
Recognition
and 6D Localization

of Texture-less Objects
Jiří Matas, Tomáš Hodaň

Center for Machine Perception
 Czech Technical University in Prague

17th December 2015, Chile



Detection and accurate localization of texture-less or 
texture-poor objects is commonly required in personal and 
industrial robotics

2

Texture-less Object Detection for Robotics



Given a database of training RGB / RGB-D images annotated 
with 6D poses or 3D model, detect all instances of known 
objects in a test image and estimate their 6D poses
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Problem Formulation

Training RGB / RGB-D images
annotated with 6D poses

Test RGB / RGB-D image

...

...

...



T-LESS
A new RGB-D dataset and evaluation protocol for 

detection and 6D pose estimation of texture-less objects

http://cmp.felk.cvut.cz/t-less
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● RGB datasets

● RGB-D datasets

● Common aspect: objects often dissimilar in size, shape and color
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Existing Texture-less Datasets

D-TexturelessBristol ToolsCMP Toys CMU Kitchen 
Occlusion Dataset

Hinterstoisser et al.
(extended GT by Brachmann 
et al.)
3D models for 15 objects, 
~1200 test images per object

Multi-Object Pose 
Estimation (Tejani et al.)
3D models for 6 objects, 
~1000 test images per object 

Articulated Objects
(Michel et al.)
4 articulated objects

Rios-Cabrera et al.

UoB Highly Occluded Object 
Dataset (Walas et al.)
25 object categories - 5 objects 
in each (3D models provided)



1. Relatively small objects often very similar in shape and color
2. Test images include significant clutter and occlusions
3. Accurate ground truth 6D pose for all known objects in each image
4. Data from three synchronized and mutually calibrated sensors

(a structured-light depth sensor, a time-of-flight depth sensor, and a high-resolution camera)
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T-LESS: Key Features



● RGB-D & RGB training templates depicting objects from a uniformly 
sampled full view sphere (10° step in elevation and 5° in azimuth)
➡ 1278 templates per object from each sensor

● Each template is annotated with a 6D pose of the object
● Two 3D mesh models for each object:

1. Manually created
2. Automatically reconstructed (TU Wien)
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T-LESS: 30 Texture-less Objects

300x300 px RGB-D 
template from 
Primesense 

CARMINE 1.09

300x300 px RGB-D 
template from 

Kinect v2

1280x1280 px RGB 
template from 

Canon IXUS 950 IS

Manually created 
3D model
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T-LESS: 3D Models vs Real Objects



● RGB-D test images depicting scenes from a uniformly sampled view 
hemisphere (10° step in elevation and 5° in azimuth)
➡ 568 test images from each scene

● Ground truth 6D poses provided for all known objects
● The test scenes vary from simple ones with only few objects and black 

table top to very challenging ones containing many similar objects, 
significant clutter and occlusion
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T-LESS: 21 Test Scenes 



Buy the objects for your own experiments (e.g. grasping)
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T-LESS: The Objects Can Be Bought 



● All training and test data captured in fixed illumination conditions 
with dominant ambient light

● 15 test scenes captured also in alternative conditions with low 
ambient light and strong direct light from side
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T-LESS: Illumination Conditions 

Dominant ambient light Low ambient light and strong direct light
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T-LESS: Sample Ground Truth 6D Poses 

On YouTube

http://www.youtube.com/watch?v=Iuzf3O3NdXQ
https://www.youtube.com/watch?v=Iuzf3O3NdXQ


1. We manually identify a set of images, in which an object’s 6D pose can be 
accurately estimated by the recognition and localization method by Hodan et 
al. (IROS 2015) = RGB-D template matching + 6D pose refinement by particle 
swarm optimization

2. Mean of the 6D poses estimated in these images is transformed to all 
images using camera poses estimated from the fiducial markers

