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Folding Clothes Autonomously: A Complete Pipeline
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Abstract—This work presents a complete pipeline for folding a
pile of clothes using a dual-armed robot. This is a challenging task
both from the viewpoint of machine vision and robotic manipula-
tion. The presented pipeline is comprised of the following parts:
isolating and picking up a single garment from a pile of crumpled
garments, recognizing its category, unfolding the garment using a
series of manipulations performed in the air, placing the garment
roughly flat on a work table, spreading it, and, finally, folding it
in several steps. The pile is segmented into separate garments us-
ing color and texture information, and the ideal grasping point is
selected based on the features computed from a depth map. The
recognition and unfolding of the hanging garment are performed
in an active manner, utilizing the framework of active random
forests to detect grasp points, while optimizing the robot actions.
The spreading procedure is based on the detection of deformations
of the garment’s contour. The perception for folding employs fitting
of polygonal models to the contour of the observed garment, both
spread and already partially folded. We have conducted several
experiments on the full pipeline producing very promising results.
To our knowledge, this is the first work addressing the complete
unfolding and folding pipeline on a variety of garments, including
T-shirts, towels, and shorts.

Index Terms—Active vision, clothes, deformable objects,
manipulation, perception, random forests, robotics.
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I. INTRODUCTION

MACHINE perception and automated manipulation of soft
deformable objects have gained an increasing interest in

cognitive robotics. The main challenge is in the large variation
of their shapes, which makes both their perception and manip-
ulation very challenging. The problem is of high importance,
since many objects, which we interact with in our everyday
life, are deformable. One important area of robotics research,
in which handling of soft deformable objects is ubiquitous, is
household robots. The possible tasks comprehend laundering,
wiping dishes, or hanging curtains. The household robots can
have a significant impact on our everyday life, particularly in
aging societies of the developed countries [1].

The task of robotic laundering comprises several interesting
problems in perceiving and manipulating clothes. The robot
should be able to sort the dirty clothes according to their color
and material, put them into the washing machine, move them
into the drying machine, and, finally, fold the washed clothes.
The presented paper deals with the latter challenge. More pre-
cisely, we propose the method for isolating a single item from
the heap of crumpled washed garments, recognizing its type,
unfolding the isolated garment, spreading it if necessary, and,
finally, folding it while taking its type into account. The task is
approached using a dual-armed robot with attached cameras and
range sensors. The main challenge is that clothes are soft and
highly deformable objects. This makes their perception very dif-
ficult, since the same piece of garment can be posed in infinitely
many configurations. The robotic manipulation of clothes is a
challenging task as well because the garment is being further
deformed while manipulated.

This work is based on our previous papers [2]–[5]. Two of
them deal with the first part of the pipeline, which is active
recognition and unfolding of the unknown garments [2], [3].
The other two focus on folding the garment, which was already
unfolded and spread on a table [4], [5]. Both methods are inte-
grated into a single working pipeline in the proposed work. The
pipeline is completed by adding two steps, which have not been
described before. The first one is a novel method for grasping a
single garment from a table before unfolding it. The second one
is an intermediate spreading stage used in a case the unfolded
garment is not adequately spread out on a table. Furthermore,
we extensively evaluate the proposed pipeline by performing
experiments with various garments. Fig. 1 shows a successful
run of the pipeline applied to a T-shirt. As far as we know, this is
the first working solution for bringing a heap of crumpled gar-
ments to the folded state. The closest to our work is [6], where
authors demonstrated the complete folding task only for towels,
whereas our approach can handle a variety of garments. More-
over, our approach is more computationally efficient, resulting
in faster performance.

1552-3098 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. Complete folding pipeline of a T-shirt. (a) Optimal grasping point is selected, and the T-shirt is lifted from the table. (b) Its lowest point is regrasped to
reduce the number of possible configurations. (c) First desired point is grasped with the free arm, the lowest point is released, and (d) the second desired point is
grasped. (e) T-shirt is unfolded by stretching the grasped points. (f) Unfolded T-shirt is laid on the empty table. Both (g) left and (h) right sleeve are spread using
the brush tool if necessary. The folding procedure comprehends folding the (i) right and (j) left side of the T-shirt before (k) performing the final fold. (l) Result is
the fully folded T-shirt.

The main contributions of our work are as follows.
� A robust vision-based method for garment grasping.
� Clothes classification and unfolding performed in an active

perception manner, based on our novel framework of active
random forests [3].

� A new method for spreading incompletely spread garments
laid on the table.

� Model matching technique for clothes folding, based on
dynamic programming [5].

� Implementation of the above methods into a complete fold-
ing pipeline, its deployment on a dual-armed robot, and
experimental evaluation using various garments.

The rest of this paper is organized as follows. Section II
discusses the related work on machine perception and robotic
manipulation of clothes, along with some active vision works.
Section III describes how a single garment is grasped from the
pile of crumpled garments and lifted up. Section IV deals with
recognizing category of the hanging garment, estimating its
pose, and unfolding it step by step in a series of manipulations.
Section V describes spreading of the not fully unfolded garment.
Section VI presents methods for estimating the pose of the
spread garment and folding it, while checking its state after
each fold. Section VII demonstrates experimental evaluation of
the complete pipeline and its individual parts. In this section, we
also describe our dual-armed robot, which is used for the actual
manipulation, both from the hardware and software view. We
conclude our work and give ideas for possible future extensions
in Section VIII.

II. RELATED WORK

The autonomous garment folding pipeline can be decom-
posed into several subtasks such as grasping a garment from a
pile, its classification and pose estimation, unfolding, flattening,
and folding. The majority of the existing works focus on one
particular subtask only. Therefore, we summarize the state of the
art for each subproblem separately in the following subsections.
We also compare the existing methods to our approach.

A. Grasping

Robotic manipulation of clothes was pioneered by Hamajima
and Kakikura [7], [8]. They propose the concept of the complete
pipeline for bringing a heap of washed clothes to a stack of
folded clothes. They focus mainly on isolating a single garment
from the heap. The grasping point is selected from a certain
uniform color region obtained after recursively segmenting the
image of the heap. Grasping a single garment laid on a table
was also approached by Ramisa et al. [9], [10]. The strategy
is to select a highly wrinkled grasping point. The measure of
wrinkledness is based on the classification of features computed
from color and depth images [9]. The special descriptor called
FINDDD, which is based on normals computed from depth data,
is used in the extended work [10].

Cusumano-Towner et al. [11] first find the outer boundary of a
crumpled garment by segmentation. The garment is then grasped
from a side. Foresti and Pellegrino [12] address detection of
grasping points on furs. After the fur regions are segmented, their
skeleton is extracted and used to locate narrow branches which
have a potential for stable grasping. Willimon et al. [13] segment
color image of the heap into similar regions. The average height
of the regions above the table is computed from stereo images,
and the highest region is selected for grasping. If the grasping
fails eventually, the procedure is repeated until the garment is
successfully picked from the heap. Hata et al. [14] and Bersch
et al. [15] choose the highest point of the heap as the grasping
point, while Maitin-Shepard et al. [6] choose the central point.
Alenyà et al. [16] benchmark various grasping strategies. They
also describe common grasping concepts and identify possible
issues.

Our approach to picking up a single garment from the pile is
similar to the methods evaluating graspability of the individual
garment parts [9], [10], [12]. To ensure that only one garment
is grasped, an image of the pile is segmented into regions cor-
responding to individual garments as in [8] and [13]. However,
besides commonly used color information, we also consider
texture while segmenting.
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B. Classification, Pose Estimation

In a series of works, Kita et al. [17]–[20] deal with cate-
gory recognition and pose estimation of a hanging garment. The
method is based on matching the observed garment to virtual
models of hanging garments. The initial method [17] utilizes a
planar mass–spring model of a pullover. The model is virtually
grasped for each of 20 predefined grasping points, and its re-
sulting geometry is obtained by means of physics-simulation.
Silhouette of the observed pullover is then overlaid over all
simulated models to find the best matching one. The method
is improved [18] by observing the garment from two different
angles and checking the consistency of the individual pose esti-
mations. Moreover, the garment category estimation is achieved
by finding the best matching model from a set of models for var-
ious categories of garments. Another improvement [19] consists
in reconstructing 3-D point cloud of the observed garment. The
cloud is then matched to virtual 3-D models simulated by profes-
sional animation software Maya. The matching of point clouds
and models is, however, performed on their 2-D projections by
simply checking their overlap. The perception can be further
improved by active manipulation of the hanging garment [20],
including its rotation and spreading.

