ICRA 2014

Autonomous Active Recognition & Unfolding of Clothes using Random Decision Forests & Probabilistic Planning

A. Doumanoglou, A. Kargakos, T-K Kim, S. Malassiotis

Robot Challenge

Autonomously Unfold clothes (in order to fold them)

Robot Challenge

Autonomously Unfold clothes (in order to fold them)

Clothes Recognition

Clothes Recognition

Grasp Point Detection

Clothes Recognition

Grasp Point Detection

Active Planning

How to reduce the large configuration space ?

How to reduce the large configuration space ?

Grasp Lowest Hanging Point First:

Symmetric

How to reduce the large configuration space ?

How to reduce the large configuration space ?

Grasp Lowest Hanging Point First:

6 non-symmetric lowest points \rightarrow 6 Classes Total

How to reduce the large configuration space ?

Grasp Lowest Hanging Point First:

6 non-symmetric lowest points \rightarrow 6 Classes Total

How to reduce the large configuration space ?

Grasp Lowest Hanging Point First:

6 non-symmetric lowest points \rightarrow **6** Classes Total

How to reduce the large configuration space ?

Grasp Lowest Hanging Point First:

6 non-symmetric lowest points \rightarrow **6** Classes Total

How to reduce the large configuration space ?

Grasp Lowest Hanging Point First:

6 non-symmetric lowest points \rightarrow **6** Classes Total

How to reduce the large configuration space ?

Grasp Lowest Hanging Point First:

6 non-symmetric lowest points \rightarrow **6** Classes Total

How to reduce the large configuration space ?

Grasp Lowest Hanging Point First:

6 non-symmetric lowest points \rightarrow **6** Classes Total

Random Forest Training

 $f(\mathbf{V}, C_i)$ Split Function

Random Forest Training

$f(\mathbf{V}, C_i)$ Split Function

 $f(\mathbf{V}, C_1) = d_u - d_v$ $f(\mathbf{V}, C_1) = (d_u - d_w) - (d_w - d_v)$

Random Forest Training

$f(\mathbf{V}, C_i)$ Split Function

 $f(\mathbf{V}, C_2) = |c_u|$

Random Forest Training

 $f(\mathbf{V}, C_i)$ Optimization

Random Forest Training

Generate Random Set $\{ {f f}, t \}$

Random Forest Training

 $f(\mathbf{V}, C_i)$ Optimization Generate Random Set $\{\mathbf{f}, \mathbf{t}\}$ Split Samples $f(\mathbf{V}, C_i) > t$ $f(\mathbf{V}, C_i) < t$

Measure Entropy

 $H = -\left(|L|p_L \log p_L + |R|p_R \log p_R\right)$

Random Forest Training

 $f(\mathbf{V}, C_i)$ Optimization Generate Random Set $\{\mathbf{f}, \mathbf{t}\}$ Split Samples $f(\mathbf{V}, C_i) > t$ $f(\mathbf{V}, C_i) < t$

Measure Entropy

 $H = -\left(|L|p_L \log p_L + |R|p_R \log p_R\right)$

Greedily Optimize

$$\{f,t\} = argmin_{f,t}H$$

Grasp Point Detection

Desired grasp Points:

Desired grasp Points:

Hough Forest

Desired grasp Points:

Hough Forest

Desired grasp Points:

Desired grasp Points:

Hough Forest

Desired grasp Points:

Single view

success ~ 90%

Crucial Decisions

Single view

success ~ 90%

Crucial Decisions

How can other views help ?

Single view

success ~ 90%

Crucial Decisions

How can other views help ?

Approach

Single view

success ~ 90%

Crucial Decisions

How can other views help ?

Approach

Keep looking sequential views

Single view

success ~ 90%

Crucial Decisions

How can other views help ?

Approach

Keep looking sequential views

Until we reach a certain degree of confidence

Active Recognition – **POMDP solution**

Active Recognition – **POMDP solution**

States (S): 6 Cl

6 Classes

Shirt Trousers Sl

S Shorts 1 Shorts 2

T-shirt 1 T-shirt 2

Active Recognition – POMDP solution

States (S): 6 Classes	Shirt	Trousers	Shorts 1	Shorts 2	T-shirt 1	T-shirt 2
--------------------------------	-------	----------	----------	----------	-----------	-----------

Actions (A): Rotate Cloth — Take Final Decision

Active Recognition - POMDP solution

States (S):	6 Classes	Shirt	Trousers	Shorts 1	Shorts 2	T-shirt 1	T-shirt 2

Actions (A): Rotate Cloth — Take Final Decision

Observations (O):

Active Recognition – **POMDP solution**

Active Recognition – **POMDP solution**

Actions (A): Rotate Cloth — Take Final Decision

Observations (O):

(quantized)

Observation Probabilities:

P(O|S,A) \rightarrow Measured Experimentally

Transition Probabilities:

$$T(S_i|A_{rotate}, S_j) = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$$