On YouTube
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T-LESS: Estimation of GT 6D Poses 

https://youtu.be/7RQSKThLXgg
http://www.youtube.com/watch?v=7RQSKThLXgg


Sensors (synchronized and mutually calibrated):
● Primesense Carmine 1.09 (Short Range)

registered RGB-D images (RGB:1280x1024 px, 
D:640x480 px)

● Microsoft Kinect v2
registered RGB-D images (1920x1080 px)

● Canon IXUS 950 IS
high resolution RGB images (3264x2448 px)

1. Sensors fixed on an arm with adjustable tilt
2. A turntable with a marker field for camera 

pose estimation (the vertical markers enable 
estimation from low elevations)

3. A shield to ensure black background in 
training templates (it is removed for capturing 
test data)

4. A strong reflector to increase ambient light
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T-LESS: Capturing Setup 
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T-LESS: Primesense vs Kinect v2

Primesense CARMINE 1.09 Kinect v2

RGB

Depth



● To obtain views from the full sphere around the object, each object is 
captured 1) upright and 2) upside down, in both cases from elevations 
5° to 85° (10° step in elevation and 5° in azimuth)
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T-LESS: Views From Full Sphere

Upside downUpright



● Primesense: less noisy, but more missing values (at slanted surfaces 
and around occlusion boundaries) 
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T-LESS: Primesense vs Kinect v2

Primesense CARMINE 1.09 Kinect v2

View 1

View 2



● Ongoing work:
1. Automatic reconstruction of 3D models (the manually created 

models available)
2. Finalization of ground truth 6D poses
3. We are considering adding new test scenes without markers (the 

camera pose could be estimated e.g. from the known texture of the 
top of the turntable)

● Expected release of the final version: February 2016
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T-LESS: Current State



● Evaluate how well a 3D model in an estimated 6D pose fits the 
same 3D model in the ground truth 6D pose

● Commonly used evaluation criteria (used in the most of the challenges 
at this workshop):
1. Average distance (AD) criterion (Hinterstoisser et al.)
2. 5cm, 5deg (Shotton et al.)
3. 2D intersection over union (IoU) criterion (Everingham et al.)
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6D Pose Evaluation

A mug in the ground truth and
an estimated pose

How good is the estimated pose?



M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, A. Zisserman: The Pascal Visual Object Classes Challenge. IJCV 2010

● A pose is considered correct, when intersection over union of 2D 
bounding boxes of an object in the estimated and the ground truth 
pose is above a threshold (e.g. 0.5)

● Weak, but allows comparison with 2D methods (e.g. Damen et al.)
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2D Intersection over Union (IoU) Criterion



J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, A. Fitzgibbon: Scene Coordinate Regression Forests for Camera 
Relocalization in RGB-D Images. CVPR 2013

● A pose is considered correct, when the translational error is below 
5cm and the rotational error is below 5deg

● Not adaptive to the object size
● Originally used for evaluation of camera pose estimation
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5cm, 5deg Criterion



S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. R. Bradski, K. Konolige, N. Navab: Model Based Training, Detection and Pose 
Estimation of Texture-Less 3D Objects in Heavily Cluttered Scenes. ACCV 2012

● A pose is considered correct, if the average distance is below 10% of 
the object diameter

● Adaptive to the object size

● Average distance for non-symmetrical objects (~ 6D pose distance):

● Average distance for symmetrical objects (~ 3D surface distance):
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Average Distance (AD) Criterion



● Maximum instead of average
○ Maximum error is more relevant for robotics (grasping, assembly, etc.)
○ There is no noise, we are matching the same 3D model in two poses

ds
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Surface Distance (proposed)

ds reflects the misalignment 
better than d’h (the average 
distance for symmetrical 
objects), which is in this case 
very low, indicating a good fit