Li et al. [21], [22] also simulate grasping and hanging of 3-D
garment models. The hanging models are observed from many
viewpoints by virtual depth sensors and described as bags of
words. The acquired data are used to train support vector ma-
chine (SVM) classifier of the garment category and pose. In the
testing phase, the real hanging garment is observed from many
viewpoints by a depth sensor. Each view is classified separately,
and it votes for the assumed garment category and pose [21].
Time performance of the method was later significantly im-
proved [22] by merging depth maps from various views into
the single volumetric model and finding the closest simulated
virtual model according to a weighted Hamming distance. An-
other extension [23] is unfolding of the garment in series of re-
graspings performed by a dual-armed robot. The best matching
simulated virtual model is registered to the observed garment.
The registration consists of a rigid transformation followed by a
nonrigid deformation of the virtual model to the observed data.
The nonrigid deformation estimation is formulated as an energy
minimization problem.

Willimon et al. [24], [25] employed a model-based approach
to estimate the pose of the hanging garment. They register a
deformable mesh model of the garment to a video sequence
capturing the garment being held and manipulated by a hu-
man. The registration is based on minimization of the energy
enforcing smoothness of the mesh, good depth and visual cor-
respondences between the mesh and the observed garment, etc.
Willimon et al. [13] propose a method for estimating the cat-
egory of the hanging garment which was lifted by the robotic
arm. Images of the garment are matched to training images
in order to find the most similar one. The similarity measure
combines global features extracted from silhouettes with infor-
mation about the detected edges.

Bersch et al. [15] deal with pose estimation and unfolding
of a hanging T-shirt whose surface is covered with fiducial

markers. The T-shirt is represented by a triangulated mesh. The
mesh makes it possible to measure geodesic distances of the
observed markers. The distances are used for pose estimation.
The unfolding strategy utilizes a greedy approach of grasping
the point closest to the shoulder location, which is reachable.

Our approach for classification and pose estimation of the
hanging garment differs significantly from the existing model
based approaches [19], [22], [25], as it is driven purely by data. It
uses features computed from depth maps, which are processed in
the novel recognition framework of active random forests. Their
main advantages are efficient learning and good generalization
ability, provided enough data.

C. Unfolding

Hamajima and Kakikura [7], [8] proposed a method for re-
grasping the lifted garment by its hemlines. Detection of the
hemlines is based on the observed shadows and the shape of
the hanging garment. The goal is to hold the garment at two
different hemlines or two endpoints of the same hemline. Then,
the garment can be unfolded by its stretching.

Maitin-Shepard et al. [6] propose a method for unfolding and
folding a heap of crumpled towels. The unfolding of a single
towel is based on robust visual detection of corners. The goal
is to hold the towel for its two corners sharing an edge. The
towel is then untwisted by pulling it taut and rotating the grip-
pers, pulled across the edge of the table and folded. Cusumano-
Towner et al. [11] improved the unfolding method, and they
extended it for various types of garments. The garment is at
first manipulated to an arbitrary recognizable configuration by
regrasping its lowest point repeatedly. The sequence of regrasp-
ing operations is modeled by hidden Markov model having the
garment category and the currently grasped points as hidden
states. Once the garment category and not fully unfolded pose
are known, the garment is laid on a table and unfolded in another
series of manipulations.

Our method for unfolding the garment is similar mainly
to [11]. We also model the uncertainty about the garment pose
in a probabilistic framework. However, we are able to unfold
the garment completely in the air, imitating the actions of a
human. Our method also requires significantly less regrasping
operations, and it is faster in general.

D. Flattening

After unfolding a garment, there usually appear wrinkles on
the cloth that makes the subsequent template matching and
folding process more difficult. Therefore, a flattening step is
required. Willimon et al. [26] proposed a method for flattening
with a series of actions, where the cloth is pulled away from or
towards to its centroid. Flattening is performed in two phases.
In the first phase, the robot moves around the cloth, pulling at
individual corners every 45°, removing any minor wrinkles and
folds. In the second phase, depth information is employed to find
grasping points and directions for removing any existing folds.
Experimental evaluation was conducted using a washcloth and
different starting configurations, achieving significant flattening
results [26].
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Sun et al. [27] also address flattening of a garment on a table
using depth information. However, the garment is only mildly
deformed by wrinkling this time. An active stereo robot head
is employed to perform accurate garment surface analysis, lo-
cate the wrinkles, and estimate appropriate grasping points and
directions for dual-armed flattening. In our work, no depth in-
formation is employed, since deformations of the contour are
detected using garment templates. Furthermore, we use a suit-
able brush tool that sweeps the garment along the direction of a
deformation.

E. Folding

Van den Berg et al. [28] introduced algorithms for folding a
single garment spread on a table. The garment is folded over
predefined folding lines. They showed how to grasp points on
the garment contour so that the hanging part of the garment is
immobilized by gravity during its manipulation. The grasping
strategy is based purely on the shape of the garment contour.
Miller et al. [29], [30] extended that work by incorporating au-
tonomous visual perception. They fit a predefined polygonal
model to the contour of the observed spread garment to recog-
nize its pose and category (by fitting multiple models for various
types of clothes). The garment pose is checked after each fold
by fitting a folded model.

Li et al. [31] address the folding task as well. The pose of the
garment is estimated by matching a properly deformed polyg-
onal template to the segmentation mask, formulated as an en-
ergy minimization problem. The gripper folding the garment is
moved on an optimized trajectory, which prevents the garment
from sliding. The optimization considers empirically learned
material properties and friction force between the garment and
the table.

Our pose estimation method of the spread garment is similar
to that in [29] and [30] in a sense of matching polygonal models
to the observed contour. However, we utilize differently defined
models and employ a different matching algorithm, which is
significantly more time efficient.

F. Full Pipeline

Compared with the proposed work, the aforementioned meth-
ods deal mainly with individual subtasks that need to be solved
in order to fold a pile of crumpled clothes. The exception is
the work proposed by Maitin-Shepard et al. [6], who describe
folding a heap of crumpled towels. However, we also consider
T-shirts and shorts, which are more complex types of clothes.
Cusumano-Towner et al. [11] also extend the unfolding method
to more types of garments, but they do not deal with their folding.
Moreover, our proposed pipeline is reasonably faster than [6].

G. Active Vision

We employ active vision in order to quickly detect the type,
the grasp points and the pose of a garment by rotating it in an
optimal manner. Two of the most representative works in this
field were published by Denzler and Brown [32], who used the
mutual information (MI) criterion to optimally plan the next

Fig. 2. (a) Original RGB image. (b) Point cloud with the individual segmented
regions shown in various colors.

best camera viewpoints, and Laporte and Arbel [33], who in-
troduced an online and more efficient way of measuring infor-
mation gain of possible next views using the Jeffrey divergence
(JD). Willimon et al. [13] use a robotic arm to pick up and
classify a garment from more viewpoints to improve the classi-
fication accuracy. However, there is no intelligence behind the
robot actions, which are completely random. On the other hand,
our approach plans the optimal next best view of the camera tak-
ing advantage of the previously captured views and optimizing
the trajectory length.

III. GARMENT PICKUP FROM TABLE

The first step of the pipeline is picking up a garment from
the pile of crumpled garments. We propose a generic, robust,
and fast technique for grasping and picking up a single item
of clothing from a pile containing multiple clothes. Fig. 2(a)
shows an example of such pile. We use a low-cost depth camera
to detect folds on the surface of the garment. Such folds are
the most suitable grasping points even for humans. We propose
measures for assessing the graspability of the detected folds,
considering the gripper geometry.

A. Detecting Candidate Grasp Points

Our aim is to detect candidate grasping points located along
the folds of the garment. The method employs a rectified depth
image I. The rectification is based on RANSAC detection of the
dominant plane corresponding to the table surface. The depth
image containing the distance of 3-D points to the estimated
plane is computed and used as our input.

Starting from the point with the strongest response, we delete
points in its vicinity which have similar scale and orientation.
Since folds may be considered as ridges on the 3-D surface of the
garment, differential geometry techniques based on surface cur-
vature could be used to detect them. However, we have found, in
practice, that the input images are too noisy for robust estimation
of surface normals and/or second order derivatives needed by
this approach. Filtering and approximation techniques may also
be computationally expensive. The proposed technique is based
on the detection of curvilinear structures in grayscale images,
originally proposed in [34]. Indeed, folds may be seen as 2-D
lines on the image plane with a bell-shaped profile. We use the
multiscale filtering technique proposed in [34] for the detection
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of such ridge points. Briefly, this consists in filtering the depth
image I with the following nonlinear filter:

Iσ (u) = min {Pos ((El ∗ I)(u)) , Pos ((Er ∗ I)(u))} . (1)

We define Pos(x) = x for x > 0 and Pos(x) = 0 for x ≤ 0.
The operator ∗ denotes convolution. The filters El and Er are
separable and steerable 2-D filters consisting of the derivative of
the Gaussian filter (DoG) applied perpendicularly to the line di-
rection and shifted by σ, followed by the Gaussian filter applied
along the line direction.

