features.

3.2 The Combination of HoCP and iterative Hough Forest

The proposed iterative Hough forest is the combination of randomized binary decision trees. It is
trained only on foreground synthetically rendered depth images of the object of interest. We generate
a set of scale-space images from each training point cloud and sample a set of annotated patches
{∪pi=1Pi} as follows [Tejani et al., 2014]:

P = {∪pi=1Pi} = {∪pi=1(ci,∆xi, θi, fi, Di)} (4)



Figure 3: Histogram of Control Points: the scale-space images are globally represented in (a) and the same
shape (patch) is extracted at each scale in (b). The HoCP representation of this shape is shown in (c). The scales
are encoded as low, middle and high.

where ci = (cxi , cyi) is the patch centre in pixels, ∆xi = (∆xi,∆yi,∆zi) is the 3D offset between
the centres of the patch and the object, θi = (θri , θpi , θyi) is the rotation parameters of the point
cloud from which the patch Pi is extracted and Di is the depth map of the patch.
Each tree is constructed by using a subset S of the annotated training patches S ⊂ P . We randomly
select a template patch T from S and assign it to the root node. We measure the similarity between T
and each patch Si in S as follows:

• Depth check: The depth values of the descriptors SiΓ and TΓ that represent the patches Si
and T are checked, and the spatially inconsistent ones in SiΓ are removed as in [Tejani et al.,
2014], generating Ω that includes the spatially consistent descriptors of the patch Si.

• Similarity measure: Using Ω, the feature vector fΩ is generated and the L2 norm between
this vector and fT is measured:

F(Si, T ) = ‖ fΩ − fT ‖2 (5)

• Similarity score comparison: Each patch is passed either to the left or the right child nodes
according to the split function that compares the score of the similarity measure F(Si, T )
and a randomly chosen threshold τ .

The main reason why we apply a depth check to the patches is to remove the structural
perturbations, due to occlusion, clutter [Tejani et al., 2014]. These perturbations most likely
occur on the patches extracted along depth discontinuities such as the contours of the objects
of interest. They cause to diverge a test patch (occluded/cluttered) from its positive correspon-
dence by changing its representation, rmax of the sphere, and the histogram coordinates consequently.

A group of candidate split functions are produced at each node by using a set of randomly
assigned patches {Ti} and thresholds {τi}. The one that best optimize the offset and pose regression
entropy [Fanelli et al., 2011] is selected as the split function. Each tree is grown by repeating this
process recursively until the forest termination criteria are satisfied. When the termination conditions
are met, the leaf nodes are formed and they store votes for both the object center ∆x = (∆x,∆y,∆z)
and the object rotation θ = (θr, θp, θy).

3.3 Initial Registration and Iterative Pose Refinement

The proposed architecture registers the object of interest in two steps: the initial registration and the
iterative pose refinement. The initial registration roughly aligns the test object and this alignment is
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Figure 4: The initial pose estimation of the test object is iteratively refined based on the more discriminative
control points that are extracted due to the elimination of background/foreground clutter.

further improved by the iterative pose refinement.
Consider an object that was detected by a coarse bounding box, Ib, as shown in the leftmost image of
Fig. 4 (a). At an iteration instant k, the following quantities are defined:

• ∆x0:k = {∆x0,∆x1, ...,∆xk} = {∆x0,∆x1:k}: the history of the object position.

• θ0:k = {θ0, θ1, ..., θk} = {θ0, θ1:k}: the history of the object rotation.

• V 1:k = {v1, v2, ..., vk} : the history of the inputs (noise removals) applied to the test image.

• m0:k = {m0,m1, ...,mk} = {m0,m1:k}: the history of the set of the feature vectors where
mk = {∪ni=1fi}.

• hk: the object scale (the scale of the foreground pixels) in the unit cube at iteration k (see
Eq. 2).

