
Backscatter Compensated Photometric Stereo with 3 Sources

Chourmouzios Tsiotsios Maria E. Angelopoulou Tae-Kyun Kim Andrew J. Davison
Imperial College London, UK

{c.tsiotsios, m.angelopoulou, tk.kim, a.davison}@imperial.ac.uk

Abstract

Photometric stereo offers the possibility of object shape
reconstruction via reasoning about the amount of light re-
flected from oriented surfaces. However, in murky media
such as sea water, the illuminating light interacts with the
medium and some of it is backscattered towards the camera.
Due to this additive light component, the standard Photo-
metric Stereo equations lead to poor quality shape estima-
tion. Previous authors have attempted to reformulate the
approach but have either neglected backscatter entirely or
disregarded its non-uniformity on the sensor when camera
and lights are close to each other.

We show that by compensating effectively for the
backscatter component, a linear formulation of Photomet-
ric Stereo is allowed which recovers an accurate normal
map using only 3 lights. Our backscatter compensation
method for point-sources can be used for estimating the un-
even backscatter directly from single images without any
prior knowledge about the characteristics of the medium
or the scene. We compare our method with previous ap-
proaches through extensive experimental results, where a
variety of objects are imaged in a big water tank whose tur-
bidity is systematically increased, and show reconstruction
quality which degrades little relative to clean water results
even with a very significant scattering level.

1. Scattering and Shape
Applying Photometric Stereo (PS) in murky media has

had limited success so far, since the measured light carries

information not only about the scene orientation but also

about the medium itself. Specifically, light gets attenuated

and scattered by the medium’s particles, adding a strong

unwanted signal to the measured brightness, the so-called

backscatter component. Figure 1 illustrates the severity of

this effect on image quality, dictating special treatment if

any effective photometric task is to be considered.

In this paper we formulate PS within a scattering en-

vironment by estimating and taking account of the strong

uneven backscatter created from point sources close to the

Figure 1: One of the three captured murky-water images,

the restored image, and our final reconstruction result.

camera. We describe that the camera-lights baseline, which

is irrelevant in pure air, is crucial in scattering media. Thus

we relax the assumption of [12] that all lights are far away

from the camera and investigate how this affects the varying

backscatter from every source. As we describe, the addi-

tional ambiguity that is introduced by the backscatter makes

a direct solution of the PS equations ineffective and hence

we propose both a calibrated and an automatic way for es-

timating the unknown backscatter directly from the mea-

sured images. This gives further potential for single-image

restoration in turbid media under directional lighting.

As we show, the backscatter compensation yields a linear

PS solution that estimates the scene normals and a scaled

version of the albedo. In our practical approach, only 3

sources are required as for PS in pure air, in a symmetric ar-

rangement around the camera. We demonstrate our results

through extensive experiments in a big water tank where the

camera and light sources are both immersed into the turbid

medium and separated by a small distance. We evaluate

the performance of our method over a wide range of con-

trolled scattering levels by adding milk of gradually increas-

ing quantity and show that our method outperforms related

approaches, compensating effectively for the backscatter ef-

fect and yielding shape recovery results similar to those in

clean water even for high levels of water turbidity.

Related Work: A large amount of work has focused

on modelling image formation within scattering environ-

ments with diffuse illumination in haze and fog [6, 11, 16],

or sub-sea [3, 14]. There the lighting term is constant and

equally illuminates all the particles of the medium between
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the camera and the scene. As the depth of the imaged scene

increases, the volume of illuminated particles increases as

well. This implies that under diffuse illumination backscat-

ter is directly associated with scene depth, and this can be

used for estimating a rough depth map of the scene.

However, in Shape from Shading methods illumination

is provided by artificial directional sources. This is also the

case for deep sea underwater vehicles which carry a camera

and light sources at a small offset [8, 13, 17]. Here, due

to the limited beam angle of the sources, only some of the

medium’s particles are illuminated depending to their posi-

tion from the source [5, 18]. Moreover, backscatter is satu-

rated after a small depth from the source [17], after which

it cannot serve the purpose of a depth prior as in diffuse

lighting. These characteristics require careful backscatter

modelling and compensation when directional sources are

employed, as it happens with Photometric Stereo.