In practice, for efficiency reasons, instead of DoG filtering,
we first filter the images with the Gaussian kernels and then
compute the Sobel responses for the horizontal and vertical
direction. For a given scale σ, the line orientation is computed
locally as the eigenvector of the Harris operator. To determine
the scale (and thus a measure of the width of the fold), we
compute Iσ over a sequence of scales, selecting the scale with
the highest response for each pixel. See [34] for the justification
and rationale behind this approach.

Nonmaxima suppression of responses across the estimated
line directions is applied to obtain thin skeletal lines of detect
ridges. A further pruning procedure is applied to the resulting
set of points to obtain a sparse set of the candidate ridge points.

B. Computing the Graspability of Features

The described procedure results in a set of potential grasp
points. The computed ridge position and orientation may be
used to align the gripper opening with the cloth fold. An addi-
tional test is required to reject points that may result in a collision
of the gripper with nearby folds, i.e., the gripper picking more
than one fold at once. We also need to weight the candidates
proportionally to their graspability, i.e., high and narrow folds
should be preferred to shallow and/or broad ones. For this pur-
pose, we compute the volume of the cloth inside the opening of a
virtual gripper approximating the real one. The virtual gripper is
placed over the candidate point, aligned with the ridge direction
and left to fall until it collides with a point on the surface. We
subsequently delete those candidate points where the graspabil-
ity measure is too low and sort them from the most to the least
graspable. Finally, an inverse kinematics (IK) test is performed
to determine whether the manipulator can approach the selected
point.

C. Texture Segmentation

Our aim is to grasp only one garment from a pile. Therefore,
a segmentation algorithm that takes account of color and texture
information is necessary. To perform segmentation, we first ex-
tract Gabor features by convolving the RGB image with Gabor
filter banks, created using multiple frequencies and orientations.
The magnitude of the features is then used as a dissimilarity mea-
sure in a graph-based segmentation algorithm [35]. A sample
of the segmentation output and the corresponding point cloud
is shown in Fig. 2(b). The segmentation output is subsequently
combined with the results of the previous step to determine the
best grasping point. In particular, we reject any regions that do
not contain any candidate point. We also reject the candidate

Fig. 3. (a) Grasp point g and pose vector p. (b) The depth and curvature
channels and the random positions used in binary pixel tests. (c) Blue squares
and gray circles show the possible lowest points of clothes. Gray circles denote
the symmetric points to the blue squared ones. Green diamonds show the desired
grasping points for unfolding.

points that are too close to region boundaries. For the remain-
ing regions and points, we sort them according to the highest
(the closest one to the camera) grasp candidate point contained
within their boundary. The final list of grasp candidates will con-
tain points from the top (highest) region sorted by graspability,
points from the second highest region, etc. Obviously, using tex-
ture information to segment different items has the limitations
of oversegmentation (i.e., garments mixing several textures) or
erroneously merging items with a similar texture. Nevertheless,
the proposed approach significantly reduces the probability of
grasping two items at the same item.

D. Picking

The final step is to move the manipulator so that the grip-
per is aligned with the candidate feature on the top of the list.
The gripper comes to a certain safety distance from the table
(0.5 cm), and it closes to grasp the fold. The manipulator subse-
quently moves to its previous position above the table. A depth
image is acquired and compared to the image captured before
approaching at the same position. If the average absolute dif-
ference between the images is smaller than the threshold, then
grasping may have failed, and the procedure is repeated with
the second candidate point in the list. Grasping was found to
be very stable, and thus, we did not need to detect slippage,
which would require resetting the whole process. It is also not
checked whether only a single garment was picked up, although
the proposed approach does not guarantee this. However, we
have not observed undesirable grasping of multiple garments in
the performed experiments.

IV. UNFOLDING A GARMENT

Once a single garment is grasped and lifted up, the robot starts
its unfolding. The whole unfolding procedure is performed in
the air, with the help of gravity and without using a table. We
detect and grasp two certain predefined points on the garment.
The garment is then extended using two robotic arms, trying to
imitate the actions of a human [see Fig. 1(b)–(e)].

The unfolding process consists of three main subproblems:
garment classification, grasp point detection, and pose estima-
tion, shown in Fig. 3(a). We use five basic types of garments:
long-sleeved shirts, trousers, shorts, short-sleeved T-shirts, and
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towels. The robot first grasps the lowest point of the garment
in order to reduce the number of possible configurations when
it is picked up randomly. Fig. 3(c) shows the possible lowest
points for all considered types of garments. Blue squares and
gray circles denote the possible lowest points of clothes. Gray
circles denote the symmetric points to the points denoted by blue
squares. There are two lowest points for shorts and T-shirts, and
one for shirts, trousers, and towels, not counting the symmetric
ones.

Each distinct possible lowest point represents a class. Fur-
thermore, we have manually defined the grasp points for un-
folding so that the garment will unfold naturally due to gravity
when grasped by these points. Fig. 3(c) shows the unfolding
points marked by green diamonds. Thus, after classification,
these points should be detected and grasped in order to unfold
the garment. To facilitate the grasping, we also detect the pose
of the garment. The pose of the garment is defined differently
from the pose used for rigid objects. Since garments are very
deformable, the pose is difficult to be directly related to the
whole shape of the garment. It is rather defined in relation to
the desired grasp point, pointing to the direction of an ideal
gripper approaching the desired point to grasp it properly [see
Fig. 3(a)]. It is thus a property of the region around the desired
point. This vector has its origin in the grasp point, it is parallel
to the ground and lies on the surface plane around the desired
grasp point. By estimating so defined pose, it becomes trivial to
guide the gripper to grasp the desired point.

In order to jointly solve the above problems, we propose
a novel unified active vision framework called active random
forests [3], which is based on classic random forests [36]. Our
framework is able to perform classification and regression, ac-
tively selecting the next best viewpoint. The next subsection
presents in detail the training and testing phase of active ran-
dom forests, formulated to solve the garment unfolding.

A. Overview

Our active random forest framework is based on the clas-
sic random forest classifier [36]. In order to train one tree, all
training samples start at the root node and keep splitting recur-
sively into two child nodes, left and right. Splitting of samples
depends on the objective function, which tries to cluster the
samples, switching between a classification or regression objec-
tive. The most common metric to evaluate a split is the entropy.
In order to find the best split that minimizes the objective func-
tion, there is a split function with random parameters, which is
used to produce many different splits to evaluate. When samples
cannot further split (due to certain criteria), the node becomes a
leaf and stores a histogram of the classes of the samples arrived
and/or a distribution of some continuous variables. Many trees
can be trained by this way, all with different random parameters.
During inference, a test sample passes down the tree, evaluating
the split functions and branching left or right until it reaches
a leaf node. The inference outcome is the average distribution
computed from the leaf nodes of all the trees.

Based on this formulation, we introduce another property of
the trees that is to be able to investigate another viewpoint of

Fig. 4. Active random forests training procedure. The split, action-selection,
and leaf nodes are shown in the tree. In each action-selection node, all viewpoints
are evaluated according to P (v).

an object in an optimal way. The optimal way would be to
investigate other viewpoints when the current one stops being
informative according to the training samples. To this end, we
introduce another type of node, called action-selection node.
This node is created when such behavior is recognized (details
are included in the next subsection). In this node, the tree decides
to include another viewpoint to the process of samples splitting,
again chosen in an optimal manner. In order to observe another
viewpoint of a garment, the gripper holding the garment can be
rotated and another image can be captured from the camera that
is located at the robot base.

The following subsections describe both training and testing
of our new trees in detail, including the action-selection nodes
and how the trees learn to select the next best view.

B. Active Random Forests Training

The training samples for active random forests consist of
tuples (I(v), c,g(v),p(v)), v ∈ V , where I is the depth image
of the garment, c is the garment type (class), g is the 3-D position
of the desired grasp point in the current camera frame, p is a
3-D vector of the garment pose, and V is the set of all possible
viewpoints v of the garment [see Fig. 3(a)]. Viewpoints are
discrete and equally distributed around the vertical axis, which
coincides with the gripper holding the garment. If the desired
point is not visible from viewpoint v, then g(v) is undefined.

