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A B S T R A C T

Photometric Stereo in murky water is subject to light attenuation and near-field illumination, and the
resulting image formation model is complex. Apart from the scene normals and albedo, the incident illumi-
nation varies per-pixel and it depends on the scene depth and the attenuation coefficient of the medium.
When these are unknown, e.g. in a realistic scenario where a robotic platform explores an underwa-
ter scene (unknown shape and distance) within the dynamic subsea environment (unknown scattering
level), Photometric Stereo becomes ambiguous. Previous approaches have tackled the problem by assum-
ing distant-lighting and resorting to external hardware for estimating the unknown model variables. In
our work, we show that the Photometric Stereo problem can be determined as soon as some additional
constraints regarding the scene albedo and the presence of pixels with local intensity maxima within the
image are incorporated into the optimization framework. Our proposed solution leads to effective Photo-
metric Stereo and yields detailed 3D reconstruction of objects in murky water when the scene distance and
the medium attenuation are unknown. We evaluate our work using both numerical simulations and real
experiments in the controlled environment of a water tank and real port water using a remotely operated
vehicle.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In murky maritime environments such as ports and lakes, the
human activity is significant. Man-made structures need to be mon-
itored by underwater vehicles in order to prevent hazardous situa-
tions [1]. At the same time, scientific fields such as marine biology [2]
and archeology [3] are also benefited from the use of autonomous
visual systems that are able to monitor and evaluate the condition of
important targets underwater.

Scene reconstruction in such environments is a very demand-
ing task. Attenuation and scattering lead to dark and noisy scene
appearance. For this reason, underwater vehicles usually have to
approximate objects at close ranges in order to increase their visibil-
ity. This causes the so-called near-lighting effect, where the incident
illumination on the scene is non-uniform.

Overall, image degradation is strong in murky water and
de-features the captured images and limits the effectiveness of
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disparity-based methods [4,5] that require special post-processing of
the captured images in order to work. Photometric methods on the
other hand, such as Photometric Stereo, are based on modeling the
image formation and the cause of image degradation and optimizing
this for the useful scene orientation and albedo.

However, due to the murky water effects Photometric Stereo
becomes complex and non-linear. Apart from the scene orienta-
tion and albedo, the scene depth and attenuation coefficient of
the medium are also unknown. In order to solve this ambiguous
problem, previous approaches have resorted either to simplified
models (distant-lighting) that are valid only in limited scenarios or
to external equipment for calibrating the additional unknown model
variables. The goal of our work is to tackle the uncalibrated Photomet-
ric Stereo problem in murky water. Contrary to pure air works such
as Papadhimitri and Favaro [6] where the term uncalibrated refers to
unknown direction of light sources, in our case the term uncalibrated
refers to the unknown scene distance and the medium attenuation
for robotic inspection underwater where the position of the sources
is fixed with respect to the camera.

Our revised Photometric Stereo optimization comprises the stan-
dard photometric consistency term between the measured bright-
ness and the predicted brightness according to the image formation
model, and two additional constrains. The first exploits the presence

http://dx.doi.org/10.1016/j.imavis.2016.10.005
0262-8856/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.imavis.2016.10.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/imavis
http://crossmark.crossref.org/dialog/?doi=10.1016/j.imavis.2016.10.005&domain=pdf
mailto: c.tsiotsios@imperial.ac.uk
mailto: a.davison@imperial.ac.uk
mailto: tk.kim@imperial.ac.uk
http://dx.doi.org/10.1016/j.imavis.2016.10.005


C. Tsiotsios et al. / Image and Vision Computing 57 (2017) 44–57 45

of pixels that correspond to Local Diffuse Maxima (LDM) regions in
the image, i.e. pixels with a local intensity maximum due to shad-
ing [7,8]. Specifically, LDM regions correspond to scene points whose
normal vector coincides with the direction of the incident illumina-
tion. For these pixels the measured brightness is maximized. Thus,
we can evaluate whether the estimated orientation for pixels that
correspond to local maxima in the image coincides with the esti-
mated incident illumination. When the estimated normal map is
correct, these two directions should coincide.

Our second constraint exploits the prior information that the val-
ues of the object albedo lie within a limited range. Specifically, due
to its clear physical characteristic, the albedo varies from 0 for totally
dark scene points to 1 for totally white and thus solutions outside
this range should be penalized. At the same time, due to the statis-
tics of natural scenes and man-made objects, it is much more likely
that the albedo of the imaged scene lies somewhere in between
the extreme values of 0 and 1. Thus, we employ a cost function
that penalizes solutions that correspond to unlikely values for the
estimated albedo.

We show that our Photometric Stereo approach can recover the
normals of the scene when the scene distance and the medium atten-
uation are unknown. We compare its effectiveness with the result
obtained using calibrated distant and near lighting. We perform sev-
eral numerical simulations considering different scattering, depth
and noise levels, and real experiments in the environment of a big
water tank using different objects and scattering levels. To the best of
our knowledge, we also present the first uncalibrated result for Pho-
tometric Stereo in real murky port water using a remotely operated
vehicle.