Instead of compensating for the backscatter effect, some

previous approaches have aimed to minimize its impact by

changing the hardware setup [8], using active methods [2, 5]

or fusing multiple images [18]. Nevertheless, in typical

imaging conditions where a camera and a conventional light

are carried by the same body at a small offset, backscatter

was still shown to be the main effect degrading image qual-

ity [10, 17]. In [17], it was measured using special polariz-

ing hardware, while in [9, 10] it was estimated directly from

a low-pass filtered version of the captured image.

As we show in this paper, the effect of backscatter on

photometric-based shape recovery is highly significant. Re-

lated works [13, 19] neglected backscatter under the as-

sumption that the water murkiness level is low or a spe-

cial setup has been employed for its minimization. In [1],

the decreasing effectiveness of PS due to the presence of

an additive light component was also described, yet no fur-

ther effort was made to model or remove its effect. PS in

a scattering medium was studied in [12], suggesting that a

non-linear system of at least 5 equations should be solved.

The problem can be reduced to a 4-source linear solution

if the scattering is isotropic and the sources are symmet-

ric. Although effective shape reconstruction was achieved,

the sources in the setup of [12] were outside water and dis-

tant from the camera. By adopting this type of setup, the

backscatter saturation that occurs as depth increases and its

non-uniformity on the image sensor were neglected.

2. Light Propagation Model

When illumination comes from an artificial source, due

to Inverse Square Law (ISL) its intensity Ik is inversely pro-

portional to the distance d travelled. In turbid media, light

is further attenuated exponentially with distance:

Id =
Ik
d2

e−cd , (1)
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Figure 2: Geometry of light propagation. The measured

brightness is the sum of the scene originated direct compo-

nent D, and the additive backscatter component B.

where c is the total attenuation coefficient of the medium

which describes the light loss per unit distance [8], mod-

elled as c = a + b. a and b denote the medium’s absorp-

tion and scattering coefficients. b reflects the superposi-

tion of all scattering incidents around a unit volume par-

ticle and can be calculated by integrating the angular scat-

tering function of the medium β(θ) over all the directions

around the particle: b = 2π
∫ π

0
β(θ) sin(θ)dθ. We em-

ploy the low-order representation of [12] defining β(θ) as

β(θ) = b
4π (1 + g cos θ), where g ∈ (−1, 1).

Consider a camera and an artificial point-light source

both located on the same plane in a scattering medium and

separated by a small distance h as in Figure 2. We define a

coordinate system whose xy plane coincides with the cam-

era’s image sensor, and z-axis coincides with the camera’s

optical axis. As in related works [12, 13, 17], we assume

that the size of the imaged object is small with respect to

its distance (depth) zO from the camera, such that we can

use an orthographic camera model. The total irradiance due

to light source k that is measured by a pixel with coordi-

nates (x, y) on the image sensor is the sum of the direct and

backscatter components, denoted as Dk(x, y) and Bk(x, y),
respectively 1. For simplicity we omit the pixel (x, y) coor-

dinates notation in the following derivations.

Direct Component: The direct component is the light

beam travelling distance
√

h2 + z2O from the source to the

scene that then gets reflected and travels a distance zO to

the camera sensor. Considering the attenuation of (1), the

incident component on the scene is Ik
e
−c
√

h2+z2
O

h2+z2
O

. We as-

sume here that the surface is Lambertian with a constant

albedo � and unit normal vector n, while light direction is

denoted by unit vector sk. The scene-reflected light will be

then attenuated again by e−czO before it reaches the sensor.

Hence, the total direct component is:

1As in the prior art, we adopt the single scattering model. We ignore

forward scattering phenomena [19] and focus on the backscatter which was

shown to have the dominating impact on image quality [17, 10].
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Dk =
Ik

h2 + z2O
e−c(zO+

√
h2+z2

O)�n · sk. (2)

Backscatter Component: Consider now a differential

scattering volume at distance z across the Line-Of-Sight

(LOS) of the sensor pixel. As before, the scattering volume

is illuminated by Iv = Ik
z2+h2 e

−c
√
h2+z2

. This backscatters

through angle θ a light component equal to β(θ)Iv , which

is attenuated by e−cz until it reaches the sensor. Thus, re-

placing β(θ) by b
4π (1 + g cos θ), and cos θ by z√

h2+z2
, the

differential backscatter component that reaches the sensor

pixel is dBk(z) =
b Ik
4π (1 + g z√

z2+h2
) e
−c(z+

√
h2+z2)

h2+z2 .