Each split node of the decision tree (see Fig. 4) stores a
set V seen of the already seen viewpoints and passes it to its
children. In the beginning, only one viewpoint has been vis-
ited, and therefore, this set in the root node is Vseen = {v0}.
In each node, we evaluate a random set of split functions in
the form f(v, I, Icurv,utripl) > tsplit, where tsplit is a threshold.
The first parameter v is a viewpoint selected randomly (uni-
form distribution) from the set of already visited viewpoints.
The second and third parameters denote a feature channel,
for which the test should be performed. That is the original
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depth image I and mean curvature of the surface Icurv esti-
mated from the depth image [2] as in Fig. 3(b). The fourth
parameter utripl is a triplet from a set of random position triples
U = {(u1

1 ,u
1
2 ,u

1
3), (u

2
1 ,u

2
2 ,u

2
3), . . .} determining positions in

the image [see Fig. 3(b)]. The used binary tests are the same as
in [2], which proved to be fast and efficient for our problem.

� Two pixel test f1 ≡ I(u1) − I(u2), where I(u) is the depth
value at position u.

� Three pixel test f2 ≡ (I(u1) − I(u3)) − (I(u3) −
I(u2)).

� One pixel test f3 ≡ |Icurv(u)|, where Icurv(u) is the curva-
ture at position u.

We want our new decision trees to perform classification,
grasp point detection, and pose estimation jointly. Therefore,
we apply a different quality function form for each objective in
the split nodes in a hierarchical coarse to fine manner [37]. That
is, the classification is performed in the upper part of the trees,
and when the classes have been discriminated, the lower part
performs the regression of grasp points or pose vectors for each
class separately. The general form of the quality function can be
written as

Q =

{
Qclass , if max P (c) ≤ tc

Qreg , if max P (c) > tc.
(2)

Here, Qclass is the quality function term for classification, and
Qreg is the quality function term for regression. Specifically,
Qclass is the information gain using Shannon entropy, and Qreg
is the information gain for continuous Gaussian distributions [3]
weighted by the population of the nodes that a split function
produces. They have the general form

Qclass = −
∑

child∈
{left,right}

|Schild |
|S|

N c la s s e s∑
c=1

Pchild(c) log2 Pchild(c)

(3)

Qreg = −
∑

child∈
{left,right}

|Schild |
|S| ln |Λq (Schild)|. (4)

The set of samples in the node is denoted S, while Λq repre-
sents the covariance matrix of the continuous variable q being
optimized. More details are provided in [38]. The form of the
quality function depends on P (c), which is the probability dis-
tribution of the classes of the training samples in the node, and,
on the predefined threshold tc , typically set to 0.9. This means
that if samples in a node are correctly classified, then the tree
switches to regression optimization. In each node, we evaluate
random split tests using (2) and keep the one maximizing Q.

Apart from the standard objectives of classification and re-
gression, we want to integrate the next best view selection into
the decision trees, since this problem is closely related to the
aforementioned objectives. In our problem, selecting the next
viewpoint improves our system in two ways.

� It improves the classification and regression accuracy.
� It optimally detects a grasp point that is hidden in the

current view.

Fig. 5. Probability distributions of viewpoint used for random test selection.
(a) Weighted distribution. (b) Visibility map. (c) Final distribution.

Furthermore, our approach takes into account the cost of the
actions, which is currently related to minimizing the execution
time of the selected movements.

The split function used until now considers only the set of
visited viewpoints Vseen. However, below certain tree depth, this
set is uninformative. If the tree continues to split the samples
further, it starts to overfit. In this case, a new viewpoint should
be acquired to resolve the ambiguity. The problem now is to
determine in advance when the current set of viewpoints is not
informative. For this, we introduce a validation set, which is
being split in parallel with the training set. The divergence of
the posterior distributions between the two sets is measured in
each split node. Specifically, the initial training set S is split into
two equal-sized random subsets: ST is the training set and SD

the validation set. Split functions are evaluated using only the
training set, and when the best split function found, both sets
are split using this best split function.

The comparison between the training and validation set is
made in a probabilistic manner using the JD between the class
distributions (in the case of classification) or the grasp point or
pose vector distributions (in the case of regression). In the latter
case, the continuous distributions are approximated with a mul-
tivariate Gaussian. More details about the resulting equations
can be found in [3]. We have also tried the Hellinger distance
as the alternative divergence measure. However, it was found
that JD produced better results, so it is exclusively used in the
current work.

If the divergence Δ between the training and validation set is
above a threshold tΔ , the node is considered the action-selection
node, where an action (moving the holding gripper to see another
view) should be performed to avoid overfitting. In this case, the
split functions consider the whole set of possible viewpoints
V of the garment which are available during training, not only
Vseen.

To account for the execution cost of the selected actions,
we assign them a cost relative to the distance from the cur-
rent viewpoint (how much the gripper should be rotated), while
images from the intermediate viewpoints are also captured with-
out any additional cost. Specifically, the distance is measured
as the degrees of rotation of the gripper needed to change the
viewpoint. In order to weight the viewpoints according to their
distance, we change the distribution from which the viewpoints
v are randomly selected. The distribution of V in an action-
selection node is shown in Fig. 5(a). The already visited view-
points {1 . . . vmax} have a uniform distribution to be selected
with probability ρ, since they are not assigned any additional
cost. The viewpoint vmax is the furthest viewpoint seen so far in
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the training. The next viewpoints are assigned an exponentially
decreasing probability, proportional to their distance from the
current view. The resulting distribution W is defined as

W (v) =

⎧⎨
⎩

ρ, if v ∈ {1 . . . vmax}

ρ exp
(
− v−vm a x

|V |

)
, if v > vmax .

(5)

On the other hand, the desired grasp point on the garment
may be invisible in the already visited viewpoints. Therefore,
the next viewpoint should also make the desired point visible,
apart from disambiguating the current hypotheses about the
garment category or pose. The probability of the grasp point
being visible can be calculated from the vectors g(v) in a node.
The prior visibility probability B(v) for each viewpoint v in
node j containing samples Sj is defined as

B(v) =
∑

s∈S j b(s, v)∑
v ′∈V

∑
s∈S j b(s, v′)

(6)

b(s, v) =

{
1, if gs(v) exists

0, if gs(v) is not defined.
(7)

The distribution for selecting the next possible viewpoint
is given by P (v) = W (v)B(v). Therefore, such viewpoints,
which are closer to the current one and where the grasp point
is more probable to be visible, are more likely to be selected.
Fig. 5(c) shows an example of such distribution.

The next best viewpoint vbest in an action-selection node can
now be found by randomly selecting viewpoints from the distri-
bution P (v). This time, the whole set of samples Sj = Sj

T ∪ Sj
D

in the node j is used to evaluate the randomly generated tests
in order to reduce the divergence between the previous train-
ing and validation set. However, in the child nodes of the
action-selection nodes, the samples are again randomly split
into the training and validation sets, and the process is repeated.
This time, the nodes contain one more visited viewpoint, i.e.,
Vseen = V parent

seen ∪ {vbest}. Finally, a leaf node is created when
a minimum number of samples reaches the node. In the leaf
nodes, we store the class distribution P (c) and the first two
modes of g(v) and p(v) per class (as in [39]), weighted by the
class probability, for memory efficiency.

C. Active Random Forest Inference

Inference using active random forests begins with the cur-
rent view of the garment hanging from its lowest point. This
image starts traversing the trees, evaluating the split functions
selected during training. A leaf node may be reached in some
trees; however, in other trees, the image ends up in an action-
selection node. Another viewpoint is, therefore, required to
continue traversing down such tree (see Fig. 6). Each action-
selection node from any tree votes for the next best viewpoint
in a similar way, how a leaf node votes in the classical random
forests. The most voted viewpoint is then visited and another
image is captured. The trees that voted for the selected viewpoint
can be further traversed using the acquired viewpoint, while the
remaining trees keep their votes for the next action voting.

Fig. 6. Active random forests inference procedure. A new viewpoint is se-
lected at each action-selection node, guiding the robot to rotate the garment.
The best next viewpoint at the certain node has been found during training.

This process stops when Nleafs leaf nodes have been reached.
The final class is estimated by averaging the class distributions
stored in the reached leaf nodes. Grasp point detection and
pose estimation are made using Hough voting of the vectors
g and p stored in the leafs that we reached from all the vis-
ited viewpoints. The complete inference procedure is shown in
Algorithm 1. The framework is illustrated in Fig. 6. In [3], Nleafs

is experimentally evaluated. The outcome is that Active Ran-
dom Forests (ARF) require approximately twice as many trees
than regular random forests would require, having Nleafs equal
to the half of the total number of the trees used. This convention
is also used in the current work.