2. Background and challenges

2.1. Light propagation model

The image formation model in murky water was derived ana-
lytically in [9,10], and simpler versions have been used later for
scene reconstruction [11–14]. Specifically, the image formation model
can be expressed using three medium effects: attenuation, back-
scattering,andforward-scattering.Attenuationcausesthelightbeams
to degrade as they travel through the medium. Back-scattering causes
some of the incident illumination on the particles to get scattered
toward the sensor causing contrast loss. Forward-scattering corre-
sponds to the scene-reflected light that gets scattered as it travels
from the scene to the camera and eventually falls onto neighboring
pixel positions on the sensor causing resolution loss.

In this work we solve analytically only for the direct compo-
nent. Backscatter is an additive component that can be estimated

and subtracted using the captured images. Here, we employ the
method of Tsiotsios et al. [14] which is based on the assumption that
backscatter is saturated with distance, and hence it becomes scene-
distance independent. We also assume Lambertian reflectance and
neglect forward-scattering as in the previous works of Narasimhan
et al. [12], Tsiotsios et al. [14], Treibitz and Schechner [11], and
Zhang and Negahdaripour [13]. We discuss the limitations of our
assumptions and potential improvements in Section 7.

2.2. Photometric Stereo in murky water

Due to the complex and non-linear form of Photometric Stereo
in murky water, previous works have resorted either to simplified
models, or to calibration in order to estimate some of the unknown
model variables.

Specifically, in [12,14,15] it was assumed that the incident
illumination on the scene is distant, considering that the source-
scene distance is sufficiently larger than the object size. In that case
illumination on all scene points is assumed to be constant (Fig. 1).
The distant-lighting approximation leads to a simplified model for
the direct component since the light vector for all pixels is constant
(per source) and can be calibrated using a white matte sphere [12,14]
or estimated automatically [8,16].

When the ratio between the distance and the object size is
small, the incident illumination across the surface differs signifi-
cantly. Neglecting this variation by assuming distant-lighting causes
significant errors (Fig. 1). Specifically, for near-lighting, the parts of
the scene that are closer to the light sources receive significantly
stronger illumination (such as the center of the sphere in Fig. 1).
Neglecting this variation reflects error to the estimated normals since
Photometric Stereo erroneously attributes the respective variation in
the measured intensity to variation in orientation only. This causes
low-frequency errors to the estimated shape [17].

The effect of near-lighting is stronger in murky water than in pure
air. Apart from attenuation due to inverse-square law, light suffers
further attenuation due to the interaction with the particles. Thus,
the incident illumination on the scene exhibits an additional depen-
dence on the attenuation coefficient of the medium. Fig. 2 shows
the average reconstruction error using a synthetical sphere in sim-
ulations when distant-lighting is considered. In pure air, this error
depends only on the ratio between the object size and the source-
scene depth. In murky water it also depends on the level of water
attenuation.

When no model simplifications are used, the incident illumina-
tion has to be defined per-pixel and hence it depends on the attenu-
ation coefficient and the 3D position of the scene point that are both
unknown in a typical underwater situation. Previous approaches

Fig. 1. When the ratio between the distance and the object size is large, distant-lighting approximation is used which assumes that the illumination on the object surface is
constant. When the ratio is small, neglecting the near-lighting effect causes notable low-frequency reconstruction error.
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have shown that if the average camera-scene distance and the atten-
uation coefficient are known a priori, the near-light Photometric
Stereo can be optimized effectively. Specifically, in [18] additional
equipment was used to estimate the total attenuation coefficient and
the camera-scene distance. Then, an iterative scheme was used to
solve the near-light equations for the unknown normal map, also
used in [19].

Our reformulated Photometric Stereo cost function includes a
term that exploits the pixels with local intensity maxima. This idea
was previously used for pure air Photometric Stereo in [8], for resolv-
ing the bas-relief ambiguity when distant-lighting is considered.
In [7] it was used in near-lighting conditions in pure air for refin-
ing the estimate of the normal map. However, the camera-scene
distance was known or calibrated there while we tackle the uncal-
ibrated problem in murky water where both the distance and the
attenuation coefficient are unknown.

Our second cost term is based on a likely value range of the
scene albedo. In [20] it was assumed that the albedo values of natu-
ral scenes follow a normal distribution and this was used for image
restoration. In [21] the efficiency of the normal distribution was com-
pared with a uniform and a learnt distribution using real images. It
was shown that the normal distribution performs equally with the
learnt distribution and it leads to optimization that is less dependent
on the initial values. In our work we also employ a simple normal
distribution for our photometric reconstruction both in simulations
and real experiments. Other distributions such as log-normal [22]
which were shown to approximate effectively the statistics of natural
images can be also evaluated. Ideally, the albedo distribution would
be learnt from real ground-truth data of typical scenes and objects of
real underwater environments. Such prior information which is hard
to obtain in murky water, was used in [23] for shape-from-shading
in pure air.