● Considers all poses from the equivalence class [(R,t)] of the ground 
truth pose (given by pre-defined symmetries of the object)
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Corresponding Point Distance (proposed)

dp

a

a non-symmetrical mug

a bowl with rotational 
symmetry

➡ all poses varying in the 
rotation around a are 
considered equivalent



1. 6D localization (multiple classes, multiple instances)
○ Generalization of the Hinterstoisser’s task (one instance per image)
○ Input:

■ a test RGB-D image and training data of known objects
■ a list of pairs (present object class, number of instances)

○ Output:
■ a list R of tuples (object class, estimated 6D pose, score)

2. Detection and 6D localization (multiple classes, multiple instances)
○ Input:

■ a test RGB-D image and training data of known objects
■ no prior knowledge about the present object instances

○ Output:
■ a list R of tuples (object class, estimated 6D pose, score)
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Definition of Evaluation Tasks
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Detection and Fine 3D Pose Estimation
of Texture-less Objects in RGB-D Images



● Multi-scale sliding window
● Efficient cascade-style evaluation of each location
● The window has a fixed size, the same as the templates
● Stochastic optimization used to refine the 3D pose
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The Proposed Method

O(LT) 

reducing Treducing L

100-101

Sliding win. 
locations

Detections
+ rough 3D poses

Objectness 
filter Hashing Fine 3D pose 

estimation
Non-max 

suppression
Template 

verification

Fine 3D 
poses

100-101102105108109

= complexity of an exhaustive template matching

L = the number of sliding window locations
T = the number of training templates



Density of detection candidates
detection candidate = (tpl. id, x, y, scale)

● Based on the number of depth edges
● The number of depth edges in a window is required to be at least 30% 

of the minimum from the training templates
● For false negative rate = 0, 60-90% of locations are pruned
● Other window proposal methods (e.g. Edge-boxes) are being considered
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Objectness Filter

100-101

Sliding win. 
locations

Detections
+ rough 3D poses

Objectness 
filter Hashing Fine 3D pose 

estimation
Non-max 

suppression
Template 

verification

Fine 3D 
poses

100-101102105108109

Number of detection candidates: 1.7 x 108

Detected depth edges



Density of detection candidates
detection candidate = (tpl. id, x, y, scale)

● Voting procedure based on hashing descriptors of trained triplets of 
reference points located on a grid

● Each triplet is described by surface normals and depth differences
● Up to N templates with the most votes are selected per location 

Typically: N = 100, 8 bins for surface normal orientation, 5 bins for depth difference, i.e. 5283 = 12800 hash table bins
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Hashing

Number of detection candidates: 5.2 x 105

Sample triplets Triplet description

100-101

Sliding win. 
locations

Detections
+ rough 3D poses

Objectness 
filter Hashing Fine 3D pose 

estimation
Non-max 

suppression
Template 

verification

Fine 3D 
poses

100-101102105108109



Density of detection candidates
detection candidate = (tpl. id, x, y, scale)

● A sequence of tests evaluating consistency of:
a. Object size and the measured depth
b. Surface normals
c. Image gradients
d. Depth
e. Color (HSV)
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Multimodal Template Verification

Number of detections: 44

Learnt feature 
points in different 
modalities

Img. gradients Surface normals

Depth Color

} Evaluated on learnt feature points
Based on: Hinterstoisser et al., “Multimodal templates for real-time detection 
of texture-less objects in heavily cluttered scenes”, ICCV, 2011

100-101

Sliding win. 
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Detections
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Objectness 
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Fine 3D 
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Density of detection candidates
detection candidate = (tpl. id, x, y, scale)

● Detection candidates with locally highest score are retained
● The 3D poses associated with the detected templates are used as 

initial poses in the pose refinement procedure
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Non-maxima Suppression

Number of detections: 1

Rendering of the 
3D pose associated 
with the detected 
template

100-101

Sliding win. 
locations

Detections
+ rough 3D poses

Objectness 
filter Hashing Fine 3D pose 

estimation
Non-max 

suppression
Template 

verification

Fine 3D 
poses

100-101102105108109



● The rough initial 3D pose is refined using a hypothesize and test 
scheme based on Particle Swarm Optimization (PSO)