V. SPREADING AN UNFOLDED GARMENT

Once the unfolded garment is placed on the work table [see
Fig. 7(a)], it is examined in order to decide whether it is ad-
equately spread-out for folding. This is extremely unlikely for
most garments, since when unfolded they are grasped by only
two points, resulting to deformations due to gravity. While ex-
perimenting with various garment types, only in case of simple
geometries such as towels or shorts grasped by their waist, the
robot was able to place them flat on the table.

Therefore, a novel method is proposed for bringing the un-
folded garment into a spread-out configuration, in case it is still
deformed while placed on the work table. This method is used
to bridge the gap between unfolding and folding. It is of signif-
icant importance when the complete pipeline is to be executed.
Our approach is based on the measurement of the deformation
between the outer contour of the examined garment and the
template garment corresponding to the type recognized by the
unfolding module, e.g., T-shirt, towel, shorts. In case a deforma-
tion is detected, a spreading action is executed by the robot [see
Fig. 7(b)]. The spreading action consists of one arm pressing
the garment towards the table in order to prevent sliding, while
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Algorithm 1: Active Random Forests inference.
Input: Set of pretrained trees ARF

Current arbitrary viewpoint vcurrent

Output: Garment class c
Grasp point location g
Pose p

Initialize set of seen viewpoints Vseen = {vcurrent}
Initialize set of reached leaf nodes Leafs = ∅
While true do

Initialize DecisionVotes array to 0
for all trees T in ARF do

node ← traverse tree T from node Vseen

if node is leaf node then
Leafs ← Leafs ∪ {node}
ARF ← ARF \ T

else if node is action-selection node
d ← viewpoint decision stored in node
Increase DecisionVotes[d ]

if |Leafs| > Nleafs then break
Execute action for d∗ = argmaxd DecisionVotes[d]
Update current view vcurrent

Vseen ← Vseen ∪ vcurrent

return average class c, Hough votes for g(v), p(v) from Leafs

the other hand is sweeping with a small brush in a suitable di-
rection (see Fig. 8). After spreading, the resulting configuration
is checked again for deformations and the procedure is repeated
if necessary.

In order to detect any deformations on the unfolded garment,
its contour is compared to a template garment of the same type.
More specifically, let Cg ∈ R2×Nc denote the garment contour
before spreading, whereas Ct ∈ R2×Nc denotes the contour of
the employed template. Both contours consist of Nc points. The
contours are matched using the inner distance shape context
(IDSC) matching algorithm [40]. The resulting correspondences
are employed for estimating a similarity transformation Ts be-
tween them. The transformation Ts is then applied to Ct , and
the transformed template contour Cs = Ts{Ct} is calculated.

We define the deformations as pairs of corresponding points
from Cg and Cs , whose distance exceeds a predefined thresh-
old. Connected sequences of the deformed points from Cg

are grouped together using a sliding window. Only the group
Cgm ∈ R2×Mw , where Mw denotes the window length, having
the maximum total deformation distance is selected for fur-
ther processing. Apart from the distances corresponding to the
magnitude of the deformations, we are also interested in the
orientations of the deformations, in order to determine a suit-
able spreading action. Thus, all deformation vectors of Cgm
are computed using the difference Csm − Cgm , and a mean
deformation vector vm is also estimated.

The spreading action can be defined by three points in the
image of the unfolded garment: point ph denoting the position of
the holding gripper, point pi denoting the initial position of the
spreading gripper attached a brush tool, and point pf denoting
the final position of the spreading gripper [see Fig. 7(c)]. In our
approach, these points are always forming a straight line in the

Fig. 7. Spreading algorithm applied on a T-shirt. (a) Unfolded T-shirt has its
right sleeve slightly deformed. (b) Resulting configuration after spreading. (c)
Deformed contour (red) is matched to the garment template (blue). The spread-
ing actions are planned based on the detected deformations. (d) No deformation
is detected after spreading and therefore the T-shirt can be folded.

Fig. 8. Brush tool attached to the gripper is moved in the direction shown by
the arrow. The other arm is holding the T-shirt to prevent it from sliding.

image plane so that the holding arm prevents the undeformed
part of the garment from moving due to the spreading motion.
The estimation of these points is based on the detected position
and orientation of the deformation

pf = vm + pc (8)

pi = pc + ‖vm‖ (pg − pc)
‖pg − pc‖

(9)

ph = pi + dh
(pi − pf )
‖pi − pf ‖

. (10)

More specifically, the central point pc of Cgm is used to
estimate the final position of the spreading arm using (8). The
initial position of the spreading arm is estimated using (9), where
pg denotes the centroid of Cg . Equation (9) implies that in
order to estimate pi , we move from the central point of the
deformation towards the centroid of the garment for a distance
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Algorithm 2: Contour based spreading.
Input: RGB image I of the garment on table

Template image It of spread-out garment of same category as I
Output: Holding arm position ph

Spreading arm initial position pi

Spreading arm final position pf

dmax ← 0
Cg ← garment contour from image I
pg ← centroid of contour Cg

Ct ← garment contour from image It

Ts ← similarity transform estimated from IDSC correspondences
between contours Ct and Cg

Cs ← Ts{Ct}
dEucl ← Euclidean distance of contours Cg and Cs

if max(dEucl) > dthresh

for all points p in Cg do
Cgm ← Mw adjacent Cg points with p at the centre
ps ← Cs point that corresponds to p
Csm ← Mw adjacent Cs points with ps at the centre
if ‖Csm − Cgm‖ > dmax then

dmax ← ‖Csm − Cgm‖
vm ← mean of Csm − Cgm

pc ← centroid of Cgm

pf ← vm + pc

pi ← pc + ‖vm‖ (p g−p c)
‖p g−p c‖

ph ← pi + dh
(p i−p f)
‖p i−p f‖

else
ph, pi, pf ← NaN

return ph, pi, pf

equal to the magnitude of vm . This allows starting the spreading
motion from within the garment coping with deformations due
to folding, whereas the spreading trajectory is shifted closer to a
direction that is pointing away from the centroid. Thus, instead
of using pcpf , the direction of spreading is provided by the
orientation of pipf . This direction is also used for estimating
the position of the holding arm, which is given by (10), where dh

is a scalar, large enough to ensure that no collision takes place
between holding and spreading arms. Algorithm 2 summarizes
the proposed approach.

The estimated points in the image are used to determine the
position of the robotic arms in world coordinates. The position
of the holding arm corresponds to the end-effector, whereas the
position of the spreading arm corresponds to the center of a
brush tool attached to the gripper, as illustrated in Fig. 8. The
orientation of the spreading arm is such that the brush tool is
perpendicular to the spreading direction defined by pipf . In
practice, a deviation of a few degrees can be allowed in case an
IK solution cannot be found for the estimated direction.

VI. FOLDING A GARMENT

The final step of the pipeline is folding of the garment that
has been unfolded and spread on the table. Since the garment
category is already known, only its pose needs to be estimated.
We propose a robust method for visual detection of the gar-
ment pose from a single image. The method is not using any
prior information from the previous unfolding stage except the
known garment category. It can thus be used separately and

Fig. 9. Pixels of the (a) input image are used to initialize (b) trimap for the
GrabCut algorithm. The trimap consists of the foreground (cyan), background
(yellow), and unknown (magenta) pixels. (c) Garment contour (green) is ex-
tracted from the binary segmentation mask.

independently upon the pipeline, as described in [4] and [5].
Once the garment pose is recognized, a single folding move is
planned and executed. The vision procedure is then repeated to
check the garment pose before performing the next fold.

The perception procedure can be split into several steps. It
starts with a single image of the spread garment. The gar-
ment location in the image is determined by color segmentation.
The garment contour is extracted from the segmentation mask.
The contour is simplified by approximating it with a polygon.
The simplified polygonal contour is matched to a polygonal
model for the particular category of clothes. Vertices of the
matched model determine locations of the important landmark
points found on the garment contour, e.g., corners, shoulders,
armpits, or crotch. The identified landmarks are then used for
the planning of the folding moves.

A. Segmentation and Contour Extraction

The visual sensing for estimating the garment position and
configuration starts with localization of the garment on the table.
The input is a single image [see Fig. 9(a)] taken by the camera
attached to the robotic arm. We assume that color of the wooden-
like table is different from the garment color and that the table
color is not changing in time (except the slight changes caused
by various illumination). These assumptions enable to learn a
probabilistic model of the table color from training images of
the table surface. The table color is modeled by the Gaussian
mixture model (GMM) of RGB triples.

The model training starts with the initialization of GMM com-
ponents using the binary tree algorithm for palette design [41].
The number of GMM components should be high enough to
model the variability of the table color. We empirically choose
three components for our wooden-like table. The prior prob-
ability, mean vector, and covariance matrix for each compo-
nent are learned according to the maximum likelihood principle
[42].