We formulate the initial registration as follows:

(∆x0, θ0) = arg max
∆x0,θ0

p(∆x0, θ0|Ib,m0, h0). (6)

We find the best parameters that maximize the joint posterior density of the initial object position
∆x0 and the initial object rotation θ0. This initial registration process is illustrated in Fig. 4 (a). The
test image is firstly normalized into a unit cube. Unlike training, this is a “single” scale normalization
that corresponds to s0 = 1 (see Eq. 1). The patches extracted from the globally represented point
cloud are described with the HoCP features and passed down all the trees. We determine the effect
that all patches have on the object pose by accumulating the votes stored in the leaf nodes as in
[Tejani et al., 2014] and approximate the initial registration given in Eq. 6. Once the initial hypothesis
x0 = (∆x0, θ0) is obtained, the pixels that belong to the background/foreground clutter {∪fj=0pj}
are removed from Ib according to the following criterion:

vk =

{
Ib(pj) = DIb(pj), γψ1 < DIb(pkj ) < βψ2

Ib(pj) = 0, otherwise
(7)



with
γ = min(DkH), β = max(DkH) (8)

where DkH and DIb are the depth maps of the hypothesis H at iteration k, and of the Ib, ψ1 and ψ2

are the scaling coefficients. The efficacy of vk is illustrated in Fig. 4. In the rightmost image of
Fig. 4 (a), the test image and the initial hypothesis are overlaid. This hypothesis is exploited and the
test image is updated by v1 as in Eq. 7. This updated image is shown in Fig. 4 (b) and assigned as
input for the 1st iteration. It is normalized and represented globally. Note how the object “scale”
(h1) in the unit cube is relatively increased and more discriminative descriptors m1 are extracted
(compare with the initial registration). This is mainly because of that the standard deviation of the
input image is decreased since we removed foreground/background clutter. The resultant hypothesis
of the 1st iteration is shown on the right. The extraction of more discriminative descriptors and the
noise removal process result more accurate and confident hypothesis. This pose refinement process is
iteratively performed until the maximum iteration is reached (see Fig. 4 (d)):

(∆xk, θk) = arg max
∆xk,θk

p(∆xk, θk | m1:k, V 1:k,x0, hk) (9)

We approximate the registration hypothesis at each iteration by using the stored information in the
leaf nodes as we do in the initial registration.

4 Experimental Results

We have analysed the ICVL dataset [Tejani et al., 2014] and have found that the “coffee cup” and the
“camera” are some of the best demonstrable objects to test and compare our registration architecture
with the state-of-the-art methods since they are located in highly occluded and cluttered scenes.
We further process the test images of these objects to generate a new test dataset according to the
following criteria:

• Since the HoCP features are scale-variant, the depth values of the training and the test
images should be close to each other up to a certain degree. In this study, we train the forests
at a single depth value, 750 mm, and test with the images at the range of [750∓ 35] mm.

• The test object instances located at the range of [750∓ 35] mm are assumed as detected by
coarse bounding boxes (see Fig. 1). The image regions included in these bounding boxes
are cropped (see Fig. 4) and the new test dataset is generated (276 “coffee cup” and 360
“camera” RGBD test images).

The maximum depth is 25 and the number of the maximum samples at each leaf node is 15 for each
tree. Every forest is the ensemble of 3 trees with these termination criteria. Our experiments are
two folds: intraclass and interclass. Both experiments use the metric proposed in [Hinterstoisser
et al., 2012] to determine whether a registration hypothesis is correct. This metric outputs a score
ω that calculates the distance between the ground truth and estimated poses of the test object. The
registration hypothesis that ensures the following inequality is considered as correct:

ω ≤ zωΦ (10)

where Φ is the diameter of the 3D model of the test object and zω is a constant that determines
the coarseness of an hypothesis that is assigned as correct. We set zω to 0.08 in the intraclass and
interclass experiments.

4.1 Intraclass Experiments

These experiments are performed on the “coffee cup” dataset to determine the optimal parameters of
the proposed approach. The effect of the patch size g is firstly examined by setting the IBS resolution
N to 80, the HoCP feature dimension d to 128 in addition to the previously defined forest parameters.
We test the patch sizes g = {0.20, 0.25, 0.33, 0.50, 0.66, 0.75}. The resultant Precision-Recall
(PR) curves are shown in Fig. 5 (a). When we increase the patch size until it is 0.5 times of the
bounding box, the registration performance is improved since the greater patches can encode more
discriminative shapes. We continue to extend the patch size till it is 0.75 times of the bounding box
and observe that the performance is degraded since these patches tend to contain the noisy parts of
the scene. According to this figure and their corresponding F1 scores (see Table 1), we choose 1

2 as



(a) (b) (c)
Figure 5: PR curves obtained from the intraclass experiments. According to these results we choose 1

2
patch size

and set N = 100, d = 256. For the corresponding F1 scores see the Table 1.