3. Image formation model

3.1. Light attenuation

When a light beam with irradiance E0 travels a distance d in a
scattering medium it gets attenuated [9] by:

Ed = E0 e−cd. (1)

Fig. 2. Reconstruction error due to distant-lighting assumption for different ratios
between the object size and the scene distance. The error also depends on the
scattering level.

When the light beam is not collimated, inverse-square light fall-
off causes attenuation as well. In this case the attenuated light
component at a distance d away from a point-source is:

Ed =
E0

d2
. (2)

3.2. Direct component

The direct component corresponds to the light that travels from
the source to the scene, that then gets reflected and reaches the
sensor (Fig. 3). The light beam that is emitted from the source is
degraded both due to the medium attenuation (Eq. (1)) and due to
inverse-square law (Eq. (2)). Thus, the light that reaches the scene is

Escene =
Ik

|PSk|2
e−c|PSk|, (3)

where Ik is the radiant intensity of the light source, c is the total
attenuation coefficient of the medium, and |PSk| is the distance (vec-
tor magnitude) between the light source at position Sk and the scene
point at position P. Then, part of this light is reflected from the sur-
face patch. Given that the incident light direction from the source is
denoted by the unit vector ˆlPSk

, and the orientation of the surface
patch is denoted by the unit normal vector n̂, the reflected amount
of light is given by: Ereflected = Escene 3 ˆlPSk

• n̂. Here, ˆlPSk
denotes the

direction of the incident illumination and thus it equals the unit vec-
tor

¯PSk
|PSk | . The albedo 3 and the unit vector n̂ are usually combined into

a single vector n ≡ 3n̂, and the reflected light can be rewritten as
Ereflected = Escene

ˆlPSk
• n.

Then, the scene-reflected light is attenuated along the distance
|OP| as it travels from the scene point to the sensor: Ereflectede−c |OP|.
The final light component on the pixel is

Ek =
Ik

|PSk|2
e−c(|PSk |+|OP|) ˆlPSk

• n. (4)

The sensor typically measures an additional backscatter compo-
nent Bk (details in Sections 2 and 7), which can though be estimated
directly from the images and subtracted.

4. Calibrated near-light Photometric Stereo

Photometric Stereo aims at estimating the normals and albedo for
every pixel given the measured direct component from every source.
Let us examine the unknown variables.

Fig. 3. The direct light component depends not only on the scene orientation and
albedo, but also on the scene depth and the attenuation coefficient since light is
degraded as it travels through the medium.
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The coordinates of the scene point can be expressed with respect
to the pixel coordinates as P = (X, Y , Z) =

(
uZ
f , vZ

f , Z
)

. Here f is the
focal length of the camera which is considered known a priori and
(u, v) are the pixel coordinates on the sensor (Fig. 3). The coordinates
of every light source Sk = (Xk, Yk, Zk) are also known since the sources
are normally fixed with respect to the camera on a robotic platform
underwater. Then, all of the unknown vectors in Eq. (4) are a function
of the scene depth Z only:

|PSk| =

√(
Xk − uZ

f

)2

+
(

Yk − vZ
f

)2

+ (Zk − Z)2, (5)

|OP| =

√(
uZ
f

)2

+
(

vZ
f

)2

+ Z2, (6)

ˆlPSk
=

(
Xk − uZ

f , Yk − vZ
f , Zk − Z

)
√(

Xk − uZ
f

)2
+

(
Yk − vZ

f

)2
+ (Zk − Z)2

. (7)

Overall, Eq. (4) depends on the scene depth Z and the normal vec-
tor n (per-pixel unknowns), and the total attenuation coefficient c
of the medium (global unknown). First, we describe how the nor-
mal map can be estimated when the total attenuation coefficient is
calibrated and the mean camera-scene distance is known a priori.

4.1. Attenuation coefficient

We estimated the total attenuation coefficient c of the medium
using a simple calibration step without the use of external hardware
as in [18]. A flat white matte canvas was inserted into the murky
water at a known depth away from the camera and perpendicular to
its optical axis. First, the backscatter component was estimated and
subtracted using the method proposed in [14].

The unit normal vector of all scene points on the canvas equals
n̂ = (0, 0, −1) as it coincides with the optical axis of the camera sen-
sor, and the albedo of the white points can be assumed to be roughly
3 � 1. Since the canvas is at known depth, the values of |PSk|, |OP|,
and ˆlPSk

in Eq. (4) are also known. Then the only unknown is the total
attenuation coefficient which can be estimated by minimizing the
cost function:

c′ = arg min
c

noP∑(
Ek − Ik

|PSk|2
e−c(|PSk |+|OP|) ˆlPSk

• n
)2

. (8)

Here noP denotes the number of pixels. Only one source is enough
for solving Eq. (8) in the least-square sense.