While dealing with a new image depicting the garment laid on
the table, we first create a preliminary hypothesis about the class
of each pixel, which is based on the probability of its color in
the learned GMM of table color. The highly probable pixels are
labeled as background (table), the lowly probable as foreground
(garment), and the mediocre ones as unknown. An example
of the obtained labeling is shown in Fig. 9(b). The labeling is
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Fig. 10. Polygonal model for a short-sleeved T-shirt. Inner angles sharing
the same distribution are denoted by the same letter α . . . δ. Edges sharing the
same distribution of relative lengths are denoted by the same letter a . . . f .
(a) Polygonal model. (b) Inner angles. (c) Relative lengths.

used to initialize color models of the GrabCut segmentation
algorithm [43] instead of requiring the user to input a sample of
the foreground and background pixels. The GrabCut algorithm
provides the final segmentation.

The binary segmentation mask is processed by the Moore’s
algorithm [44] for border tracking to extract the garment con-
tour. The extracted garment contour can be seen as a polygon,
which has hundreds to thousands of vertices corresponding to
the individual pixels of the segmentation mask [see Fig. 9(c)].
The polygon is approximated by a new simpler polygon, which
has at most dozens of vertices. The approximation method is
based on running dynamic programming algorithm for approxi-
mation of an open curve by a polyline [45], starting from several
randomly chosen vertices of the original polygon. The method
does not provide the optimal approximation of the original poly-
gon, but it is reasonably time efficient.

B. Polygonal Models and Their Matching

The general shape of the contour for a particular clothes cat-
egory in the spread state is described by a polygonal model,
as in Fig. 10(a). Each polygonal model is determined by its
vertices and their mutual positions. The vertices were defined
manually. They correspond to the important landmark points
on the garment contour, e.g., corners or armpits. The admissi-
ble mutual positions of the vertices are specified by probability
distributions of inner angles adjacent to the vertices and prob-
ability distributions of relative edge lengths. Fig. 10 shows the
polygonal model of a short-sleeved T-shirt. Certain angle and
length distributions are shared because of the obvious left-right
and top-bottom symmetries. The distributions are represented
by normal density functions, which are learned from annotated
training images of garments according to the maximum likeli-
hood principle [42].

The polygonal model is matched to the simplified contour in
order to estimate the garment pose. The matching task can be
formulated as follows. The observed contour was simplified by a
polygon having N vertices p1 . . .pN , which we will call points

from now on. The polygonal model is determined by vertices
w1 . . . wM , where M is specific for the particular model, e.g.,
it is 4 for a towel having four corners. It always holds N > M ,
i.e., the simplified contour comprehends more points than is the
number of the model vertices.

The goal is to find mapping g of the contour points to
the model vertices g : {p1 . . .pN } → {w1 . . . wM , e} satisfy-
ing the following conditions:

� For each vertex wm , there exists a point pi mapped to it.
� No two points pi and pj can be mapped to the same

vertex wm . However, many points can remain unmapped
to any vertex. They are instead mapped to the model edge
represented by the special symbol e.

� The mapping preserves the ordering of the contour points
and the model vertices in the clockwise direction.

� The points are mapped to such vertices that the observed
contour fits the learned model distributions of inner an-
gles and edge lengths. The optimal mapping is found by
minimizing a certain cost function C(g).

The total cost C(g) is given by the summation of local costs,
whose definition utilizes special circular operations. Let us
define the circular increment i ⊕ 1 = (i mod N) + 1 and the
circular decrement i  1 = ((i − 2) mod N) + 1 for the point
index i to remain in the set {1 . . . N}. Accordingly, we define
m � 1=(m mod M)+1 and m � 1=((m−2) mod M)+1
for the vertex index m to remain in the set {1 . . . M}.

The first of the local costs is the vertex matching cost Wm
i,j,k ,

which is defined for each triple of contour points pi ,pj ,pk and
each polygonal model vertex wm as

Wm
i,j,k = −λW logN (|∠pipjpk |;μm , σ2

m ). (11)

It expresses how the size of the oriented angle |∠pipjpk | fits
the normal distribution N ( · ;μm , σ2

m ) of inner angles adjacent
to the vertex wm . The distribution mean μm and variance σ2

m

are learned from data. The cost is weighted by λW .
The edge matching cost Em

j,k is defined for each pair of points
pj ,pk and each model vertex wm as

Em
j,k = −λE logN

(
‖pjpk‖∑N

i=1 ‖pipi⊕1‖
; νm , τ 2

m

)
. (12)

It expresses how the relative length of the line segment pjpk

(with respect to the overall length of the contour) fits the distri-
bution of relative lengths of the edge wm wm�1 . The distribution
mean νm and variance τ 2

m are learned from data.
The segment matching cost Sj,k is defined for each pj ,pk as

Sj,k = −λS

∑
i∈Ij , k

logN
(
|∠pi1pipi⊕1 |;π,

π2

16

)

Ij,k =

{
{j + 1 . . . k − 1}, if j ≤ k

{j + 1 . . . N, 1 . . . k − 1}, if j > k.
(13)

It represents the penalty paid for points not matched to any
vertex. Such points together with their neighboring segments
should resemble straight lines. Thus, each angle ∠pi1pipi⊕1
should resemble a straight angle. This is why the mean
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Algorithm 3: Optimal mapping of contour to model.
Input: Point index r such that g(p̄r ) = wM

Cost W̄ m
i,j,k of matching angle ∠p̄i p̄j p̄k to vertex wm

Cost Ēm
j,k of matching segment p̄j p̄k to edge wm wm +1

Cost S̄j,k of approximating p̄j+1 . . . p̄k−1 by segment p̄j p̄k

Output: Cost T̄ m
j,k of matching subcontour p̄1 . . . p̄k−1 to model

vertices w1 . . . wm so that g(p̄j ) = wm , g(p̄k ) = wm +1
for all j ∈ {2 . . . r − M + 2} do

for all k ∈ {j + 1 . . . r − M + 3} do
T̄ 2

j,k ←
(
W̄ 1

r,1 ,j + W̄ 2
1 ,j,k

)
+

(
Ēm

r,1 + Ē1
1 ,j + Ē2

j,k

)
+

(
S̄r,1 + S̄1 ,j + S̄j,k

)
for all m ∈ {3 . . . M − 1} do

for all j ∈ {m . . . r − M + m} do
for all k ∈ {j + 1 . . . r − M + m + 1} do

T̄ m
j,k ← Ēm

j,k + S̄j,k + min
i∈{m −1 . . .j−1}

(
T̄ m −1

i ,j + W̄ m
i,j,k

)
return T̄ M

r,1 ← min
i∈{M −1 . . .r−1}

(
T̄ m −1

i ,r + W̄ m
i,r,1

)

and the variance of the normal distribution are set to π
and π2/16.

The weights of the vertex, edge, and segment costs were set
empirically as λW = 1, λE = 1/3, and λS = 1 to balance their
typical values. The total cost C(g) is given by summation of all
local costs (11)–(13) with respect to the mapping g as

C(g) =
∑ {

Wm
i,j,k + Em

j,k + Sj,k | m ∈ {1 . . . M},

g(pi)=wm�1 , g(pj )=wm , g(pk )=wm�1
}
. (14)

The number of all possible mappings of N contour points
to M model vertices is combinatorial in N , M . In order to
avoid their exhaustive evaluation while finding the minimum
cost mapping, we propose a dynamic programming algorithm
having a polynomial time complexity O(N 5M). Since N ≤ 20
points are always enough to approximate the contour accurately,
the actual time performance is sufficient (see Section VII-B)
despite the high degree of the polynomial.

Algorithm 3 lists the main part of the method. It finds the
cost of the optimal mapping of the points p̄1 . . . p̄N to the ver-
tices w1 . . . wM with respect to the condition that g(p̄1) = w1
and g(p̄r ) = wM , where r ∈ {M . . . N}, i.e., the points
mapped to the first and last vertex are given. The points
(p̄1 . . . p̄N ) ≡ (pn−1 . . .pN ,p1 . . .pn ) are obtained by shift-
ing the original points by n positions. The costs W̄m

i,j,k , Ēm
i,j , S̄i,j

are shifted accordingly from Wm
i,j,k , Em

i,j , Si,j . Algorithm 3 is
called for each shift of the contour points by n positions (out
of N shifts) and for each selection of the point p̄r mapped
to the vertex wM (out of N − M + 1 selections) in order to
find the cost of the globally optimal mapping with respect
to (14).