● PSO stochastically evolves a population of candidate poses over 
multiple iterations

● Candidate poses are evaluated by comparing their rendered depth 
images to the input depth image (using a cost function measuring 
similarity in depth, surface normals and depth edges)

● Pose refinement using PSO is less sensitive to local minima 
compared to ICP

Details in: Zabulis, Lourakis and Koutlemanis, ”3D Object Pose Refinement in Range Images”, Intl Conf. on 
Computer Vision Systems, ICVS, 2015
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Fine 3D Pose Estimation

100-101

Sliding win. 
locations

Detections
+ rough 3D poses

Objectness 
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Template 
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Fine 3D 
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● Evaluation on the dataset of Hinterstoisser [1]:
○ 15 texture-less objects, 1200 RGB-D test images for each
○ Object localization: detect the given object and estimate its pose

● The recognition rate (recall) of our method is comparable to SOTA
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Recognition Rate

[1] Hinterstoisser et al., “Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered 
scenes,” ACCV, 2012
[2] Drost et al., “Model globally, match locally: Efficient and robust 3d object recognition,” CVPR, 2010

Recognition rates [%]
(LINEMOD and LINEMOD++ are methods from [1])

Sample 3D pose estimations



● Time complexity is sub-linear in the number of templates
● When the number of loaded templates increased 15 times, the average 

recognition time increased only less than 3 times:

● 0.75 s per VGA frame (9 image scales) for a single known object
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Scalability and Speed



● Evaluation of Hodan et al. (IROS 2015) method
● Hinterstoisser’s average distance (AD) criterion
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T-LESS: Evaluation on the First 3 Scenes
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Conclusions
1. T-LESS: A new industry-relevant RGB-D dataset and evaluation 

protocol for detection and 6D pose estimation of texture-less objects
a. Relatively small objects often very similar in shape and color
b. Significant clutter and occlusions
c. Accurate GT 6D poses for all known objects
d. Data from three synchronized and mutually calibrated sensors

2. Difficulty of the T-LESS dataset was confirmed in the first evaluation 
of the method by Hodan et al. (IROS 2015)

3. Definition of evaluation tasks:
a. 6D localization
b. Detection and 6D localization

4. New 6D pose distances proposed:
a. Surface distance
b. Corresponding point distance
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      Thank you!



● Input:
○ a list R of tuples (object class, estimated 6D pose, score)

= an output of the method to be evaluated
○ a list G of pairs (object class, ground truth 6D pose)

● Output: TP/FP labeling of the instances from R

● TP/FP classification algorithm:
1. (only for the 6D localization task) If there are more than the specified 

number of instances of some class in the output list R, keep only the ones 
with the highest score.

2. From the list R take the instance with the highest score and compare its 
pose against ground truth poses of the same class (using the distance d - 
the 3D surface distance or the 6D pose distance).

3. If a match was found (d < th), classify the estimated pose as a true positive 
and remove the matched ground truth pose from the list G. Otherwise, 
classify the estimated pose as a false positive.

4. Go to step 2.
38

TP/FP Classification



● Calculate “precision vs recall” curve by varying th
● (Calculate the area under the curve)
● ...
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Performance Evaluation



1. Template matching methods
Hinterstoisser (ICCV 2011), Rios-Cabrera (ICCV 2013),
Cai (ICVS 2013), Hodan (IROS 2015)

2. Shape matching methods
Damen (BMVC 2012), Tombari (ICCV 2013), Drost (CVPR 2010), 
Choi (IROS 2012), Hodan (ISMARW 2015)

3. Methods based on dense features
Sun (ECCV 2010), Gall (PAMI 2011), Brachmann (ECCV 2014)

4. Deep learning methods
Wohlhart (CVPR 2015), Held (arXiv 2015), Krull (arXiv 2015)
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Existing methods