4.2. Scene distance

As soon as the total attenuation coefficient c of the medium is
estimated, the problem comes to the estimation of the per-pixel nor-
mal vector and depth. In previous PS approaches in pure air [6,7], it
was shown that these can be estimated via an iterative optimization
scheme as soon as the average scene depth Zc (the average distance
between the camera and the object surface) is known.

It is initially assumed that all points correspond to the same depth
Zc (distant-lighting approximation). In this case all scene points
receive constant-known illumination (Eq. (7)) and a first version of
the object’s surface normals is estimated. Then, the estimated nor-
mal vectors are integrated in order to recover the height map of the
object. Using this and the known average scene distance Zc, the per-
pixel depth and lighting vector can be estimated and Photometric
Stereo yields an improved version of the normal vectors as the vary-
ing depth of the scene points is taken into account. Then the lighting
vectors are estimated again based on the new recovered shape. This

procedure is iterated until the algorithm converges to the final object
shape, i.e. when the difference between the estimated normal maps
for two successive iterations is below a given value. Algorithm 1
overviews this method.

Algorithm 1. Iterative near-light Photometric Stereo.

Fig. 4 shows the estimated sphere shape using the described iter-
ative near-light scheme. The initial estimate is obtained using the
distant-lighting assumption which neglects the depth variation of
the surface, and it suffers from low-frequency errors (Section 2.2).
This is then used for estimating the per-pixel depth and incident illu-
mination which yield a new-improved estimate of the object shape.
The procedure converges after a few iterations (Fig. 4.b).

5. Uncalibrated solution

In the previous section it was shown that the normal map of the
scene can be estimated when the values of the total attenuation coef-
ficient c and the scene distance Zc are known a priori. In this section
we tackle the uncalibrated near-light problem.

5.1. Photometric consistency

Consider the Photometric Stereo system of equations. The mea-
sured intensities are obtained using different light sources. Then,
given the image formation model, the normal vector is estimated by
minimizing the difference between the measured and the modeled
brightness values for every pixel. This is usually described as pho-
tometric consistency, since the objective function dictates that the
estimated normal predicts a brightness according to the image for-
mation model that is consistent with the measured brightness for
every source:

gphot(n) =
noS∑
k=1

(
Ek − E′

k(n)
)2, (9)

where E′
k(n) is the brightness that is predicted by the image forma-

tion model and Ek is the measured brightness from a light source k.
In the calibrated scenario the only unknown is the normal map n in
every iteration and hence the final linear system of equations can
be solved using 3 sources. As soon as at least 4 sources are used the
problem is over-determined (as the normal has only 3 unknowns)
and the cost value corresponds to the residual of the least-squares
solution.
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Fig. 4. (a) The reconstructed shape of a sphere using simulations and Algorithm 1. Initially the shape suffers from error due to the distant-lighting assumption. Then the result is
gradually refined by updating the depth value per pixel. (b) The algorithm converges within a few iterations.

In the uncalibrated case, Zc and c are also unknown apart from
the normal map n. Thus, the reformulated objective function of the
photometric consistency is given as:

gphot(n, Zc, c) =
noS∑
k=1

(
Ek − E′

k(n, Zc, c)
)2

. (10)

Every potential combination of Zc and c in Eq. (10) leads to the
respective calibrated case. Thus, the photometric cost value for every
(Zc, c) corresponds to the residual of the least-squares solution as
described above.

Fig. 5 shows the estimated values of the photometric cost function
for different Zc and c. Specifically, we simulated the image formation
model for a sphere object using 8 light sources and some Gaussian
sensor noise. This example corresponds to scene depth Zc = 0.8 m
and c = 1 m−1 (indicated by the black dot). As these are the true val-
ues, we expect the photometric objective function to be minimized
at that point. The problem though is ambiguous as there are several
potential solutions that correspond to a very small cost.

We performed several numerical experiments for different dis-
tance, scattering, and object characteristics. The photometric objec-
tive function was ambiguous in all cases regardless of the number of
sources. Next, we describe how the problem can be determined using
additional constraints.

5.2. LDM prior

We take advantage of surface patches whose normal vector coin-
cides with the lighting direction in order to determine uncalibrated

Fig. 5. The cost of the photometric objective function for different values of the scene
distance Zc and the attenuation coefficient c. The true values that were used in the
simulations correspond to the dark dot in the graph. The problem is ambiguous as
there are different combinations of the unknown variables that predict brightness
close to the measured one.

near-light PS in murky water. As described in [7,8,24], for continuous
diffuse surfaces with a constant albedo, such patches create a local
maximum in the measured intensity. Specifically, for these pixels the
dot product between the incident illumination and the normal vector
(l̂ • n̂) is 1 as their directions coincide (Eq. (4)), and the scene-reflected
light is maximized (Fig. 6). In order to emphasize that the inten-
sity maximum for such regions is attributed to orientation-lighting
direction coincidence only and not to a complex reflectance, they are
described as Local Diffuse Maxima (LDM).