In order to estimate the total backscattered light, we have

to integrate over all depth positions z along the pixel’s LOS

where differential volumes of particles are illuminated from

the source and backscatter part of this light towards the sen-

sor. Thus, it should be emphasized here that the lower limit

of the integral does not equal 0 as in [12], but the minimum

depth position on the LOS where the particles are illumi-

nated, denoted by zk in Figure 2. zk corresponds to the

intersection point between the pixel’s LOS and the limited

beam angle of the illumination source. The maximum limit

of the integral equals the scene depth zO which is the final

point on the LOS where particles receive and backscatter

light towards the sensor. Finally, the total backscatter com-

ponent on pixel (x, y) due to the source k is given as

Bk =

∫ z=zO

z=zk

b Ik
4π

(1 + g
z√

z2 + h2
)
e−c(z+

√
h2+z2)

h2 + z2
dz. (3)

There exists no closed-form solution for the integral. How-

ever, it was shown that it is a smooth function that is

straightforward to evaluate numerically [15].

3. Photometric Stereo in a Scattering Medium
In pure-air PS, the product �n · sk yields a system of

linear equations that can recover the normals and albedo for

every pixel using at least 3 sources. Based on the image for-

mation model of Section 2, within a scattering medium the

total measured intensity Ek for every pixel/source equals

the sum Dk + Bk. The equation is non-linear and has a

complicated form. Increasing the number of sources is a

common practice to determine the PS problem when fur-

ther unknowns are added. Narasimhan et al. [12] showed

that within turbid media where sources are far away from

the camera at least 5 sources are required for determin-

ing the non-linear system of equations. Otherwise, for a

4-source symmetric setup and isotropic medium (g = 0),

the backscatter for each pixel should be equal for all 4
sources: Bki = Bkj ∀i, j ∈ {1, 2, 3, 4}, and thus can

be eliminated by subtracting pairs of measured intensities:

Eki
− Ekj

= Dki
−Dkj

. Let us examine the problem for

our case, where, in addition to the considerations of [12],

the limited beam angle of the kth source next to the camera

that leads to zk �= 0 and ISL are also considered.

The medium coefficients b, c and g are constants-global

unknowns within a uniform scattering medium. The un-

known values for every pixel are: the albedo �, the normal

vector n (� and n are considered as 3 unknowns together

since n is a unit vector), and the depth variables zO, zk. At

a first glance the total number of unknowns for each pixel

are 5 plus 3 global unknowns, and thus 6 sources would be

enough to determine all of the unknowns for every pixel.

Figure 3: The LOS of a sensor pixel intersects the beam

angle of each light source ki at a different depth zki . Thus,

each source creates a distinct backscatter component on the

sensor (illustrated by backscatter images B1 and B2).

3.1. Backscatter Variation for Each Source - zk
In fact, contrary to the rest of the parameters, zk does

not have a single value for every pixel (x, y) since it dif-

fers for each source (Figure 3). When a pixel is closer to a

light source ki, its LOS will intersect the beam angle of ki
at a smaller depth point zki than it will intersect the other

sources. Thus, for this source the integration path between

zki
and zO will be larger than for other sources, adding a

higher backscatter value Bi to the pixel. This holds for ev-

ery pixel, and hence every source finally creates an uneven

backscatter component on the sensor according to its posi-

tion with respect to each pixel. The synthetical backscatter

images (using (3)) of Figure 3 illustrate this non-uniformity

due to varying zk for every pixel/source. In order to esti-

mate zk we would have to calculate the exact intersection

point of each pixel’s LOS with the beam angle of every

source. Such a task would be very difficult since the precise

3D position, rotation and beam angle of the source should

be known. Note here that zk, as opposed to scene depth zO
which might be far away from the camera-lights setup (as

224722532261
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Figure 4: Due to ISL backscatter is saturated after a small depth zsat away from the camera and hence it captures no

information about scene’s depth zO.

in orthographic projection), is only a few cm away from the

sensor 2 where the backscatter function (3) is highly variant

and hence small errors in calibration of zk are expected to

have a strong impact on backscatter estimation [17].