C. Robotic Folding

Once the polygonal model is matched to the observed garment
contour, its pose is known and a folding move can be planned
and performed by the robot. The pose of the garment after the
folding move can be predicted, but we rather check it visually
in order to deal with various translations and rotations of the

Fig. 11. Incremental creation of folded models for a short-sleeved T-shirt. The
original vertices are being replaced by new vertices denoting endpoints of the
individual folds (plotted with various shapes and colors).

garment caused by its manipulation. The pose estimation proce-
dure follows the described steps. However, the simplified con-
tour is now matched a folded polygonal model derived automat-
ically from the original model of the spread garment. Fig. 11
shows the incremental creation of the folded models. The origi-
nal model vertices are being replaced by new vertices denoting
the endpoints of the particular fold. The distributions of inner an-
gles and relative edge lengths are adjusted for the folded model,
as described in [5].

Planning of the robotic motion for folding utilizes MoveIt
package [46] contained in the robot operating system (ROS).
The trajectories are planned in three steps. The RRT-Connect
algorithm [47] is used at first to schedule collision-free trajec-
tories from one joint state to another one. The trajectory is then
interpolated by generating evenly distributed points in Carte-
sian coordinates. Finally, the IK is computed for each point
to find the final trajectory, which is then sent to the robot
controller.

The folding algorithm is based on special moves called g-
folds [28]. The robot grasps the selected points of the garment
and moves them along triangular paths. Each path goes up in
its first half and down in the second half. At every moment of
the move, the garment is split to the part laying on the table and
the vertically hanging part. The grasping points are selected in
such way that the hanging part is kept immobilized due to the
gravity. Since our jaw-like gripper is not suitable for grasping flat
garment from above, its lower finger slides under the garment
and grasps it.

VII. EXPERIMENTS

A. Testbed Description

The methods described in this paper were implemented and
tested on two identical dual-armed robot testbeds located in
CTU Prague and CERTH Thessaloniki. The robot is composed
mainly of standard industrial components. Its body consists of
two Motoman MA1400 robotic arms mounted to R750 turn-
table. The components are controlled by two DX100 controllers
working as master and slave. The arms are attached jaw-like
grippers developed by the CloPeMa consortium [48]. Fig. 12
shows a detailed view of the robot.

The robot is equipped with several sensors. There are three
combined RGB and depth cameras ASUS Xtion PRO attached
on the robot: two on the wrists and one on the base. They
are the only sensors used for our current task. Furthermore,
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Fig. 12. Dual-armed robot used in our testbed and the detail of its arm
equipped with custom jaw gripper designed for grasping of garments.

a head comprising of two Nikon D5100 cameras for stereo
vision [49] and corresponding pan/tilt units is mounted on the
robot base. The grippers are equipped with tactile sensors and
photometric stereo intended mainly for material sensing. The
wrists comprehend force and torque sensors.

The robot control system is built on the ROS [50] in the Hydro
version. The basic functionality of moving the arms and reading
positions from their joints is provided by MotoROS package,
which is delivered by the manufacturer. We also utilize MoveIt
package and Open Motion Planning Library [51] for motion
planning.

B. Performance Evaluation

For the evaluation of the pick-up module described in
Section III, we conducted experiments on a real setup with
the robot repeatedly picking items from a heap. We performed
80 runs of the task. The garments in the heap were changed
every ten runs. We manually shuffled the garments on the table
between the changes in order to test different configurations.
The percentage of successful task completions was used as the
evaluation metric, where success means picking up a single item
only and lifting it above the table without significantly affecting
the heap. The maximum number of three retries was allowed.
We have achieved an overall success rate of 95%. Half fail-
ures were caused by incorrect localization of the grasp point,
whereas the remaining failures were due to slippage of the fold
while the gripper was closing. The ridge detection algorithm pro-
duced biased fold locations when folds were asymmetric. Some
corners were also falsely detected as ridges. Although corners
can potentially be good grasping points, the noisy depth map
at the vicinity of the discontinuities contributes to localization
errors.

The unfolding procedure described in Section IV was tested
on 30 garments, six per category, including long-sleeved shirts,
trousers, shorts, short-sleeved T-shirts, and towels. Most gar-
ments are included in the datasets of [2] and [3]. Each garment
was used 20 times in training, each time regrasping it from a

TABLE I
PERFORMANCE EVALUATION OF ACTIVE RANDOM FORESTS

Single POMDP MI JD Random ARF

SVM RF SVM RF SVM RF SVM RF SVM RF

Class. 72 90 91 97 84 94 93 97 88 92 98
Grasp 53 95 68 97 63 94 72 94 57 93 94
Pose 21 49 24 53 26 55 27 55 24 52 71

ARF were compared with three-state-of-the-art methods (POMPD, MI, JD) and two
baseline methods (single and random view), all of them using two different classifiers
(SVM and Random Forests). Accuracies (in percents) of all compared methods were
evaluated in three tasks: classification, grasp point detection, and pose estimation.

possible lowest point. There are 72 000 training images and 600
test images in total. Different garments were used for training
and testing. We assume a correct grasp point detection if it is at
most 10 cm close to the ground truth, whereas 18° divergence is
allowed for a correct pose estimation. Fig. 14 shows the accu-
racy of classification, grasp point detection, and pose estimation
for each category. We have achieved almost perfect results in
classification and grasp point detection for long-sleeved shirts,
trousers and shorts. Short-sleeved T-shirts and towels often look
very similar in depth channel and their rate is reduced because
of mutual misclassification. It can also be seen that pose esti-
mation is the most difficult objective with less accuracy com-
pared to the previous two. However, as we will show, Active
Random Forests (ARF) has significantly increased the perfor-
mance compared to the state of the art in terms of the pose
estimation.

We compared ARF to three baseline active vision methods:
partially observable Markov decision process (POMDP) used
in [2], MI criterion [32], and JD metric [33]. We also compared
all methods to the random strategy. For a fair comparison, we
assumed that all actions have equal costs, which means that
the prior probability distribution for selecting next viewpoints
is uniform. Since the aforementioned state of the art methods
require an additional classifier, we used two additional baselines
for each active vision technique: Random-forest-based classi-
fier [2] and multiclass and regression SVM [52], [53]. To train
these classifiers, we used the raw depth images of the garments
as well as the HOG features [54] computed from the depth
maps.

Table I shows the results for classification, grasp point de-
tection, and pose estimation. Generally, if the SVM classifier
was used, the performance was the worst. Furthermore, if the
single-view methods performed well, which is the case of clas-
sification and grasp point detection, the active vision methods
had a positive impact on the final result, comparable with ARF.
In pose estimation, however, the state-of-the-art active vision
techniques cannot improve the performance significantly, since
they depend largely on single-view estimations. On the other
hand, ARF has been trained to choose the most informative fea-
tures and views simultaneously, better exploiting the ability of
the robot to actively explore new views. Table I shows that ARF
outperforms other methods by almost 20%. Further qualitative
results of ARF are shown in Fig. 13.
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Fig. 13. Qualitative results of grasp point and pose estimation. Two failures on the right are due to wrong grasp point detection (denoted by the red diamond)
and wrong pose estimation (the hollow red arrow shows the detected wrong orientation).

Fig. 14. Quantitative results of the garment classification, grasp point detec-
tion, and pose estimation for various types of garments.

Four garments were employed for the evaluation of the
spreading module: a towel, a pair of shorts, and two T-shirts.
Although, in principle, the spreading algorithm can also deal
with trousers and shirts, in practice, the limited robot workspace
made their manipulation rather difficult. No articles of these cat-
egories were, therefore, considered in the evaluation. Moreover,
in the case of towels and shorts, the unfolded garment resulted
in a spread-out configuration that called for no spreading ac-
tion. The spreading algorithm is, therefore, employed only in
case of T-shirts, where the sleeves are highly deformed due to
gravity. In order to individually evaluate the proposed spreading
algorithm described in Section V, two T-shirts were employed
in a series of experiments, with the robot laying them on the
table. Each of both T-shirts was placed on the table 15 times,
whereas the other was used as the unfolded template for detect-
ing deformations. The extracted contours consisted of Nc = 240
points, whereas the sliding window length was set to Mw = 11
points. One implicit assumption of the spreading algorithm is
that a valid IK solution can be found for the estimated spreading
action. However, in practice, small deviations from the esti-
mated spreading direction can be allowed without drastically
affecting the spreading outcome. Thus, ±30° deviation was al-
lowed, and a valid IK solution was always found for every tested
configuration.