In order to examine whether pixels with a local intensity maxi-
mum correspond always to LDM regions we need to investigate the
image formation model (Eq. (4)). The measured brightness at every
pixel is a function of the normal vector which comprises the albedo 3

and the direction of the unit normal vector n̂, the scene depth Z, and
the attenuation coefficient c. c is constant for all pixels in the image
since we are dealing with the uniform murky water medium. Thus, a
local maximum in the measured brightness within the image space
can be attributed only to change in 3, n̂ and Z.

Iwahori et al. [24] assumed that the object has a constant albedo
3 and thus an LDM can be attributed only to variation in surface
normal n̂ and depth Z. Specifically they examined whether a local
intensity maximum can be created because the distance between the
source and a scene point is minimum but its orientation doesn’t coin-
cide with the lighting direction. However they proved that this is
not possible within a local neighborhood of a smooth surface, since
the minimum distance between the light source and the surface is
always at a point that is perpendicular to the surface.

Favaro and Papadhimitri [8] showed that LDM pixels can be effec-
tively detected even when the object has a varying albedo. This was
achieved by simply discarding pixels that had a locally maximum
intensity in more than one images. As the illumination direction
changes from one image to the other in Photometric Stereo, a pixel

Fig. 6. The measured intensity for scene points whose orientation coincides with the
direction of the incident illumination is locally maximum (Local Diffuse Maxima) as
the dot product between l̂ and n̂ is 1.
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Fig. 7. Different Photometric Stereo solutions that have a low photometric cost are shown in the first row. For the true solution (black), the pixel with a local intensity maximum
in one of the captured images corresponds to a normal vector estimate that coincides with the lighting direction. For the erroneous solutions (green, red), the directions of these
vectors differ. The cost function which measures the level of agreement between the normal and lighting directions for LDM pixels is shown below. Erroneous solutions with a
low photometric cost (green, red) are now penalized.

should not have a maximum intensity in more than one images when
it corresponds to an LDM region as its normal vector can be oriented
toward only one of the light sources. Otherwise, the maximum is
attributed to change in albedo and it can be discarded as outlier.

Consider the uncalibrated near-light Photometric Stereo problem
in murky water. Fig. 7 shows potential estimates that have a small
photometric cost value (described in the previous section). The cost
value of every solution is marked by a different color. For the true
solution (black), the LDM pixel corresponds to a normal vector
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Fig. 8. Our employed cost function for the estimated albedo corresponds to the neg-
ative log of a normal distribution. The cost is increased rapidly beyond estimated
albedos > 1 that have no physical meaning.

estimate that coincides with the incident illumination direction, as
described above. For other erroneous solutions (green, red), these
vectors differ. Thus, we formulate the following objective function

Fig. 9. The cost function for the estimated albedo. The true values of Zc , c are denoted
by the black color. Other erroneous solutions for Zc , c with a small photometric cost
(Fig. 5) correspond to very dark (denoted by green) or unnaturally high — greater than
1 (denoted by red) albedos and are penalized. In this way, the uncalibrated near-light
Photometric Stereo problem is constrained using a prior distribution for the absolute
value of the albedo.
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Fig. 10. The final cost function for uncalibrated near-light Photometric Stereo in
murky water (Eq. (14)).

which measures the level of agreement between the estimated
normal vector and the lighting direction for detected LDM pixels:

gLDM(n, Zc, c) =
noS∑
k=1

noLDM∑
r=1

acos(n̂r • l̂r). (11)

Here noLDM is the number of detected LDM pixels in every
image, and n̂r , l̂r are the unit vectors of the normal and the incident
illumination for the LDM pixel.

In this way, shape estimates for which the two directions do not
coincide at the detected LDM pixels are penalized. Fig. 7 shows the
estimated LDM cost function for the same example. The true solu-
tion has a very low cost while erroneous solutions that had a low
photometric cost are now penalized.

5.3. Albedo prior

The physical characteristic of the albedo offers an additional con-
straint. Specifically, the albedo lies between 0 for totally dark objects,
to 1 for totally white. Thus, any solution for Zc, c and n that corre-
sponds to 3 = |n|> 1 should be penalized. At the same time, the
albedo of natural scenes [21] or man-made objects [23] exhibits sta-
tistical regularities. For example, it is very unlikely that an object is
totally black (in which case Photometric Stereo is not possible any-
way) or totally white. For this reason, we add another cost term
to our optimization that penalizes estimated albedos according to a
previously determined distribution.

Fig. 11. Images of different albedo maps used for the simulations.

As in [20,21] we assume that the albedo follows a normal distri-
bution:

fN(3|l,s) =
1

s
√

2p
e
− (3−l)2

2s2 , (12)

where l is the mean and s the standard deviation of the distribution.
Maximizing the likelihood that the estimated albedo follows this dis-
tribution is equivalent to minimizing the sum of the cost expressed
as the negative log of Eq. (12):

galb =
1

noP

noP∑
− log fN(3|l,s). (13)

Fig. 8 shows our employed cost function for the absolute value of
the estimated albedo. We used l = 0.5 and s = 0.2 in both the
simulations and real experiments in this work. As Fig. 8 shows, the
cost is small and varies little within the range of 3 ∈ [0, 1], and then
it is increased rapidly penalizing solutions that correspond to unnat-
ural albedos. Assuming that there are ground-truth measurements
about the true albedo statistics within the underwater environment,
the prior distribution can be learnt as in [23].