Due to the varying zk(x, y) for every pixel-source com-

bination, increasing the number of sources also increases

the number of the unknowns. This leaves the problem un-

derdetermined regardless of the number of sources. Further-

more, due to this variation the linear solution of [12] that

assumes that backscatter for every pixel would be equal for

every source Bki
= Bkj

does not hold, as zki
�= zkj

.

3.2. Linear Solution with 3 Sources

Since the extra ambiguity due to zk lies solely in the ad-

ditive backscatter term, we suggest that the whole backscat-

ter component is estimated for each pixel-source and sub-

tracted from the measured brightness without having to de-

termine the exact value of zk (Section 4). This would leave

us with the direct component for every source, given by

(2). The albedo and the attenuating factor can be com-

bined into a scene-depth dependent function defined as

�sc(zO) = � 1
h2+z2

O
e−c(zO+

√
h2+z2

O) for every pixel.

Thus, after subtracting the estimated backscatter we end

up with the direct component that carries the shape informa-

tion of the scene and a scaled version of the albedo �sc(zO):

Ek(x, y)−Bk(x, y) = Ik�sc (zO(x, y)) n · sk. (4)

Given that the light intensity and direction are known for

each source, we can estimate the unit normal vector n and

scaled albedo �sc(zO) of the surface patch, given at least 3
light sources. Since Ek(x, y) is the measured intensity, the

problem now becomes estimation of the varying backscatter

component Bk(x, y) for every pixel (x, y) and source k.

3.3. Backscatter Variation with Scene Depth zO

As (3) indicates, backscatter is a function of both the

minimum lighted depth zk and the scene depth zO. These

two values determine the integration path (pointing arrows

in Figure 3), whose length determines the intensity of the

2Typical values of zk ∈ [10− 30cm] were approximated in [17].

backscatter. According to Section 3.1, pixels that are posi-

tioned closer to a source will have a bigger integration path

due to smaller zk. Let us now examine the upper limit zO.

Contrarily with cases of diffuse or distant from camera

illumination [6, 12], backscatter for point-sources is satu-

rated after a small depth value due to ISL [17]. Figure 4a

shows the backscatter function for increasing scene-depth

when ISL is considered. It equals 0 below the minimum

lighted depth zk and then exhibits a rapid increase until

it reaches saturation, while it is smoothly increased with

scene depth when ISL is omitted. The saturation indicates

that backscatter dependence on zO can be safely omitted af-

ter zsat, where the scattered light by the particles becomes

negligible: Bk(zO) = Bk(∞), ∀zO ∈ [zsat,∞] (Figure

4b). zsat is within the small range of 0.5 − 1.5m from the

camera [17] 3, which indicates that in typical orthographic

PS setup (Section 5) backscatter will be saturated, and zO
can be replaced by∞ in the backscatter function term.

Interestingly, according to numerical evaluations using

(2) and (3), even for zO < zsat backscatter variation with

scene depth can be omitted when the total measured bright-

ness Ek is considered. For the small depths below zsat we

expect the intensity of the illuminating light, and the direct

component Dk to be very high due to ISL. Figure 4c shows

the respective direct component over the varying depth z,

along with the absolute values of the backscatter compo-

nent of Figure 4a. For small depths where backscatter isn’t

still totally saturated, the measured brightness seems to be

dominated by the direct component intensity. In order to

estimate the impact of the backscatter variation with scene

depth with respect to the actual measured brightness E, we

calculate the ratio
B(z)
E(z) within a varying scene depth range

z, and the ratio
B(∞)
E(z) which approximates the backscat-

ter by its saturation value even for scene depths below zsat
where it is still unsaturated. Figure 4d indicates that these

two differ with a small error value ε(z) at every depth.

This is negligible at a depth point smaller than zsat
4.