(a) (b)
Figure 6: PR curves of the “coffee cup” (left) and the “camera” (right) dataset obtained from the interclass
experiments: Each image compares our method (initial registration and iterative pose refinement) with the
LCHFs trained separately on the RGB, D and RGB-D channels. The F1 scores are presented in Table 2.

Figure 7: Some qualitative results. For each octonary: the 1st column illustrates the test image and the initial
hypothesis (initial registration) and the remaining columns demonstrate the 1st, the 3rd and the 4th iterations
(iterative pose refinement). The test images are updated by removing the background/foreground clutter.

the optimal patch size.

Using the selected patch size, we next tune the IBS resolution N and the HoCP feature di-
mension d. We test the combinations of N = {80, 100} and d = {128, 256, 512}, the ones that are
the most applicable N − d pairs to represent 1

2 patch size. The PR curves of these combinations
are depicted in Fig. 5 (b) and the corresponding F1 scores are illustrated in Table 1. We take into
account both the memory consumption and the accuracy, and agree on the values of N = 100 &
d = 256.The last parameter we test in the intraclass experiments is the iteration number. We test
several iterative Hough forests with Histogram of Control Points each of which has k = 0, 1, 3, and
5 iterations, respectively. Their PR curves are shown in Fig. 5 (c). As expected, the forests that
use greater number of iterations show better performances (see Table 1) since more discriminative
features are extracted thanks to the noise removal process.

4.2 Interclass Experiments

These experiments are conducted on the “coffee cup” and the “camera” datasets to compare our
approach with the state-of-the-art methods including the Latent-Class Hough forests (LCHF) [Tejani
et al., 2014] trained separately on the color gradient (LCHF-RGB), the surface normal (LCHF-Depth)
and the color gradient + the surface normal (LCHF-RGBD) features. In order to make a fair
comparison between methods, we train and test these versions of the LCHF by using the authors’
software. The forest parameters are the same as our own approach.

According to the F1 scores in Table 2, we observe that the LCHF trained on the color gra-
dient features underperforms other methods. The main reason of this underperformance is the
distortion along the object borders arising from the occlusion and the clutter, that is, the distortion
of the color gradient information in the test process. When we train the LCHF by only using the



Table 1: F1 scores determined for different patch sizes, IBS resolution (N) & feature dimension (d) and number
of iteration

Patch F1 N & d F1
Size Score Score

1
5 0.5966 80 & 128 0.7068
1
4 0.6096 80 & 256 0.7368
1
3 0.6532 80 & 512 0.7425
1
2 0.7068 100 & 128 0.6870
2
3 0.6341 100 & 256 0.7510
3
4 0.6539 100 & 512 0.7438

# F1
iter Score
0 0.7510
1 0.7742
3 0.7745
5 0.7932

Table 2: F1 scores of the “coffee cup” and the “camera” datasets are shown. In both datasets our approach with
iterative pose refinement outperforms.

Approach Coffee Cup Camera
LCHF-RGB 0.6595 0.2478
LCHF-Depth 0.7860 0.3386
LCHF-RGBD 0.7390 0.3456

Ours (init. reg.) 0.7510 0.4534
Ours (iter. pose ref.) 0.7932 0.4693

depth information, we infer that the surface normals outperform the color gradients. The combined
utilization of the color gradients and the surface normals in the LCHF produces approximately
the same results as the LCHF-Depth. Our approach with the iterative pose refinement outperform
other methods. Regarding the ’camera’ object, we observe that the registration performances of
all methods are relatively decreased. This is mainly because of that this object has large amount of
missing depth pixels in addition to severe occlusion and clutter. Figure 7 illustrates several qualitative
results of our approach on the camera and the coffee cup objects.

5 Conclusion

In this study, we have proposed a novel architecture, iterative Hough forest with Histogram of Control
Points, for 6 DoF object registration from depth images. We have introduced the Histogram of
the Control Points, a scale-variant patch representation, and have encoded their rich discriminative
information into the random forests. We train our forest using only the positive samples. During
testing, we first roughly align the object and then iteratively refine this alignment. The experimental
results report that our approach show better registration performance than the state-of-the-art methods.
In the future, we plan to engineer a variable patch size approach and integrate it into the proposed
iterative Hough forest architecture for further exploitation of the rich discriminative information
provided by the HoCP features.
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