Fig. 9 shows the estimated albedo cost function for the simu-
lated example of the previous sections. The true solution (black) is
assigned a small cost as it corresponds to estimated albedos that
are likely to appear according to the global distribution. Under-
estimated values of Zc, c (green) correspond to under-estimated, very
dark albedos, and over-estimated values of Zc, c (red) correspond to
over-estimated albedos that are even greater than 1. Thus, erroneous
estimates of Zc, c are penalized according to the cost function of
Eq. (13).

5.4. Cost function

The final cost function consists of all terms; the standard photo-
metric cost function (Eq. (10)), the cost function that penalizes the
level of disagreement between the estimated orientation and inci-
dent illumination for LDM pixels (Eq. (11)), and the cost function that
penalizes estimated albedos that lie outside a likely range of values
(Eq. (13)):

g = gphot + k1 gLDM + k2 galb. (14)

Using only the standard photometric consistency term (Fig. 5) is
ambiguous, while employing the proposed cost function determines
the problem estimating a unique maximum near the true solution
(Fig. 10).

6. Results

We have performed a large number of experiments using simu-
lations and real murky water, comparing the result of our method
(uncalibrated near-lighting) with calibrated distant and near light-
ing. The values of k1 and k2 in Eq. (14) were selected so that the
minimum and maximum values of all three cost terms lie within the
same order of magnitude (k1 = 2.5 × 10−3,k2 = 2 × 10−2). The cost
function was optimized using the MATLAB function fmincon which
uses the interior-point method described in [25].

The LDM prior is based on pixels with local intensity maxima that
are attributed to coincidence of the lighting direction and the normal
vector. In order to reject outliers we employ the method of Favaro
and Papadhimitri [8]. Specifically, maxima that are present in more
than one images are rejected as they are attributed to changes in
albedo (Section 5.2), the images are filtered with a low-pass filter in
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Fig. 12. Numerical simulations for different scattering, depth, albedo, and noise characteristics. Our proposed uncalibrated near-light Photometric Stereo method outperforms
the distant-lighting solution and yields effective reconstruction, similar to the one obtained with the calibrated method in all considered scenarios.

order to take account of additive Gaussian noise before detecting the
maxima, and maxima with a small or saturated intensity are rejected.

6.1. Simulations

In our numerical simulations we considered different scatter-
ing, distance and noise characteristics. Specifically, we simulated the
image formation model in murky water considering that the object
is a sphere with a big diameter (0.4 m) so that the near-light effect
is strong. Three different scattering levels were tested (c = 0.8, 1.3,
and 2 m−1 were used for low, medium, and strong scattering levels,
respectively [26]) and in every level the sphere was imaged from a
wide range of distances (from 0.5 to 1.2 m) and for different levels
of sensor noise (additive Gaussian noise with s = 0, 0.01, 0.025 was
used for the no, low, and strong noise levels, respectively). In every
case, it was assumed that the sphere has blocks with constant albedo.
Both the blocks and the albedo value in every block were randomly
selected considering uniform distributions. Specifically, the number

of blocks varied between 1–100 and the albedo value of each block
varied between 0.1–1(uniformly distributed). Fig. 11 shows different
random instances of the simulated albedo. Our albedo cost func-
tion considers a normal prior distribution, and hence in this way
we tested how well it performs when the real albedo distribution is
different.

Fig. 12 shows the simulation results. The calibrated and uncal-
ibrated near-lighting methods outperform distant-lighting. This is
expected as we considered a big object with respect to the camera-
scene distance, and thus the illumination was near-field. At the same
time, our proposed method yielded similar reconstruction results
with the calibrated method in all scenarios. The normal distribution
proved effective even though the simulated true albedo was selected
from a different distribution (uniform). The performance of both the
calibrated and uncalibrated methods was slightly degraded for larger
camera-scene distances. This can be explained by the fact that we
considered a fixed sensor resolution regardless of the depth, i.e. for
larger distances the sphere was imaged by a smaller amount of pix-
els. This increased the impact of noise to the reconstruction since
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Fig. 13. Red, yellow and black dashed lines correspond to the result of our uncali-
brated algorithm when the object has a true albedo of 3 = 0.5 (gray), 1 (totally white),
and 0.2 (very dark), respectively. Although our normal distribution albedo prior
corresponds to l = 0.5, the result is similar in all cases.

some algorithmic parts such as the normal integration that yields the
height map are benefited from high resolution.