3This range limit coincides with the one we found through numerical

evaluations using (3).
4We consider as negligible any value smaller than 1/255 that is the

minimum sensing capability of the majority of imaging sensors (8-bit).
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Using (3), we have run extensive numerical simulations for

a wide range of its unknown values (b, c ∈ (0 − 2m−1),
zO ∈ (0.1− 10m), zk ∈ (0.01− 0.5m)) and the error ε for

any zO > 0.5m was measured to be as low as 0.02 bright-

ness values. The respective error for any zO > 1m which is

the imaging range in our PS setup was below 0.005 bright-

ness levels which is similar to sensor or quantization noise

level. Considering also that in PS applications we expect

a much smaller scene depth range than the one used in the

numerical simulations, due to ISL we can safely neglect the

backscatter dependence on any scene depth zO > 0.5m and

replace zO =∞ in (3).

4. Backscatter Estimation

Previous Work: The task of estimating the backscat-

ter component when directional sources are employed has

drawn limited attention compared with the respective cases

of diffuse lighting [6, 14]. The work of Mortazavi and Oak-

ley [9, 10] was the only work we found estimating this

directly from the image brightness. The dependence of

backscatter on zk and its saturation with scene depth were

omitted in this work and as it was assumed, the measured

backscatter was proportional to a low-pass filtered version

of the image B(x, y) � γĒ(x, y). Ē(x, y) was used for ex-

tracting the illumination variation of the image by suppress-

ing any high-frequency details and thus a recursive Gaus-

sian filter with a large parameter σ was used. As we show

next, the assumption that backscatter follows a low-pass fil-

tered version of the image is unrealistic in many cases, over-

estimating the backscatter and introducing high errors in PS.

Proposed Calibrated Method: As it was described

in Section 3, for point-light sources next to the camera

backscatter is saturated, and thus the varying integration

path that results in an uneven backscatter for every pixel-

source combination is attributed to zk . Thus, the backscat-

ter component can be estimated by capturing images when

the camera looks at ∞, directly measuring the saturation

value B∞k (x, y) of every pixel 5. In a finite tank, this can be

done using a flat matte black canvas to produce D = 0.

Proposed Automatic Method: As zk(x, y) varies

smoothly for every pixel due to its clear geometrical mean-

ing (Section 3.1), the respective backscatter function is also

smooth. Specifically, Bk(x, y) would have its maximum at

the pixel position which is closest to the source k and then

smoothly decrease for the rest of sensor pixels (Figure 3).

This smoothness gives us insight that knowing the backscat-

ter intensity of only a few pixels, we can approximate the

whole smooth backscatter function over the sensor:

Bk � fk(X,α), (5)

5The calibration should be done separately for every source creating a

backscatter lookup table for each pixel-source combination.

where X is the set of all pixel coordinates (x, y), and α
are the unknown parameters of the model that approximates

Bk. Due to the smoothness of the function and its unique

maximum on image border, we found that a 2D quadratic

function fk(x, y) = α0+α1x
2+α2y

2+α3xy+α4x+α5y
can estimate with negligible errors the true Bk function of

(3) 6. A set of at least 6 points with known backscatter

component are needed in order to define the 6 unknown co-

efficients of α, although more pixels would be necessary

for robustness, as described in Section 5. Figure 5a shows

the true backscatter function Bk(x, y) simulated using the

model of (3), and the resulting fitted quadratic function fk
using the backscatter values of only 6 points.

(a) (b)

Figure 5: (a) Simulated ground-truth backscatter and fitted

quadratic function using 6 random points. (b) Automatic

backscatter estimation for a murky-water object image.