Since the output of the spreading module forms the input
of the folding module, it makes sense to consider the spread-
ing successful only if it results in such configuration that all
landmark points are undeformed and can be detected easily by
the folding algorithm. Before spreading, no configuration sat-
isfied the above criterion, whereas after spreading 25 out of
30 configurations did, yielding a success rate 83%. Another

TABLE II
DISPLACEMENTS OF MATCHED POLYGONAL MODELS

Error Towel Shorts Trousers T-shirt Shirt

Mean [cm] 0.3 0.8 0.6 1.0 1.1
Std. dev. [cm] 0.2 0.6 0.6 1.8 1.4

measure employed to assess spreading performance is the max-
imum Euclidean distance from the desired configuration. The
desired configuration was determined manually after the spread-
ing. The average maximum distance over all trials was 14.3 cm
before spreading. It dropped to 3.7 cm after spreading. More-
over, 2.8 spreading actions were needed on average in each trial
before the spreading algorithm terminated.

Section VI described the method for pose estimation of the
unfolded and spread garment, which is needed for its folding.
The method was tested on garments of five categories corre-
sponding to the various polygonal models (see Section VI-B):
towel, shorts, trousers, short-sleeved T-shirt, and long-sleeved
shirt. The model of a long-sleeved shirt is also used for im-
ages of sweaters whose contour shape is similar. The distri-
butions of inner angles [see Fig. 10(b)] and relative edges
lengths [see Fig. 10(c)] for each model were learned from
20 annotated training images. The model of table color used
for segmentation (see Section VI-A) was trained from a sin-
gle image of the table. The testing dataset used for the eval-
uation contained 53 images of towels, 32 shorts, 54 trousers,
61 short-sleeved T-shirts, and 90 long-sleeved shirts and
sweaters.

Table II summarizes the displacements between the manually
annotated ground truth landmarks and the landmarks found by
the model matching algorithm. The values were averaged over
all testing images and all model vertices. Fig. 15 shows displace-
ments for individual vertices. Individual displacement vectors
collected from all testing images were normalized (based on ori-
entation and size of the particular garment) and averaged. Their
covariance matrix was computed and visualized as the ellipse
sized up five times. The mean displacement is below 1.1 cm
for each garment category (see Table II), which is sufficient for
the folding task. The largest inaccuracy reposes in the local-
ization of shoulders where the average displacement is 2–4 cm
[see Fig. 15(d) and (e)]. The reason is that the shoulders do not
form such a distinctive shape on the contour as the corners or
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Fig. 15. Distributions of displacements between the vertices of the matched models and manually annotated landmarks. The outlines correspond to the learned
models (means of normal distributions of inner angles and relative lengths were used to plot the outlines). The crosses denote mean displacement for each vertex
and the ellipses correspond to the covariance matrices of the displacements (the ellipses were plotted sized up five times). (a) Towel. (b) Shorts. (c) Trousers.
(d) Short-sleeved T-shirt. (e) Long-sleeved shirt.

Fig. 16. Example results of the pipeline for pose estimation of a spread gar-
ment. The images show the model (plotted in cyan) matched to the extracted con-
tour (green). The pipeline is robust enough to deal with (b) partially deformed
garments or (c) ill-segmented images (the leather waist label was assigned
wrongly to the background table segment). (a) Spread T-shirt. (b) Deformed
sweater. (c) Ill-segmented shorts.

Fig. 17. Images of the selected garments used for testing the com-
plete pipeline. They are depicted on the working table in a spread-out
configuration.

armpits do. However, the locations of the shoulders are not used
for planning of the next folding move. Fig. 16 shows example
matching results. The method is robust enough to deal with not
fully spread garments [see shoulders of the green sweater in
Fig. 16(b)] or with imperfect segmentation causing a significant
deformation of the extracted contour [see leather waist label of
the jean shorts in Fig. 16(c)].

The performance of the complete pipeline was evaluated on
various garments (see Fig. 17), including those used for testing
of the spreading module. However, we have not used long-
sleeved shirts and trousers, as in spreading, because of the lim-
ited workspace of the robot that does not allow the folding of
such long garments. We conducted eight trials for each of four
garments of each category (T-shirts, shorts, towels), yielding a
total of 96 trials. The complete pipeline was successful in 72
trials, yielding a success rate of 79%. This overall rate is lower
than the performance of each stage because failures can occur in
different stages of the pipeline and affect the complete process.
More specifically, the towel was misclassified as T-shirt seven

TABLE III
PERFORMANCE OF COMPLETE FOLDING PIPELINE

Shorts T-shirts Towels Total

Successful/all trials count 30/32 21/32 25/32 76/96
Success ratio [%] 94 66 78 79

times, grasp points were detected and grasped for shorts two
times, and 11 unsuccessful foldings occurred for T-shirts, from
which two occurred because the garment was not well spread
on the table after unfolding. The results are summarized in Ta-
ble III. The most challenging garment type is the T-shirt, which
presents the poorest success rate of 66 %, despite the corrections
applied by the spreading module. Fig. 1 shows all stages of the
complete unfolding process. The supplementary video shows
the complete folding of one garment per category.

The execution of the whole pipeline takes 8 min on average,
with the robot operating in moderate speed for safety reasons.
This can be compared with [6], in which a complete pipeline for
folding towels took approximately 20 min per towel on average.
Most time is spent by the actual movement, not by perception
or reasoning. Picking up a garment from a pile (see Section III)
takes approximately 1 s to calculate the correct grasping point,
whereas the robot completes the grasping in 20 s. Regarding un-
folding (see Section IV), the image captured by the depth sensor
is analyzed in 30–40 ms. On average, five images from different
viewpoints are required to classify the garment and to estimate
the grasp point and pose. The whole process of finding and
picking two desired grasp points per garment takes slightly over
2 min for the robot to execute. Regarding spreading of the gar-
ment (see Section V), the deformed contour is analyzed in 10 s
on average. Each spreading step is executed in approximately
50 seconds by the robot. The spreading process is executed at
most three times. Pose estimation of the garment being folded
(see Section VI), which is performed prior to folding and re-
peated after each fold, takes 2–5 s, depending on the garment
type. The folding action is performed in about 30 s by the robot.
There are two folds needed for towels, shorts and trousers, and
three folds for T-shirts and shirts.

VIII. CONCLUSION

We have described the complete pipeline for autonomous
clothes folding using a dual-armed robot. To our knowledge,
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this is the first work addressing all necessary subtasks on such a
variety of garments. The subtasks comprehended include pick-
ing up a single garment from the pile of crumpled garments,
recognizing the category of the hanging garment, unfolding the
garment while hanging, placing the garment roughly flat on the
table, spreading it, and finally folding the spread garment in a
series of folding moves. The novel methods for isolating a sin-
gle garment from the pile and for spreading already unfolded
garment were presented in this work for the first time. They fill
the gaps between our previously published method for unfold-
ing [2], [3] and folding [4], [5], completing the full pipeline for
robotic clothes folding.

This work addresses tasks related both to the machine vision
and the robotic manipulation of clothes. Both of these research
areas bring very challenging issues caused mainly by the fact
that clothes are soft objects. It is difficult to recognize their
category or estimate their pose because of their huge deforma-
tion space. The proposed techniques address these challenges,
whereas some of them could also be useful in other tasks dealing
with soft objects.

The performed experiments show that the proposed meth-
ods are practically applicable for robotic clothes folding. The
achieved overall success rate of 79% is very promising, consid-
ering the complexity of the pipeline. All intermediate steps have
to be performed correctly in order to fold the crumpled garment.
The experiments also prove that the proposed methods are gen-
eral enough to deal with various types of garments, including
towels, T-shirts, and shorts.

There are several possible directions for future research. The
first is an improvement of the robustness. It may be achieved
either by tuning the proposed methods for better performance
or by designing fail-safe strategies describing how to recover
from failures. An example of the already implemented fail-safe
strategy is restarting of the unfolding procedure if the garment
was not correctly unfolded. Our robot is equipped with multi-
ple sensors, from which only the combined camera and range
sensors are used in the pipeline. The presented algorithms rely
purely on visual perception. The grasping and manipulation pro-
cedures could be improved by incorporating information com-
ing from the force, torque, and tactile sensors. Another possible
extension is a real-time perception, reasoning, and planning per-
formed concurrently with the manipulation. It would allow more
flexible reactions to the current situation.

The existing algorithms use no or very simple representation
of the observed garment. It would be interesting to model its sur-
face globally by polygonal meshes reconstructed from the per-
ceived input. It might also be helpful to model dynamics of the
fabric. Such methods already exist in the area of computer graph-
ics. Folding a pile of clothes is one of many real-world scenarios
related to clothes manipulations. The skills of the robot could be
extended by ironing, hanging the garment on a clothes hanger,
or assisting a physically challenged person with clothing.
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