In order to examine the impact of the assumed normal distribu-
tion for the albedo prior, we performed an additional experiment
(Fig. 13), where the object had a single albedo equal to: 0.5 (dashed
red), 1 (dashed yellow) or 0.2 (dashed black). Despite the fact that
our normal distribution has a mean value of l = 0.5, the result
when the true albedo of the object was exactly 0.5 (dashed red)
was similar to the other cases (different due to small noise vari-
ation). This is reasonable, as the photometric consistency and the
LDM prior are also used for optimization and furthermore the cost
of the albedo prior only varies slightly for physically valid albedo
values between [0, 1] and penalizes mostly unnatural albedos > 1
(Fig. 8).

6.2. Water tank experiments

For the real experiments we used a controlled environment that
can be seen in Fig. 14. This consists of a big water tank and a metal
platform for mounting the light sources and the camera. The light
sources were light-emitting diodes (LED) with a narrow beam angle
to reduce backscatter [14,27]. A Nikon D60 camera with a AF-S
Nikkor 35mmf/1.8G lens was immersed into the water, enclosed in
an underwater housing. In order to simulate the scattering condi-
tions, clean tap water was diluted with different amounts of milk as
in [4,12,14]. The distance between the platform and the centroid of
the objects was manually adjusted to 0.7 m. We selected objects with
different albedos (for example the shell has a non-uniform albedo
and is significantly brighter than the container object), but we used
the same albedo distribution in all cases (Section 5.3). The object
parts were manually cropped in the captured images. In all exper-
iments the optimization algorithm converged to a solution within
approximately 1 min for 800×600 pixels images, using an Intel Core
i5-2410M CPU @ 2.3 GHz and a MATLAB implementation using the
interior-point based fmincon function. In order to reduce the impact
of shadows and highlights, we rejected pixels with intensity < 0.03
and > 0.95.

Figs. 15–17 show the reconstruction results for all objects in
different scattering levels. Our proposed uncalibrated near-lighting

solution can be compared with the reconstruction result using a
depth sensor in pure air [28], and the Photometric Stereo output
considering calibrated distant and near-lighting. In all cases the
backscatter component was estimated and subtracted first using the
method of Tsiotsios et al. [14], by imaging a black canvas at the object
distance.

In all experiments it can be noticed that due to the small ratio
of the scene depth with respect to the object size, employing the
distant-lighting assumption introduces strong error to the recon-
struction. This is stronger for the low-frequencies of the estimated
shape and it is evident when compared with the reconstruction
using a depth sensor in pure air. Our uncalibrated approach takes
account of the near-field illumination and estimates a detailed recon-
struction similar to that obtained using the calibrated method. The
low-frequency error that is evident in distant-lighting is mitigated,
but the high-frequency details are rich. In Figs. 15 and 16 we can
see the error-difference maps between: a) the calibrated near and
distant lighting, and b) the calibrated near and our proposed uncal-
ibrated near lighting approach. The difference map corresponds to
the per-pixel difference in normal orientation degrees. The calibrated
distant-lighting differs significantly with the calibrated near-lighting
reconstruction, while our proposed algorithm differs only by a few
degrees across the map.

Tables 1 and 2 compare the calibrated and estimated values for
Zc and c using our uncalibrated algorithm. Although the calibrated
values are not strictly ground-truth data and they are also subject
to approximation errors, comparing them with our estimated values
indicates the ability of our algorithm to yield similar solutions with
the calibrated case without any prior knowledge about the imaging
characteristics. The difference of our average estimated scene dis-
tance for all cases/objects differs by 0.025 m from the real distance,
while the max difference (shell object, high scattering) was 0.099
m. The respective average difference for the estimated attenuation
coefficient for low scattering is 0.11 m−1 and the max difference is
0.382 m−1, while the average and max differences for high scattering
are 0.2319 m−1 and 0.546 m−1. Fig. 18 shows the respective differ-
ence maps for the case when the estimated c value differed most
from the calibrated value (corresponding to the container experi-
ment for high scattering). Our algorithm yields a result very similar
to the near-calibrated case.

6.3. Port water experiment

A Photometric Stereo system was installed in a remotely operated
vehicle and a barrel object was imaged in real port waters in Porto,
Portugal. Fig. 19 shows the platform operating in murky water. The
camera (Lumenera Le-165 with a Tamron 219-HB lens) was enclosed
in a waterproof housing with a flat port and four LED sources were
mounted around it in a symmetric arrangement. The camera and
the lights were synchronized so that every frame was taken hav-
ing only one of the LED sources on. A fifth frame with all sources
off was captured and subtracted from the rest of the frames, as this
corresponds to the additive environment light [2]. The backscat-
ter was approximated using the method of Tsiotsios et al. [14,29]
assuming that backscatter is saturated. The ROV was driven to sit
on the ground in order to avoid any image misalignments between
successive frames.