The problem now comes to the selection of at least 6
backscatter pixels that are the input for our regression. Po-

tential candidates are pixels that correspond either to dark

scene points, i.e. �(xB , yB) = 0, or to infinite depth points

zO(xB , yB) = ∞. From (2), the respective direct com-

ponent for these pixels will be 0 and hence the measured

brightness corresponds to the actual backscatter intensity:

Ek(xB , yB) = ������� 0

Dk(xB , yB) +Bk(xB , yB).
In order to select a potential set of backscatter pixels for

which Dk(xB , yB) = 0, we divide the image into a num-

ber of N × N blocks and choose the pixel with the lowest

intensity in each block (Figure 5b). In reality, not all of

the selected points have zero direct component, which in-

troduces a number of outliers. For this purpose, we exploit

a RANSAC approach which iteratively evaluates a 6-point

set out of the selected pixels. We also take advantage of

the physical characteristics of our model in order to facili-

tate the outlier rejection. Specifically, given that backscatter

for each source has its maximum on a border pixel that is

closer to the source, we reject solutions that estimate the

maximum of fk on non-border pixels. Furthermore, in our

case the outliers should be always additive to our model

fk since they correspond to a positive direct component:

fk + Dk, Dk > 0. Thus, we penalize solutions that have

outliers below the fitted function, by adding the absolute

6The selection of the quadratic function for the regression is supported

by ground-truth comparison of real data in Section 5.
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number of these outliers to the RANSAC score count. Fig-

ure 5b shows the resulting estimated function fk, together

with the inliers and outliers of our RANSAC approach. This

procedure yields an automatic backscatter estimation for

each light source, which requires no prior knowledge about

the characteristics of the source, the medium or the scene.

5. Experiments
Our experimental setup (Figure 6) consists of a

rectangular-frame pool with a water volume of 5000L. Both

the underwater lights and the camera were placed in the

water, imitating the setup of an underwater robotic vehicle.

Specifically, 4 lights were on the corners of a square base-

line with side length 0.4m around the camera. The camera

is a Nikon D60 with a AF-S Nikkor 35mmf/1.8G lens.

The imaged objects are matte, their size (each dimension)

is within 10− 15cm, and they were all captured at approxi-

mately 1.2m depth, enforcing the orthographic assumption.

To simulate the scattering effect, we made a linear scale of

15 turbidity steps ranging from totally clean up to heavily

murky, by adding milk to the water (Figure 9).

Figure 6: Top row: Calibrating the camera in clean water.

Bottom row: Imaged man-made objects.
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Figure 7: (a) Backscatter estimation error according to the

number of backscatter pixels (x-axis). (b) Backscatter esti-

mation error for the Head, Turtle, Deer, Gnome, Ladybug

and Sphere objects (x-axis).

Backscatter Estimation: The backscatter component

for all 4 sources and 15 scattering levels was first measured

through the calibration step by placing a matte black can-

vas at 2m depth in our setup. In order to examine how well

the quadratic function can fit to the ground-truth backscat-

ter given only a small number of its points, we estimated the

RMSE between the real and the estimated function (Fig-

ure 7a) after selecting a different random combination of its

points (x-axis). Regardless of the number of blocks, the er-

ror was as low as noise variation when at least 8 pixels were

used, supporting the validity of the quadratic function.

Then the performance of our automatic estimation

method under the presence of objects, where a high num-

ber of outliers existed, was compared with the calibrated

ground-truth backscatter. Figure 7b shows the RMSE for

our method, and the one of Mortazavi and Oakley [9] (Sec-

tion 4). Our method outperformed [9] for all the imaged

objects. Regarding the Sphere and Head objects, whose im-

ages include a significantly large number of white pixels,

backscatter was still estimated effectively, while the error

for [9] increased significantly, overestimating the backscat-

ter due to the unrealistic assumption that this is proportional

to a low-pass filtered version of the image. For these ob-

jects our method rejected all the outliers on the white ob-

ject, approximating the backscatter from a small number of

scene points on the background. As we described earlier, an

advantage of our method is that due to backscatter satura-

tion with scene depth, the selected backscatter pixels do not

have to be dark patches on the object; they can also be dark

or infinity points on the background 7. In the case where

white objects covered the whole image would lead to erro-

neous backscatter estimation. However, such a case would

be rare in deep-sea scenarios where infinite depth usually

surrounds the imaged objects [17], and even then additional

frames could be employed by moving the camera to target

surrounding dark or infinity pixels.