Active Recognition – **POMDP solution**

Active Point Estimation — **POMDP solution**

Active Point Estimation — POMDP solution

States (S): 65 - 8x8 grid quantization, or (INV)

(i, j)

Active Point Estimation – **POMDP solution**

States (S): 65 - 8x8 grid quantization, or (INV)

Actions (A): Rotate Cloth — Grasp Garment at (i, j)

(i, j)

Active Point Estimation – **POMDP solution**

States (S): 65 - 8x8 grid quantization, or (INV)

Actions (A): Rotate Cloth — Grasp Garment at (i, j)

Observations (**O**): Pgrasppoint(i, j) (quantized) from Hough Image

Active Point Estimation – **POMDP solution**

States (S): 65 - 8x8 grid quantization, or (INV)

Actions (A): Rotate Cloth — Grasp Garment at (i, j)

Observations (**O**): P_{grasppoint}(i, j) (quantized) from Hough Image

Observation Probabilities: P(O|S,A)

Transition Probabilities: T (Si | A, Sj)

 \rightarrow Measured Experimentally

Active Point Estimation – **POMDP solution**

States (S): 65 - 8x8 grid quantization, or (INV)

Actions (A): Rotate Cloth — Grasp Garment at (i, j)

Observations (**O**): Pgrasppoint(i, j) (quantized) from Hough Image

Observation Probabilities: P (O | S, A)

Transition Probabilities:

T (Si | A, Sj)

Rewards:

R >> 0, Correct Estimation
R << 0, Wrong Estimation
R < 0, Rotation if Point is visible
R > 0, Rotation if Point is invisible

 \rightarrow Measured Experimentally

POMDP belief update

$$b'(s') = \frac{P(o|s',a) \sum_{s \in S} T(s'|s,a)b(s)}{\sum_{s' \in S} P(o|s',a) \sum_{s \in S} T(s'|s,a)b(s)}$$

POMDP belief update

$$b'(s') = \frac{P(o|s',a)\sum_{s \in S} T(s'|s,a)b(s)}{\sum_{s' \in S} P(o|s',a)\sum_{s \in S} T(s'|s,a)b(s)}$$

POMDP solution policy

 $A(b(s)) \rightarrow Optimal Action$

Block Diagram

Unfolding Process

Results

Training Database

Results

Training Database

x6 x6 x6 x6

Training Database

x6 x6 x6 x6 28,80) Images
--------------------------	----------

Training Database

x6 x6 x6 x6 28,800 l i

Testing Database

Training Database

x6	x6	x6	x6	28,800 Images
Testing D	Database			
x3	x3	x3	x3	not in training

Training Database

х6	x6	x6	x6	28,800 Images
Testing D	Database			
x3	x3	x3	x3	not in training
				1,440 Images

Training Database

x6	x6	x6	x6	28,800 Images
Testing D	Database			
x3	x3	x3	x3	not in training
				1,440 Images

Depth Images Captured with Xtion

negative examples

positive examples

	Experiments	Successful Unfoldings	Successful Recognition	Average rotations	Estimation Errors	Grasping Errors	Average Time
Shirts	30	27	30	0,8	2	4	150 sec.
Trousers	30	30	30	1,1	0	3	136 sec.
Shorts	30	30	30	2,7	0	2	127 sec.
T-Shirts	30	25	30	5	5	6	161 sec.
Total	120	112	120	2,4 (avg.)	7	15	143,5 sec. (avg)
%		93,3%	100%				

	Experiments	Successful Unfoldings	Successful Recognition	Average rotations	Estimation Errors	Grasping Errors	Average Time
Shirts	30	27	30	0,8	2	4	150 sec.
Trousers	30	30	30	1,1	0	3	136 sec.
Shorts	30	30	30	2,7	0	2	127 sec.
T-Shirts	30	25	30	5	5	6	161 sec.
Total	120	112	120	2,4 (avg.)	7	15	143,5 sec. (avg)
%		93,3%	100%				
					J.		

Bringing clothing into desired configurations with limited perception, ICRA 2011 — M. Cusumano-Towner et. al

Bringing clothing into desired configurations with limited perception, ICRA 2011 — M. Cusumano-Towner et. al

grasp lowest point **twice**

grasp lowest point once

Bringing clothing into desired configurations with limited perception, ICRA 2011 — M. Cusumano-Towner et. al

grasp lowest point **twice**

unfolding using table **(slow)**

grasp Iowest point **once**

unfolding in the air **(fast)**

Bringing clothing into desired configurations with limited perception, ICRA 2011 — M. Cusumano-Towner et. al

grasp lowest point **twice**

unfolding using table **(slow)**

baby clothes

grasp lowest point **once**

unfolding in the air **(fast)**

regular-sized clothes

Supplementary Material

Supplementary Material can be found at:

http://clopema.iti.gr/icra_2014/

Thank you!

Imperial College London

clopema.eu

certh.gr

imperial.ac.uk