Fig. 20 shows one of the four captured images of the barrel
object. The water condition was very murky and the resulting image
degradation was strong. The near-lighting effect is also evident,
since the size of the barrel is big and it was imaged from a small
distance. This is also reflected in the reconstructed shape when
distant-lighting was employed, which exhibits a low-frequency peak
in the middle part (Section 2). This effect is significantly mitigated
using our proposed near-lighting algorithm without prior knowledge
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(a) Experimental Setup (b) Clean Water

(c) Container (d) Can (e) Shell

Fig. 14. First row: the experimental setup consisting of a camera and four LED sources in a big water tank. Second row: the objects that were used for the experiments.

about the distance or the scattering level. Although we noticed no
strong specularities (Fig. 20), since the barrel corresponds to com-
plex reflectance some shape artifacts are still evident possibly due

to weak highlights. In Section 7 we discuss the limitations of our
method and potential extensions. The estimated values for Zc and c
were equal to 1.06 m and 2.63 m−1 for this experiment.

Fig. 15. Top left: one of the four captured images using our Photometric Stereo system in murky water. Top right: the reconstructed surface in pure air using a depth sensor [28].
Middle row: the reconstructed and relit surfaces using distant-lighting, calibrated near-lighting, and uncalibrated near-lighting, respectively. Bottom row: the estimated albedo
using the respective methods. Far right column: the difference map in normal map degrees between near-calibrated and distant-calibrated, and near-calibrated and our proposed
uncalibrated result, respectively.
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Fig. 16. Reconstruction results for the water can object.

7. Limitations and future work

Backscatter was estimated using the method described in [14]
which is based on the assumption that backscatter is saturated and
becomes scene-depth independent. The validity of this method has
been numerically evaluated for a wide range of imaging conditions
and scene depths in [29]. In unknown conditions where the validity
of this assumption is not guaranteed a-priori, the method of Tsiotsios
et al. [30] can be used to adopt the most valid backscatter approx-
imation method. Otherwise, backscatter can be compensated using
polarizers on the sources and the camera [11], eliminated directly
for objects that fluoresce [31], or degraded using a large separation
between the camera and the sources [27,32]. Our work is com-
plementary with such approaches since backscatter is an additive
component to the sensor.

Forward-Scattering effects have been neglected in our work
as previous photometric studies indicated that the effect of the
resulting resolution loss is small compared with contrast loss from
backscatter and attenuation [13,33-35]. However the recent work of
Murez et al. [31] showed that in strong scattering conditions, com-
pensating for forward-scattering decreases significantly the recon-
struction error. Including the forward-scattering compensation into
our model is an interesting future direction, especially in conditions
of very murky port water.

Reflectance was assumed to be Lambertian in our work. This
limits the effectiveness of our approach, however future work can
evaluate how methods for tackling non-Lambertian objects that have
been proposed for pure-air can be adapted to our work. To the
best of our knowledge, there has been no effort to model complex
reflectance for underwater photometry. Some studies have indicated
that specularities have a low effect underwater since the refrac-
tive index of the medium is similar to that of the reflecting wet
surfaces [34,36]. Otherwise, algorithmic approaches like Barsky and
Petrou [37] can be used to detect pixels that correspond to shadows
or highlights and omit them from the optimization framework. In our
work, we used a naive outlier rejection method, where very bright
or dark pixels were neglected. Other approaches like Wu et al. [38]

do not detect particular pixels, but perform a global matrix factor-
ization to reject outliers. Systematic approaches can also be used to
reduce or detect specularities, i.e. using polarizers on the source and
camera [33,39], or using a system with moveable light sources that
can evaluate the effectiveness of the photometric model in unknown
conditions [30].

Color has not been considered in our work, in the sense that
we worked on a single color channel. This makes our work valid
for multispectral cameras [35]. Since the attenuation coefficient c
is wavelength-dependent, in the case of RGB imaging a different
parameter value should be estimated for each channel.

Light arrangement in our work has been symmetric around the
camera as in [12,14]. However, adopting different setups does not
limit the assumptions and validity of our formulation and future
work can investigate the optimal light configuration for Photometric
Stereo in murky water.

8. Conclusions

When the object size is large compared with the camera-scene
distance, the illumination on the scene is near-field. Specifically,
the incident illumination on the imaged surface differs significantly
according to the 3D position of every scene point with respect
to the light source. This effect is stronger in murky water since
the attenuation coefficient of the medium introduces an additional
scene-dependent factor for the incident illumination. Neglecting this
characteristic (when distant-lighting model is employed) results
in erroneous shape estimation. On the other hand, optimizing the
near-lighting model for all of its unknown variables is hard. In
this work, we showed that additional constraints can be intro-
duced that take advantage of pixels with local intensity maxima
or prior information about the scene albedo. This leads to effective
Photometric Stereo reconstruction even when the camera-scene
distance and the total attenuation coefficient of the medium are
unknown.
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Fig. 17. Reconstruction results for different objects and scattering levels.
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Fig. 18. The difference in normal map degrees between near-calibrated and distant-
calibrated (left), and near-calibrated and our proposed uncalibrated algorithm
(right).
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