Shape Recovery: The recovered normal vectors were

quantitatively assessed using the Sphere object whose nor-

mals are a priori known. Figure 8a shows the RMSE value

between the estimated and the ground-truth maps for each

scattering level considering: our 3-source proposed method

for both calibrated and uncalibrated backscatter estimation,

traditional PS method where backscatter is neglected, the 4-

source linear approach of Narasimhan et al. [12] described

in Section 3, and PS method after estimating and subtract-

ing backscatter using [9]. Our approach yields effective nor-

mals estimation similar to those in totally clean water, for a

very wide range of scattering levels. The performance is de-

creased beyond 1.5L of milk, in a similar manner that other

methods are decreased within the lowest murkiness levels.

This effect is reasonable, since beyond 1.5L the degrading

effects are so severe that the backscatter component takes

up almost all of the dynamic range of the sensor (Figure 9).

The shape reconstruction results using the man-made ob-

jects of Figure 6 were next evaluated. The outputs of the

PS method are the normals and the scaled albedo �sc of

7Contrary to diffuse lighting method of [6] which assumed that a

dark point exists in a small neighbourhood around every scene patch, our

method requires only a very small number of either dark or infinite points.

225022562264



0.3 0.6 0.9 1.2 1.5 1.8 2.1

0.3

0.5

Milk quantity  (L) 

N
or

m
al

s 
R

M
S

E

 

 

Clean water

Neglecting B
Prop. Calibrated
Prop. Automatic
Mortazavi & Oakley
Narasimhan et al.

(a) Sphere Object

0.3 0.6 0.9 1.2 1.5 1.8 2.1

0.2

0.4

0.6

0.8

1

Milk quantity (L)H
ei

gh
ts

 R
M

S
E

 

 
Neglecting Backscatter

Proposed

Gnome
Deer
Head
Ladybug
Turtle

(b) Man-made objects

(c) Shape reconstruction

Figure 8: Shape reconstruction results using different meth-

ods: (1) neglecting backscatter, (2) our proposed method,

(3) Mortazavi and Oakley [9], and (4) Narasimhan et al [12].

each pixel. In order to reconstruct the height map from

the respective normals we employ the integration method

of [4]. Figure 8b shows the RMSE between the recon-

structed height of each object in clean water and that esti-

mated at each scattering level, using our proposed method

and that of neglecting backscatter which had the best per-

formance amongst the other methods, while Figure 8c com-

pares the recovered shape of various objects using all meth-

ods. As can be observed, our method successfully preserves

the reconstructed shape, while the rest of the methods tend

to smoothly flatten the result over increased turbidity levels.

In order to have photometric representation of the recov-

ered objects we approximated the albedo of each pixel, un-

der the assumption that the depth variation δzO of the object

surface is small compared to the camera-scene depth. Then,

the scaling factor of �sc (Section 3.2) is a constant that dif-

fers for each channel due to the wavelength-dependent co-

efficient c. Thus, we rescale each channel by its maximum

value in order to recover full contrast. Figure 9 demon-

strates our results for various objects and murkiness levels.

6. Discussion and Future Work
When Photometric Stereo is attempted in turbid media,

the light is supplied by directional sources close to the cam-

era. This causes significant effects in the backscatter com-

ponent according to the exact pixel-source baseline which

have not previously been accounted for. We demonstrate

that the scene depth saturation of the backscatter due to ISL

makes its direct approximation experimentally appropriate.

In order to estimate the smoothly varying backscatter we

propose both a calibrated and an automatic way that exploits

a very small number of dark points on the surface or infinite

points in the surrounding of the imaged object. Our auto-

matic method gives further potential for restoring the poor

visibility from a single image. Figure 10 shows the result of

backscatter compensation from a single image, captured in

murky deep sea port waters using a directional source 8.

This backscatter compensation leads to effective PS

shape estimation over a very wide range of scattering lev-

els. Our model and setup are consistent with a real world

imaging scenario such as robotic inspection underwater, us-

ing only 3 light sources. The small source number re-

quirement facilitates rapid PS imaging in a robotic scenario.

Further effects might degrade the performance of PS and

deserve further research. Additional to the small camera-

lights baseline which has a severe effect on the backscat-

ter component, a small camera-scene baseline might require

further compensation regarding illumination or perspective

projection. Such effects could motivate the combination

of our method with depth information from additional cues

such as multi-view stereo [7].

Figure 10: Murky and restored port-water images.
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